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DETECTION OF MULTIVARIATE NORMAL OUTLIERS

BY STEVEN J. SCHWAGER AND BARRY H. MARGOLIN
Cornell University and N.I.LE.H.S.

The general outlier problem for a multivariate normal random sample
with mean slippage is defined and is shown to be invariant under a natural
group of transformations. A family of maximal invariants is obtained, and the
common distribution of its members is derived. The critical region for the
locally best invariant test of the null hypothesis, that there are no outliers,
versus the alternative hypothesis, that some outliers are present, is found.
Under very general conditions, this test is equivalent to rejecting the null
hypothesis whenever Mardia’s multivariate sample kurtosis is sufficiently
large.

.

1. Introduction. Anscombe and Tukey (1963, page 146) considered outliers to be
“observations that have such large residuals, in comparison with most of the others, as to
suggest that they ought to be treated specially.” These aberrant observations can result
from various underlying conditions, including model inadequacies and occurrences of gross
observational errors. To propose and compare outlier procedures, one must know what
information is sought from the aralysis. As Kruskal (1960) and Gnanadesikan (1977, page
272) have noted, an observation may be an outlier for one purpose but not for another.
Two possible aims were mentioned by David (1981, page 218): (a) to determine whether
outliers are present in the data, and (b) to identify those observations that are aberrant.
Clearly, if either or both of these are the objectives, the outliers themselves are the primary
concern of the analysis. On the other hand, if fitting a model, estimating a set of parameters,
or testing a hypothesis is the main interest, outliers are a complication, to be handled in an
appropriate fashion. The aim there is: (c) to modify a statistical analysis, usually of a
standard nature, by using information regarding the presence and identity of outliers. See,
for example, Anscombe (1960). Methods suitable for one of these tasks may or may not be
suitable for the others.

The focus here will be primarily on goal (a), outlier detection, for data that, if free of
outliers, would be modeled as a random sample from a multivariate normal distribution.
Any observation whose distribution departs from this model is an outlier. In the two
models most widely used to represent the existence of outliers, all observations are
normally distributed. Under the mean slippage model to be considered in this paper, all
observations have a common covariance matrix 2, but %2 of the means differ from the
common mean p of the rest, and possibly from each other. The variance slippage model is
defined along similar lines, and will not be discussed in this paper.

The multivariate normal error structure has been adopted for several reasons, including
mathematical tractability, and even more importantly, the fact that many of the standard
multivariate methods are derived under the assumption of normality. This makes it crucial
to check for outliers, as well as for other types of nonnormality, as their presence will
strongly affect inferences made from normal-based procedures. For example, Layard (1974)
showed that the normal theory likelihood ratio test for equality of covariance matrices is
highly nonrobust against departures from normality, including contamination.

Most work on the outlier problem has been directed at the univariate case. This is
easier to deal with than the multivariate case, as Gnanadesikan (1977, page 271) has
pointed out:
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“The consequences of having defective reponses are intrinsically more
complex in a multivariate sample than in the much-discussed univariate case.
One reason is that a multivariate outlier can distort not only measures of
location and scale but also those of orientation (i.e., correlation). A second
reason is that it is much more difficult to characterize a multivariate outlier.
A single univariate outlier may typically be thought of as ‘the one that sticks
out on the end,” but no such simple concept suffices in higher dimensions. A
third reason is the variety of types of multivariate outliers that may arise; a
vector response may be faulty because of a gross error in one of its components
or because of systematic mild errors in all of its components.”

Extensive surveys of the outlier literature are found in Barnett and Lewis (1978) and
Hawkins (1980). Other general sources are David (1981) and Doornbos (1966). Gnanade-
sikan (1977) discussed multivariate outliers from a data analytic viewpoint. Various aspects
of the multivariate outlier problem were treated by Siotani (1959), Karlin and Truax
(1960), Ferguson (1961), Wilks (1963), Healy (1968), and Rohlf (1975).

The main result of this paper is that the locally best invariant test for outliers is based
on Mardia’s (1970) multivariate sample kurtosis b, ,. Theorems 6.1 to 6.4, which state this
precisely, establish the only optimality properties of b, , known at present. The remainder
of this paper is a derivation of this result and is organized as follows. The general outlier
problem for a multivariate normal random sample with mean slippage is defined in Section
2, and is shown to be invariant with respect to a natural group of transformations. A family
of maximal invariants with respect to this group is obtained and the common distribution
of its members is derived in Section 3. The form of the critical region for the locally best
invariant test of the null hypothesis, that there are no outliers, versus the alternative
hypothesis, that some outliers are present, is found in Sections 4 and 5. Under very general
conditions, it is shown in Section 6 that this test is equivalent to rejecting the null
hypothesis whenever the multivariate sample kurtosis is sufficiently large.

2. The general outlier problem for a multivariate normal random
sample. Consider a random sample from a multivariate normal distribution. The model
for these data can be specified by the matrix equation Y = ey + U, where the n X p
observation matrix Y hasii.d. rows Y3, - - -, Y,, eis an n X 1 vector of 1’s, u is the unknown
1 X p mean vector, and the rows of the n X p matrix U are ii.d. N(0, Z) with covariance
matrix 2 unknown. It will be assumed that n = p + 1 to insure that p and X are estimable.

For any matrix A = (a,;), define | A || = (},; a})"% To incorporate the possibility of
outliers, the multivariate normal random sample model is embedded in a multivariate
mean model with mean slippage:

2.1 Y = ep + A*A* + U.

Here e, 1, and U are as above, and n = p + 1; furthermore, A* is a nonnegative scalar, and
A* is an arbitrary n X p matrix such that: (C1) ||A*| = 1, unless A* = 0, in which case
A* = 0; and (C2) more than half of the rows of A* are zero. In this model, the observation
Y; is an outlier if the ith row of A* is nonzero. Equation (2.1) extends a univariate outlier
model proposed by Ferguson (1961).

No outliers are present if and only if (iff) A* = 0. Condition (C2) requires that more
than half of the observations are drawn from the N(y, ) population; (C1), (C2), and the
nonnegativity of A* insure uniqueness of parametrization. The general outlier problem
consists of model (2.1), hypotheses Hy:A* = 0 and H;:A* > 0, action space &/ = {D, D1},
where D; denotes the decision to act as if hypothesis H; is true, ¢ = 0, 1, state space © =
{(A*, A*, u, 2):2 > 0, A* = 0, (C1), (C2) hold}, and loss function L with L(d, D;) = i if
A*=0,L, D) =1-—iif A* > 0.

When decision theory and invariance are discussed, notation and definitions will be
consistent with Ferguson (1967).

It is clear from (C1) and (C2) that model (2.1) allows quite general configurations of
outliers. The general outlier problem deals with a much broader class of outlier arrange-
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ments than the single outlier problem, in which it is specified that at most one outlier is
present. The latter problem, which is commonly treated as having n + 1 alternative
hypotheses and actions, is not dealt with in this paper, but see Schwager (1979).

Let 2 denote the group of all n X n permutation matrices, GZ(p) the group of p X p
nonsingular matrices, R” Euclidean p-space, and % the space of n X p matrices. Consider
the group G = 2 X G¢(p) X R? with the group operation defined by

(T2, Cy, c2)o(T'y, Ci, 1) = (T'2Ty, CiCy, ¢1Cs + c2)

where T'; € 2, C; € G¢(p), c; € R? (i = 1, 2). Then the general outlier problem is invariant
under G, where the action is g(Y) =T'YC + ec for g = (T, C, ¢) € G, and

e s _ [a*]lA*C|, | A*C||'TA*C, uC + ¢, C'=C) if A* >0,

As the problem is invariant under G, only decision procedures invariant under G will be
considered. Any such procedure must be a function of a maximal invariant with respect to
G. A family of matrix-valued statistics, each member of which is maximally invariant
under G, will be derived in the next section.

3. A family of maximal invariants with respect to G. The general outlier problem
is invariant under permutation of the rows of Y, so if an ordering of the rows is specified,
only functions of the ordered rows Y, ---, Y, need be considered. Invariance under
addition of an arbitrary vector ¢ to each row reduces consideration to functions of
Yy — Y, -+, Yoy — Y, where Y is the sample mean vector. Invariance under right
multiplication of Y by any nonsingular matrix C suggests a matrix version of Ferguson’s
(1961) approach, which will now be developed; related work has been done by Butler
(1981).

Under model (2.1), the matrix of residualsis R =Y — eY. Let S= R’'R,and M = [ —
(1/n)ee’; M is n X n symmetric, idempotent, and positive semi-definite. Moreover, S is
nonsingular and the n scalars (Y; — Y)S™(Y; — Y)’ are distinct with probability one.
Reorder the rows of Y to make these scalars an increasing function of the index i, noting
that neither S nor Y is affected by row permutations of Y. Let ¥ denote the resulting
matrix, and Y, the ith row of ¥. Choose an arbitrary orthogonal n X n matrix P satisfying
P’MP = D where the n X n matrix D = diag(l, 1, - - -, 1, 0). Once a particular P is chosen,
it is held fixed throughout the analysis. Let P’ denote the ith column of P, and P; the ith
row of P. Define an (n — p — 1) X n matrix ® and a p X n matrix ®; by ®; = (P' ...
P"?) and @, = (P" ... P*"'Y. The n X p matrix P’MY = DP’Y may be partitioned
as

oY Vi
(3.1) (I)z Y = V2 .
0 0

Define the (n — p — 1) X p matrix-valued statistic

(3.2) T(Y) = {@117((11217)_1 = ViV3! if V,is nonsingular,

otherwise.

THEOREM 3.1. T(Y) is a maximal invariant with respect to G.

Consideration of the distribution of T[g*(Y )], where g* denotes (I, =7/, — u=7'7),
shows that, without loss of generality, one can set p = 0, £ = I in model (2.1), and
simultaneously replace A* by A = A* || A*S7/?|| and A* by

B {A*2—1/2/||A*2'1/2 | if A* 0,
B 0 if A*=0.
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Note that A = 0 iff A* = 0, and that A and A* have exactly the same nonzero rows.

To obtain the distribution of 7' under model (2.1), define the p X p matrix @ =
T'T + I, and let a; and @ denote the ith row and the row mean of A, respectively.
Summation over the set of all permutations o of the first n positive integers will be denoted
by Y5, and summation with index ¢ ranging from 1 to n by Y.

Summing the density of Y, - - -, Y, over all permutations o gives the density of Yy,
eer, Y as

Yy, -, V) =33 (Y1, .-+, )
1
= (27) """ *exp[— E(ZiYiY§ + A’Yiaia))] T¥ exp[AY:Yiasw]
for the region where Yy, - .-, Y, make the scalars (Y; — Y)S™ (Y, - Y),i=1,..-,nan

increasing sequence; the density is zero elsewhere.
Since P’"MP = D, eigenvector methods establish that.the last column of P is P" =

n~"?e. Define X by n'?Y = P™¥, and V by ¥;>’ so that
\%4 o s oV
(X) =PY and Y= P(X)'
In changing variables from Y to V, X, the Jacobian is |det P|? = 1; thus,

frx(V, X) = <2w)-"P/2exp[— 3 (zi Pi(;)(V’ X)P+ A, a,-a:-)]

vy,
2: exp[A 2,’ P,'(X)(la(i):l.
Observe that

¥ P,«G(/)(V’ X)P;=tr(V'V)+ XX’ and Y P,-(;(/)af,(i) =Y, P,(X)a(,(,-) + n'?Xa’,
so that

frx(V,X) = (27r)_""/2exp[— % tr(V'V) — %XX' - —;— A%y aiai]

.E: exp[A 2,' P,‘(OV)G,:,(,) + Anl/zX(i’].
To integrate out X, use the multivariate normal density, obtaining

(V)= (277)_("_”"/2exp|:— —;— tr(V'V) — % A%Y (a;i — a)(a; — d)’]

.2: exp[A Zi P,‘(X)(lfm)jl.
With T= V,;V;! asin (3.2), let W= V, and

T i T
(3.3) Jnxp)=|I|, so |Vo|=|1]|W=JW.
0 0 0

Changing variables from V to (T, W) and integrating out W gives the density of 7. The
Jacobian is | det 8V/a(T, W)| = | det W | ', and routine substitution proves the following
result:

THEOREM 3.2. In the multivariate mean model with mean slippage, the density of
the G-maximal invariant T is

(3.4) Fr(T) = (@m) 0~ expl— 3 &% 5 (e — @) as — @)'] X g(&)
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for the region where the scalars PiJQ 'J'P},i =1, - -+, n form an increasing sequence,
and is zero elsewhere. Here

1
(3.5) g) =Y J exp[— 5 tr(W'QW) + A%, PiJ Wajw]|det W ("~ dW,
and the p X p matrix W varies over all of p>-dimensional space.

Observe that, conditionally on A, fr(T') depends on the single parameter A. Consider A
as given and fixed. This allows one to write the density of T as fr(T'|A) and to examine
tests of A = 0 versus A > 0, conditional on knowledge of A. A particular test obtained
through this conditioning process will be shown not to depend on A. It is therefore an
unconditional test of A = 0 against A > 0.

4. The form of the critical region for invariant tests. Any nonrandomized test of
Hjy:A = 0 versus Hy:A > 0 that is invariant under G must be a function of 7. The power
function of such a test may be written in terms of the parameter A and critical region w as

(4.1) Ba() = f fr(T|4) dT.

The local behavior of a test at A = 0 is determined by the derivatives of 8,(A) at A = 0.
Let % denote the smallest positive integer such that 8% (0) is not identically zero for all w.
The locally best test of A = 0 against A > 0 can be found by maximizing 8% (0) over the
class of a-level tests. Two distinct cases occur regarding locally best unbiased tests of A =
0 against A # 0. If % is even, the locally best test is also locally best unbiased whenever it
is unbiased. If % is odd, the locally best unbiased test can be found by maximizing 8%+ (0)
subject to the conditions 8,,(0) = «, and unbiasedness.

For the general outlier problem, B, is an even function of A for any invariant test w, i.e.,
B.(A) = B.,(—A) for all A, w. To observe this, note that the transformation H = —W in each
integral of (3.5) yields g(A) = g(—A); this, (3.4), and (4.1) complete the demonstration. The
power curve of any invariant test is thus symmetric with respect to the B,.-axis, and has
first derivative zero at A = 0. This is related to the problem’s invariance under G.

For any nonnegative integer j, define
al

T T Dlamo, % =35 Bl PIWaie).

(4.2) u(T) =
Derivatives of the power function B,(A) at A = 0 can be computed from (4.1). This is
facilitated by the interchange of differentiation and integration, which can be justified by
the Dominated Convergence Theorem, as proved in Schwager (1979). In the course of this
proof, it is shown that derivatives of g(A) can be obtained by differentiating under the
integral sign in (3.5). In other words, for all integers j = 0,

J
(4.3) égA_ij(A)lA=0 = J; v (T) dT,
@4 £7(0) = j Zetr(—% W'QW)|det W |7 dW.

Furthermore, g’(0) = 0 for all odd values of j, since the integrand in (4.4) is an odd

function of W.
Recall that @ = T'T + I. Given T, there exist a p X p orthogonal matrix K and ap X p

diagonal matrix E such that @ = K'EK. Define
Z(p X p) = QV*W = K'E'? KW,
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(4.5) vi(p X 1) = (a; — a)’, i=1,-..-.,n; and
ri(l X p) = P;,JQ? = P,JK'E"'K, i=1..-,n
The following results (Schwager, 1979) are employed in evaluating the derivatives of (4.3):
(i) WQW =2'Z; (ii) |det dW/dZ| = (det @)%,
(4.6) @) Yeirn=0 and Yririrn=I, (iv)¥~1v:=0;
(v) for any permutation o, 1= PidWalu = Y1 riZy,w; and
V) o= -2 Y"1 viZ'Zvi= (n—2In Y viWQWy,.

LEMMA 4.1, 01(T) = va(T) = v5(T) = 0 for all T.

ProoF. Define 2, = (8’/dA’)log fr(T'| A) |a=o. It is immediate from (4.2) that
Dy =vi(T)/vo(T), D2 =va(T)/vo(T) — [v2(T)/vo(T)T,
D5 = v3(T)/vo(T) = 3vi(T)vo(T)/[wo(T)]* + 2[v1(T) /vo(T) .

Thus, it suffices to establish that 9, = 0 for all T, for j = 1, 2, 3. It follows from (3.4) and
.8'(0) =g®(0) =0 that 9, = 23 =0for all T,

47 Zo=-YLiyivi+£"(0)/g(0) and 2,=[g“(0)/g(0)] - 3[£"(0)/g(0)]"

Define the integrals over p*-dimensional Euclidean space

\Po = f etr(— %Z'Z)(det Z/Z)(n—p—l)/z dz,
1
b= J’ v:1Z'Zyietr(— EZ'Z)(det Z'Z)" P24z =1 ... n.

Then (4.4), (4.5), and (4.6) show that
£g(0) = n!(det Q)™ "~1"%y,,
g"(0) = (n — 2)!n(det Q)" V* ¥ii .

It is helpful to reexpress ¥ and y; as integrals over the space S; of p X p positive
definite symmetric matrices. Background material may be found in Eaton (1972, Chapters
6 and 8). Let Z have density p(Z) /4o, and let S = Z'Z. It follows from Eaton (Proposition
8.105) that S has a Wishart([, p, n — 1) distribution. This is also the distribution of A’SA
for any p X p orthogonal matrix A. Choose A so that Ay./|| v:|| is the unit vector (1, 0, 0,
.++,0). The (1,1) element s;; of S has mean n — 1, so

Vi = YWE[yiZ'Zy:] = Yo E[yiSyi]
= Yoy E[IA /| v:DSAy:/ |l v.ID]
=YovivE[su] =doyivi(n -1, i=1 ..., n
Thus g7(0)/g(0) = Y71 v.vy., establishing that Z, = 0.0

(4.8)

THEOREM 4.1. Forj =1, 2, 3, (3//0A7)B., (A) |a=o = O for any (invariant) region w;
(8*/8A%)B.,(A) |a=o is maximized by a region of the form

(4.9) w={T:8*(0)/g(0) = ko},

where the constant ko is determined by the size of the test.

Proor. The first assertion follows from (4.3) and Lemma 4.1. It is routine to show
that 24 = v4(T)/vo(T). The Generalized Neyman-Pearson Lemma, Lemma 4.1, and (4.7)



DETECTION OF MULTIVARIATE NORMAL OUTLIERS 949

show that the region maximizing (3*/9A*)B.,(A) |a=o = [, v4(T) dT is
w={T:0(T) = kovo(T) + -+ + k3v3(T)} = {T:0v(T) = kovo(T)}
= {T:[£"(0)/8(0)] — 3[£"(0)/8(0)])* = ko}.

Conditional on the a/s, the term 3[g”(0)/g(0)]* is a constant, since g”(0)/g(0) =
Yi=1 yiv:. It can therefore be absorbed into k. 0

5. Evaluation of g’(0). A change of variables from W to Z in (4.4) yields

1
g“(0) = (det @)~ """ V2 J' %etr(— 5Z’Z>| det Z|" 7' dZ.
A useful expression for % follows.
THEOREM 5.1. %= n—4)[(n*+n®)LA + Bn? —9n+3)% — (3n”> - 3n — 6)% —
(3n2 - 3n)V4 + 6.?5],
where
S=Th- 2y, S=QaviZ'Zy)?, =Y GiZ'Zy),
Fa= i1 [ Y= (riZy))?P, and  F5 = ¥ jmrins (YiZ'Zy)) .
ProoF. Let x,; = ri:Zy,). It follows from the multinomial theorem and result (4.6)(v)
that
(6.1) Fa= Yt [Dixei) =X i xli + 4 e X2 %5, + 3 i X224 -+ - ).

Each sum on the right can be expressed in terms of % to & by repeated use of results
(4.6) (iii) and (iv). Hence

(i) YEYixsi=(n— 1Y (rnZy:)* = (n — Y7
(i) Y N x5 ix0 ;= (= 2! Y i iy (riZyi)*(riZyy)
=(n =2 Yii riZyi) (T jwi D Z(Tywi v7) = (n — 2V

The derivation of the remaining three sums is technically involved but similar (Schwager,
1979). Substituting into (5.1) produces

Fa=(n—-DA+4-n—2DL+3-n=DA+ So— S — L) +
6-(n—3)-(4F + S — 2% — 25 + (n — DUB6A + 3% — 12% — 18%4 + 65).

Regrouping terms gives the expression in the statement of the theorem. 0
COROLLARY 5.1.

£2*(0) =(n — 4)!(det Q)= """ f [((n® +n®)F + (3n® — 9n + 3)%

1
- (Bn*-3n-6)%— (3n*-3n% + G%]etr(— 5Z’Z>|det Z|" P dZ,
where the region of integration is all of p*-dimensional space.
Only two of the integrals [ Yetr(—%Z'Z)|det Z|" "' dZ, i = 1, ..., 5, must be

calculated, for conditional on A, the integrals with leading terms %, %, and % are
constants. Let
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1
k= f [(B3n®—9n +3)% — (3n® —3n — 6).% + 65%]etr<— 3 Z’Z) |det Z|* P! dZ.

The following lemmas are needed to evaluate the integrals with leading terms %, and %;.

LEMMA 5.1. Define the constant ®, depending only on n and p, by
4 1 ’ n—p—1
(I)=fzuetr<—§ZZ)|detZ| Pl dzZ,

where the p X p matrix Z is integrated over p*-dimensional space. Then for any 1 X p row
vector r and p X 1 column vector c,

1
j (ch)“etr(— 3 Z’Z) |det Z|""" 1 dZ = ||r||*|| c|* ®@.

.

Proor. Define 7 = r/| r| and é = ¢/| c||, and choose orthogonal p X p matrices R and
C such that 7 is the first row of R, and é the first column of C. Define a p X p matrix
variable X = RZC, so x;; = FZ¢é. Then rZc = || r|||| ¢ || x11, and changing variables from Z to
X completes the proof.

COROLLARY 5.2.
1
J' %etr(— QZ,Z) ldet Z|" "7  dZ = [T | 1 IS5 | v: )14 1.
LEMMA 5.2.

1
f z%z‘f’zetr<— 5 Z’Z) |det Z|" P~ 1 dZ = % o.

Proor. For any p X p orthogonal matrix P with first column P, a change of variables
to X = ZP shows that

(5.2) ® = f [(2xg « - xlp)PI]“etr(— % X’X) |det X|"P~" dX.

Multiply both sides of the identity
[2_1/2(211 + 2’12)]4 + [2_1/2(211 - 212)]4 =Yzl + 62424 + z1e)

by etr(—%Z’Z)| det Z|*"~" and integrate with respect to dZ, using (5.2) with P, equal to
272, 2720, ...,0) and (0, 1,0, - .-, 0). 0

THEOREM 5.2.

1 1
f metr(— EZ'Z) |det Z|"7™ dZ = S @[T |7l W2E s ams (ima)® + (S [ 11201

Proor. For any i, by simultaneous diagonalization (see Press, 1972, page 37), there
exists an orthogonal p X p matrix U such that U(r{r;)U’ = diag(||7.||% 0, 0, - - -, 0). Define
a p X p matrix variable X by X = UZ, so that ,

Yi1viZ'ririy, = Eia vi X' diag(||ri]l%, 0, « -+, 0) Xy = || 72 P[xus - -+ %1,)Cl201 -+ - 23]

where the p X p matrix C = Y }—; y;v}. Defining

= J' {[%1 + - x1p)Clary -+ - xlp]’}zetr(—% X’X)Idet X|P1 dXx,
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it follows that

1
J' [>7-1 y}Z’rériZyj]zetr(—E Z’Z) |det Z|* 7' dZ = ||r:||' T

Since II is independent of the index i, the definition of . shows that

J%etr(—— ’Z)ldetZI"“” 1 dZ =[S |Ire]*] 0

Again by simultaneous diagonalization, there exists an orthogonal p X p matrix V such
that VCV’ = diag(Ay, - - -, A,) where Ay, - -+, A, are the eigenvalues of C. Define a p X p
matrix variable by Y = XV’. Then

= f (DX Aiy%i]%tr(—% Y’Y)Idet y|retay
_[Z 1}\ M""[Zw 1;,4,>\A] (I)_ _q)[22 1A2+(2 1A)2

It suffices now to use the relations
TEiAi=tr C =3k vl BN =tr(C?) = Yha=1 (Vi)
to complete the proof. [

Theorem 5.3 summarizes the derivation of g (0).

THEOREM 5.3. The derivative g®(0) is given by
(5.3) £9(0) = (n — 4)!(det Q)" VHBL Yy || r|* + k1],
where the constant k; depends on A, n, and p, and

= (n® +n?) T vl — 0 = n[2T=1 (i) + S v IP)?]

An associate editor has pointed out that an alternative method of deriving these results
is based on the technique of expanding the density of any maximal invariant about A = 0.
The expansion of the density can be obtained from Wijsman’s Theorem (Wijsman, 1967).

6. Multivariate kurtosis and the locally best invariant test for the general
outlier problem. Mardia (1970, 1974, 1975) has defined and treated the multivariate
sample kurtosis

bop(Y) = bop =n Y [(Yi — T)STYi = 7).

THEOREM 6.1. For the general outlier problem, the locally best invariant test of
H,: A =0versus Hi: A >0, conditional on A, is: If L > 0, reject H, whenever b, , = K; if
L < 0, reject Hy, whenever by, < K'. The constants K and K’ are determined by the size
of the test, and L is the function of A given in Theorem 5.3.

ProoF. From Theorem 4.3 and the discussion at the beginning of Section 4, the locally
best invariant test is given by the critical region w of (4.9). Substituting from (4.8) and (5.3)
shows that w is specified by

(6.1) (n— DUOL Y; || r:||* + k1) k2 = ko,

where ko, k1, and L depend on A, and k; and ® are positive constants depending only on
n and p. Absorbing constants into k, shows that (6.1) is equivalent to L ¥,i=: || r:||* = &,

where L and k§ are functions of A. _ _ N
It follows from (3.1) and (3.3) that P’MY = JW, and thus ¥ — eY = MY = PJW. Since
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Yi— Y=PJWand S = (Y — e¥) (Y — e¥) = WQW, it is immediate that b,
%1 | r:|I*. Thus, if L is positive, the region w can be specified by b, = n ¥, || r:||*
nko/L = K; if L is negative, by by, =n ¥ || r:||* = nks/L = K'.0

v

The matrix A determines, through L, whether the locally best invariant test of Theorem
6.1 rejects H, when bs,, is too large or when it is too small. A related point is that if L = 0,
(6.1) shows that the critical region of the locally best invariant test depends on the power
function’s derivatives of order greater than four. Both of these problems would be solved
if it were known that L > 0 for all A of interest. Theorem 6.2 will show that L is positive
whenever the fraction of nonzero rows of A is at most (3 — NE) )/6 =~ 21%. Theorem 6.3 will
show that L is positive whenever e’A = 0, that is, the sum of the rows of A is 0, and at
most one-third of the rows of A are nonzero.

THEOREM 6.2. Ifa;=0fori=m+1,---,n,andm/n< (3 —+3)/6= 2113 .., then
L > 0, and the test that rejects Hy when b, ), = K is locally best invariant, uniformly in
(al’ MY am)' )

Proor. It must be shown that L > 0, or equivalently that
(6.2) n*+n®) Yilvlt > (r® — n)@F + V(X [|v:|*)?
where
F=%.; i)/ (Tilvill®™

Observing that F is nonnegative and summing the Cauchy-Schwarz inequality (y/y,)* <
Il v: Il v I? over all i and j, one sees that 0 < F < 1. Consequently, it suffices for (6.2) to
prove that

(6.3) (n" + 1) Tl vll* > 3 = n) (T, [ v:ll)”.

In fact, this is also necessary for (6.2), as it is the special case of the latter obtained when
all y, are scalar multiples of a common vector.
Two relations will prove useful. For i > m, y, = —a’, so for any exponent &,

(6.4) Yl = TRyl + (0 — m)||@])®.
Also, taking the squared norm of each side in the identity (n — m)a’ = Y7 y; and
repeatedly applying the inequality yiy; + y/y: < yivi + vjy; yields
(n—m)*|a)*=m ¥ v
Let x; denote || y.||> for i = 1, -+, m, let y denote || @||?, and define ¥ = m ™' ¥ 7, x;. It
follows from (6.4) that (6.3) is equivalent to
[Xrixm+(n—m)yl? _ n’+n

(6.5) G s tm ) = S T = my? 3= 1)

To examine the relationship between m and the maximum value of G on
(6.6) (X1, * o) Xy ) 121, + o0y Xm, Y= 05 (n — m)Py < mPx},
begin by observing that G is increased by equalizing the x;; that is,
Gty -y Xmy ) < GE, -, & y) = [mE + (n — m)y]>/[mE + (n — m)y*].

Because of its homogeneity, G may be treated as a function of the single variable v = y/x.
It is a routine exercise to find the maximum of G(u) = [m + (n — m)u)?/[m + (n — m)u?]
over the domain u € [0, m?/(n — m)?], for G(u) is an increasing function, taking its
maximum value n’m(n — m)/[m® + (n — m)®] at u = m?/(n — m)>. It follows that a
sufficient condition for (6.5) to hold over the region (6.6) is that

(6.7) n’m(n — m)/[m® + (n — m)*] < (n® + n)/3(n — 1).
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Let s = m/n; (6.7) holds whenever s(1 — s)/[s® + (1 — s)*] = %, or equivalently whenever
6s” — 6s + 1 = 0. Solving this quadratic inequality, and restricting attention to the interval
(0, ) as required by the model, gives

O0<s=m/n=<(B3-+3)/6=.2113....0

THEOREM 6.3. Ifa;=0fori=m+1,-.--,n Y% a;=0, and m/n <%, then L > 0,
and the test that rejects Hy when b,, = K is locally best invariant, uniformly in (ai,
) am)o

Proor. With the notation of the last proof, y = | @||> = 0, and letting X denote the
m X 1 vector (x1, ++-, x»)” and E the m X m matrix consisting entirely of ones, (6.5)
becomes

(6.8) G(X)=X'EX/X'X< (n®?+n)/3(n —1).
The maximum of X’EX/X’X is m, the largest eigenvalue of E, so (6.8) holds for all X when
m/n< (n+1)/3(n—1),

for which m/n < ' is sufficient. 0

If the general outlier problem is assumed to have a fraction of outliers no greater than
21.13%, Theorem 6.2 gives a test for outliers that is locally best invariant for every A. If A
is known to satisfy e’A = 0, this test remains locally best invariant when the fraction of
outliers is as high as 33%%. Other restrictions could be placed on A, giving different bounds
on the permissible fraction of outliers leading to the same result. However, this seems
unnecessary in view of the large fraction of outliers for which the test based on b, is
locally best for all A. It is interesting to note that this fraction does not depend on the
dimension p of the observations.

Throughout this paper, the matrix A was assumed known. The multivariate kurtosis
test was shown in Theorems 6.2 and 6.3 to be locally best invariant uniformly on all A’s of
certain types. A stronger result, which Ferguson has called strong local optimality, allows
A to be unknown.

THEOREM 6.4. Let w be the critical region of Theorem 6.2, let w’ be the critical region
of any other invariant test of the same size as w, set A = 1, and let k/n be less than
(3-+3) /6, where k denotes the maximum number of nonzero rows of A. Assume that
and «’ are distinct, meaning that the Lebesgue measure of their symmetric difference is
positive. Then there exists a neighborhood of the origin in kp-dimensional space on
which B.(ai, + -+, ar) > B (ai, -+ - , ax) except at the origin, where there is equality.

The proof of this parallels the proof of a similar result in Ferguson (1961, Sec. 2.4), so
details are omitted here. The discussion accompanying that result also applies to Theorem
6.4.

Relatively little guidance on how to search for multivariate normal outliers exists in
print. Informal graphical procedures for discovering deviant observations have been
proposed (Gnanadesikan, 1977). Another widely used technique is sequential one-at-a-time
deletion of the “most outlying” observation (Hawkins, 1980). Both approaches have
shortcomings. :

The results of this section support the view that Mardia’s multivariate sample kurtosis
is sensitive to the presence of outliers as well as other distributional departures from
normality. There is also empirical evidence that the kurtosis test behaves well in situations
of practical interest when compared with other inferential outlier procedures. Obtaining
evidence of the presence of an unspecified number of unidentified outliers does not answer
the entire outlier question, but it constitutes an important beginning. Much like an F-test
in an analysis of variance, it can serve as a license for subsequent outlier identification and
adjustment.
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The kurtosis test has the attractive feature that its local optimality holds whether the
data contain one, two, or any number of outliers up to 21.13% of the observations. The
misleading behavior of tests for a smaller number of outliers than are actually present, e.g.,
tests for two (or less) outliers in the presence of more than two outliers (Hawkins, 1980,
page 57), increases the importance of performing an overall test that is sensitive to a broad
range of outlier configurations.

Mardia (1970, 1974, 1975) has proposed that his multivariate sample kurtosis be
employed as a test of nonnormality, with large values of kurtosis leading to rejection of the
null hypothesis of normality. Considering the presence of a small number of outliers is a
worthwhile alternative to searching through a family of transformations for a better fit to
the data. The use of kurtosis as a preliminary screening device insures that whatever is
done afterwards, e.g., sequential elimination or graphical inspection, cannot raise the
overall type I error rate above that of the initial kurtosis test.
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