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ADAPTING FOR HETEROSCEDASTICITY IN LINEAR MODELS"

By RaymonD J. CARROLL

University of North Carolina at Chapel Hill

In a heteroscedastic linear model, it is known that if the variances are a
parametric function of the design, then one can construct an estimate of the
regression parameter which is asymptotically equivalent to the weighted least
squares estimate with known variances. We show that the same is true when
the only thing known about the variances is that they are determined by an
unknown but smooth function of the design or the mean response.

1. Introduction. We are interested in efficient regression parameter estimation in a
heteroscedastic linear model given by

(1.1) Y, =xi8B+o0¢s,i=1..-,n,j=1---,m,Zm = N.

Here Y,, is the response of the jth replicate at the design point x, (a p-vector), 8 is the
unknown regression parameter of interest, {o,} express the heteroscedasticity in the model
and {g,} are i.i.d. with variance one and distribution function F' assumed symmetric about
zero but otherwise unknown. Theoretical analysis of the model (1.1) has traditionally fallen
into one of the two areas we describe below.

The parametric approach generally assumes

(1.2) o2=H(x,0) or H(x/8,0), Hknown.

See Hildreth and Houck (1968), Froehlich (1973), Dent and Hildreth (1977), Box and Hill
(1974), Jobson and Fuller (1980) and Carroll and Ruppert (1982). Once a parametric
assumption such as (1.2) is made, one computes estimates of the r X 1 unknown parameter
0, next estimates

62=H(x,0 or H(x.B 6),

as appropriate, and then constructs a weighted estimate of §. If we denote the weighted
least squares estimate based on the true weights by Sr and the weighted estimate based on
the estimates {6,} by Br, we get a well-known result:

ResuLt 1. For tpe pare}metric approach, in large samples there is no cost due to
estimating {o,}, i.e., 87 and B have the same limiting normal distribution.

This result is proved rigorously and extended to robust estimation by Carroll and Ruppert
(1982); Carroll (1982) shows it holds even if the dimension p of 8 increases with N, e.g.,
p?/N — 0 generally suffices. See also Williams (1975).

The nonparametric approach differs quite radically. Here,

(1.3) o?=H(x,) or H(x,8), Hunknown.

Since H(-) is assumed completely unknown, the standard method is to get information
about H (-) by replication (m, > 1). Fuller and Rao (1978) consider the situation often seen
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in practice that the number of design points n — «, but each m, stays bounded. Their
method is to fit least squares estimates (8.) to the data, compute predicted values (¢, =
x:B) and residuals (r;; = Y,; — ¢;) and estimate

o 1
(1~4) 0,2 =ZZJ r?j.

With these estimates one then performs weighted least squares, obtaining what we shall
denote by Brr. By delicate and very interesting calculations, they obtain an important
result which had not been previously known or appreciated:

REsuULT 2. In the nonparametric approach, there is a cost due to not knowing {o;}, i.e.,
Br and Brr have different limiting distributions.

We explore here the possibility of closing the wide gap between Results 1 and 2, at least
in an asymptotic sense. Specifically, we explore methods for which the nonparametric
approach (1.3) is used but for which Result 1 obtains. In other words, we will show that
situations exist in which nothing specific is known about the variance function, but
estimation of B8 can be done asymptotically as well as if the variance function were
completely known.

A key feature of many—but as Fuller and Rao (1978) note, not all—heteroscedastic
regression problems is that the variances appear to be smooth functions of the design or
mean response; we use the term “smooth” loosely here, but generally will mean that the
variance function H(-) has a continuous first derivative. This smoothness suggests that if
x; and x; are very close, so too should be H (x;) and H (xz). This suggests that information
about H(x;) can be obtained from data at x.. Hence, we will study the nonparametric
models

(1.5) 6?=H(x,) or H(x,B8), Hunknown butsmooth.

This approach of sharing information contrasts with that of the nonparametric method
(1.3)—(1.4), which only uses data at x; to estimate H(x;). By sharing information we
should now get good consistent estimates of H (- ), which enables us in certain circumstances
to get better estimates of 8 for which Result 1 holds.

We specifically consider only two cases. In Section 2 we discuss simple linear regression,
while in Section 3 we assume that the variance is a smooth function of the mean. The
technical details are not trivial and the notation is rather messy, but the basic idea is
simple and can be described as follows. Under the second part of (1.5) for example, we
have

E(Y,;— xiB)® = H(xip).
Thus, for the residuals r,; we have
(16) Er} = E(Y, - xifu) = H!B).

Equation (1.6) puts us in the realm of nonparametric regression of squared residuals on a
function H(-). Even if one goes no further, there is already a huge literature which can be
exploited to define nonparametric regression estimates (Watson, 1964; Rosenblatt, 1969;
Stone, 1977; Mack and Silverman, 1980; Johnston, 1982); this we do. If one goes further
and makes the often reasonable assumption that H(.) is monotone, isotonic regression
could be used (Wright, 1978). Such isotonic estimates should work well in practice but we
have been unable to develop a theory for them.

Throughout this paper, x and B refer to p-vectors, while « and ¢ are scalars. For
example, the heteroscedastic simple linear regression model is, with x! = (1, ¢;) and 8’ =
(Olo, ay),

(L.7) Y, =x:8 + 6.8, = a0 + aic, + 0.6,,.
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NoTE ADDED IN PrROOF. After this paper was accepted for publication, I was informed
by Professor N. Matloff (Department of Statistics and Electrical and Computer Engineer-
ing, University of California at Davis) that in 1978 his student Dr. Robin Lawrence Rose,
in an unpublished dissertation, proposed methods of estimation similar to those investi-
gated here, and performed Monte-Carlo experiments for these methods.

2. Simple linear regression. We first consider simple linear regression. This is the
only case for which we have been able to obtain results in which the variance is a function
of the design alone, as would be the case in the random coefficient model of Hildreth and
Houck (1978). In the next section, we discuss the situation in which the variance is a
function of the mean response.

Thus, in this section, the model is given by (1.7), where

o?= H(c,), H(-) unknown.

Much of the literature for the nonparametric regression problem assumes that the
independent or predictor variables are themselves random. In order to make the most
efficient presentation, we will follow this lead, making the assumption for model (1.7) that
{e,,} and {c,} are sets of i.i.d. random variables independent of one another. After the
statement of Theorem 1, we will discuss the case that {c,} is a set of fixed constants. We
will first present and discuss the assumptions, and then state the first result.

First, from Watson (1964) and Johnston (1982), a plausible kernel-type estimate of H is

-1
¥ n m, . G —cC n m, G —C
(2.1) Hy(c) = Z‘L;l 2];51 rLZjK<b(N) > {Zzl 2]:1 K(’b(—N)>} .
The weighted estimate ,@w is formed by setting
612 = FIN(CI)

and then performing weighted least squares.

In order that information about the scalar function H(-) can be shared and in order to
avoid being subject to the Fuller and Rao Result 2, we need the design to be eventually
dense in a set such as an interval. This will enable us to estimate H(-) uniformly well. One
can do this under the following assumption.

AssumMpPTION 1. {x,} have density function f positive on its compact support .£ Further,
on .4 [ has two continuous derivatives.

Note that Assumption 1 is really designed for regression problems and not for factorial
designs. Naturally, we also require that H be smooth:

ASSUMPTION 2. H and its first derivative are continuous on .%

In order to make sure that no infinite Weight;s occur in our weighted regression, we need
AssumPTION 3. H has a positive infimum on .%

We also need some assumptions on the kernel K(-) and bandwidth (N) in (2.1).

AssuMPTION 4. K(.) is a symmetric density function. It has compact support, three
continuous derivatives, and its support includes an open set containing .%.

AssuMPTION 5. The bandwidth b () satisties Nb(N)* — 0.

AssumPTION 6. The bandwidth & (N) satisfies N**b(N)* — .
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Finally, we make assumptions relating to the uniqueness of the design; these are
reasonably standard assumptions even in the parametric approach. Recall x’ = (1, ¢).

AssuMPTION 7. E(xx’) and E {xx’H *(c)} are positive definite.

THEOREM 1. Under Assumptions 1-7 and the condition that Ee < oo, [?w and [?T
have the same normal limit distribution, with mean 8 and covariance N 'Exx’H (c).

The proof is in Section 5. Assumptions 5 and 6 probably can be weakened.

REMARKs. The problem discussed in this section is a special case of one in which the
variance is a function of the design and p = 2; when p = 3, H is a function of a vector
argument. For larger values of p, the rate of convergence to H of the estimator (2.1) will be
slower and the proof given in the appendix will break down, since Theorem 5.1 will not be
true. We believe brute force (Taylor series) can be used to extend Theorem 1 to the case
p = 3, but an alternative approach would be preferable.

Theorem 1 can be extended to the case where the predictor variables {c,} are fixed
constants by assuming that they “act i.i.d.” in all essential aspects; this is rather untidy.
Alternatively, one could replace (2.1) by the Priestley-Chao estimator studied by Benedetti
(1977). For this estimator, certain technical difficulties can be avoided because there is no
random denominator term as in (2.1); the assumptions, however, remain basically un-
changed with the exception of Assumption 1.

3. Variance a function of the mean. Here we consider the model (1.1) with

(3.1) of=H(x,B) = H(r;), H unknown.

The variance is often considered a function of the mean as in (3.1) because residual plots
fall in a fan-shaped pattern; see Box and Hill (1974), Bickel (1978), Jobson and Fuller
(1980) and Carroll and Ruppert (1982).

Note that

7, = true mean response = x, 8
and define the predicted values as
tl = xz" ,éLy

where ,éL is least squares estimator. Following the same reasoning as in the previous
section, the estimator of H becomes

PN -1 t _S B
Hx(s) = (NB(N)} ' Bl B2 r3K (b(N))[{N”W)} Zia X (b(N))] ’

and the estimated variances are {H ~(t)}.

THEOREM 2. Under the assumptions of Theorem 1, but in Assumption 7 replacing
H(c) by H(x' B), ,BW and ,BT have the same normal limit distribution with mean 8 and
covariance N7'E {xx’ H'(x’ B8)}.

The proof is in Section 5.

4. A Monte-Carlo study. We performed a small Monte-Carlo experiment to see if
the previous results make any sense even in an ideal situation. We took the model to be
simple linear regression.

(41) Y,=(x0+alci+o,-£i, l= ]., ---,N=60.

Here {e.} are standard normal random variables, (a, ;) = (50, 60), and {¢.} are ii.d.
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uniform on the interval (—'%, %). The normal random numbers were generated by the
IMSL routine GGNPM, while the uniform numbers used GGUBS. The number of Monte-
Carlo simulations for each situation was 500.

We estimated the function H by Hy of (2.1), with

3@ —=vp¥2|v| =1,
(4.2) K@) = {O o= 1,
(4.3) b(N) =0.13.

The particular choice for b(N) was arbitrary, although on average approximately 8
observations are used in constructing Hy at each design point. While K(-) does not strictly
satisfy Assumption 5, it does have a continuous first derivative which should suffice. In
Table 1, the weighted least squares estimate with weights generated by Hy is denoted
NONPAR. The least squares estimate is LSE.

Three models for the variances were considered. The first, given by Jobson and Fuller
(1980), is

(4.4) 62 =ay + axr?, T, = ap + a1C;.

For our simulations we chose a; = 100, a; = 0.25. Our second model is one of more severe
heteroscedasticity,

(4.5) 0; = aexp(az | 7.|),

where a; = 0.25 and a; = 0.04. This type of model is mentioned by Bickel (1978). The third
model is one of severe heteroscedasticity

(4.6) 0, = arexp(asr?),
where
(a1, a2) = (Y4, 1/3200).

We also constructed a third estimator PARM based on the parametric model (4.4). Our
intentions in doing this were (a) to see if the nonparametric estimate is at all reasonable
when compared to an estimate based on a correct parametric model (4.4) for the variances,
and (b) to see if the nonparametric estimate is more robust than the parametric estimate
if the variance model is badly misspecified, i.e., (4.6) holds but estimation is done as if (4.4)
holds.

TABLE 1
Results of the Monte-Carlo Study of Section 4 for the model 1, = EY, = 50 + 60 c,, ¢, Uniform
(=1, ). The models for Var(Y,) = o? are: Model 1 6? = a; + az7%, (a1, az) = (100, 0.25); Model 2 o,
= a;exp(az| 7.|), (a1, az) = (0.25, 0.04); Model 3 o, = aexp(azx7?), (a1, az) = (0.25, 1/3200).

Xy = 50 ay = 60
Estimator Variance Bias MSE* Bias MSE*
Model
LSE 1 .052 13.27 925 172.07
PARM 1 .040 13.27 711 138.58
NONPAR 1 .066 14.80 127 144.46
LSE 2 .016 12.87 .106 231.20
PARM 2 011 11.45 .049 100.00
NONPAR 2 .007 10.18 .037 80.34
LSE 3 .004 10.98 .032 200.41
PARM 3 .003 9.85 .016 96.09
NONPAR 3 .002 9.19 .014 88.88

* The actual MSE for Model 2 is the figure given divided by 10?, while the figure for Model 3 should
be divided by 10°.
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The estimate PARM is constructed as follows:
@) Define P as in Jobson and Fuller (1980).
(i) Let B, = LSE, with 81 = (&, &).
(ili) Let r* be the vector of squared residuals, i.e. squares of Y, — x/ ,éL.
(iv) Minimize (r*> — Pa)’(r> — Pa) for 4 = 0, where &’ = (d:, d»)
(v) Define 62 = d; + Ga(do + auc,)?
(vi) Compute a weighted estimate 8, and residuals r,, = Y, — x/f, = Y, — Aop — Q1pCy.
(vii) Repeat steps (iv) and (v), replacing (do, &) by (dop, d1p) in (v).
(viii) Recompute a weighted estimate, call it PARM.
The outcomes of the simulations are given in Table 1. The results are quite encouraging
and suggest that there are instances where our nonparametric estimation of the variances
can work well, particularly for larger sample sizes.

5. Proof. Because the details are lengthy, we sketch the proofs only for the case m;
= 1. As a shorthand notation, identify Assumptions 1-7 as Al, A2, - .., A7. Consider first
simple linear regression in Section 2. We have the following.

THEOREM 5.1. If the supremum is taken over the support of the design ¥ (assumed
compact), then

NY*sup | Hy(c) — H(c) | =, 0.

PROOF OF THEOREM 5.1. Rewrite (2.1) as Hy = Gy/fv and

Gn(c) = Gni(c) — 2Gnz(c) + Grale)
/Cl _ C\

_ -1y 2.2 _ "R, — "B, — 2 g
= (NB(N)} ' S [o%e? — 20,ex0(Br — B) + (x1(Br— B)) ]K(b(N))'

Because both K(-) and the support of the design are bounded and 8, = 8 + O,(N~/?), we
have

N"4sup | Gus(c) | = 0.

Routine but detailed weak convergence arguments using Theorem 12.3 of Billingsley

(1968), A4-A7 and Ee® < o can be used to show that
Gy NVl G| =0, NYsup| fu(c) = Efw()| =, 0,
NYsup | Gui(c) — EGai(e)| —» 0,  N*sup| EGw:(c)/Efv(c) — H(c)| — 0.

The first part of (5.1) is simple enough. It follows from direct weak convergence arguments
after one shows that, from the central limit theorem, one can replace 8, — 8 by

{E(xx")}'N7' 3N, x0.6..

The second and third parts of (5.1) can be shown directly by weak convergence arguments,

but they are also essentially known from the nonparametric regression literature. The

fourth part of (5.1) is merely tedious algebra; one has to be quite careful with end points.
Now recall once again that the model for Theorem 1 is

Y. =x.8+ 0.6,= ap + auc, + 0ie,, Var(e,) = 1.
PROOF OF THEOREM 1. First note because Ee? < o and A7 holds, N*(8r — ) has the
normal limit distribution claimed in Theorem 1. It thus suffices to show that
NY%(Bw — Br) =, 0.

Recall, ﬁw is the weighted estimator based on the adaptive weights (2.1). Because BT is
asymptotically normal, the design is bounded, H(c) > 0 and E¢® < «, one can use Theorem
5.1 to see that it suffices to show that
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(5.2) N7 % x,e,{Hn(c) — H(c)}/o? =, 0,

where x; = (1, ¢;) as before. By the proof of Theorem 5.1 it suffices to show
(5.3) 2 xie[Gn(e) — EGni(c:)]/o? Efn(e) =, 0

(5.4) N72Y xieEGyi () fw(e) — EfN(Ci)]/O?(Efzv(c‘z))2 —» 0,
(5.5) N7 xe{EGn1(c.)/Efn(c:) — H(ci)} o} —, 0.

InA the expressions above, EéNl(ci) refers to EGn1(c) evaluated at ¢ = c;, and similarly for
Efn(c.). We will only sketch (5.3) as (5.4) and (5.5) are much easier. Rewrite (5.3) as

(N2(N)) " 30 8o {ozK(c;,(;,)) EGm(cz)}

EfN(cl
3/2 Xi€&
(5.6) + {N*?b(N)} ™' 3 sz

b(N) )

Each term in (5.6) converges in probability to zero. The first term and the first part of
the second term only require computing second moments, remembering that {x.} and {o:}
are uniformly bounded and noting that {EfN ¢;)} are bounded away from zero. The third
part of the second term is easy. For the second part of the second term, it suffices to prove
the result when we replace ,éL — Bby

(6.7 {E(xx')}'N™' T x.e.00.

Having done this, one then computes second moments. In these steps the full strength of
the assumption Ee® < o is used.

We next sketch the proof for Theorem 2. The first step is a version of Theorem 5.1.
Recall that 7, = x;f = EY,, t. = x; ,BL The deﬁmtlons of Ay and ﬂw are given in Section 3,
while fN is the inverted term in the definition of Hy.

c[oief—1) — 2o,£,x,'([§L - B) + {x] (BL - B)} ]K<

THEOREM 5.2.
NY4sup | Hn(s) — H(s) | =, 0.

ProoF oF THEOREM 5.2. It is first of all possible to show by weak convergence
techniques that

(5.8) N"sup | fu(s) = Ex f(s) | =, 0
where f(-) is the density of {x,8},

fu(s) = {Nb(N)} prl (bu_\,f)

E, fx(s) = E{Nb(N)}' Y, (b(Nf)

i.e, E, means we replace ¢ by 7, = x, and then take expectations. To show (5.8), first
recall that the support of the design is bounded, so that | ¢, — 7,| = O,(N~"/?) uniformly in
i. This means that, uniformly in i,

{(t; — 7:)/B(N)}> =, 0.

Using this and compactness, one expands to get

A(s) = (NB(N)} ' TN,

9 {K(T"_s>+ bt (D 8 +1 b e (m= s\, (1)
b(N) by )° \B@v) ) b(N) oetH:
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That the third term on the r.h.s. of (5.9) convergences in probability to zero at rate N'/*
follows directly from A6. Denote the first term by Vy:(s) and the second by Vy2(s). The
same weak convergence argument used in Theorem 5.1 shows NY*{Vy1(s) — E, fn(s)}
converges in probability to zero uniformly on compacts. Dealing with V. (s) is quite tricky.
One first shows that it suffices to make the substitution (5.7) for ﬁL — B. Then, a simple
second moment computation shows that the finite dimensional distributions of the result-
ing modified process

Via(s) = (N*6*(N)} Y x{E(xx)) w06, K <b S)

(N)
converge in probability to zero; here, as in the tightness argument to follow, we use the
fact that the support of K strictly includes the support of {x;/8} and, since K is a symmetric
density, [ K'(y) dy = 0. Finally, tightness can be proven by using Theorem 12.3 of
Billingsley (1968) (use his equation (12.51) with y = 2 and « = 1 + a, a very small); in
doing this calculation, one must separate the cases |, — ¢;1| = db(N) and < db(N) for a
large constant d (¢; and ¢, refer to Billingsley’s notation). Because of (5.8) and Theorem
5.1, we now only need to prove Theorem 5.2 for

(5.10) H(s) = (Nb(N)} ™' TN, r? (t‘_s) (NB(N)}'E 3 lszo%K<&—s>.

b(N) b(n)

One first makes the expansion of (5.10), as in (5.9), about K((r, — s)/b(N)), and then argues
as above and in the proof of Theorem 5.1; the assumption Ee® < w is again vital here.

Proor oF THEOREM 2. As in the proof of Theorem 1 we must show

(5.11) N72Y xe {Hn(t) — H(r:)}/o? —, 0.

The proof parallels that of Theorem 1. Here, the difficult case is to show
(5.12) N7 ¥ e (Gu(t) = Qu(r)}/{0lEfn(r.)} =, 0
where

Av=0Cn/fv,  @Qux) = (N6(N)}'EY, 82“‘2K( b(NT)

Rewrite (5.12) as

3/2 XiEi 2 bty n T
{N*26(N)} ' 3. %, SEfn () r’{K<b(N)> K( b(N) )}

(5.13)

N(Tz

By a messy argument similar to that of (5.10), the second term in (5.13) can be shown to
converge in probability to zero. For the first term, it suffices to show that for every M > 0,

(5.14) supjaj=m| Va(4)| =, 0,

where

—1 llj2 J T (:_ ;)A 7 T

Because, uniformly in i,

(xi(BL— B)} = On(N7Y),
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by A6 we must merely show (5.14) for the process Vy-(A) which, in Vx(A), replaces r’by
olel — 20,6,%(Br — B).
Divide V- into the two processes
V() = VL) + VR (A).

We now invoke the results of Bickel and Wichura (1971) on multiparameter stochastic
processes, changing their equation (3) to

E|X(B)|*=pn(B)",
for some y > 0. This shows (in order) that it suffices to show the results when we replace
N7'Y x.x!

in the definition of 8, — B8 by E (xx’), and then that V§* is tight with finite dimensional
distributions converging in probability to zero. This proves (5.14) and completes the proof
of Theorem 2.

NoTeE. Handwritten detailed proofs are available from the author.
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