The Annals of Statistics
1982, Vol. 10, No. 3, 868-881
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For the problem of estimating a p-variate normal mean, the existence of
confidence procedures which dominate the usual one, a sphere centered at
the observations, has long been known. However, no explicit procedure has
yet been shown to dominate. For p = 4, we prove that if the usual confidence
sphere is recentered at the positive-part James Stein estimator, then the
resulting confidence set has uniformly higher coverage probability, and hence
is a minimax confidence set. Moreover, the increase in coverage probability
can be quite substantial. Numerical evidence is preserited to support this
claim. *

1. Introduction. The problem of improving upon the usual point estimator of a
multivariate normal mean has received enormous attention in the literature during the
past 15 years. The companion problem, that of set estimation, has received comparatively
little attention, however. This is partially due to the increased difficulty of the set
estimation problem, and also because many of the techniques developed for point esti-
mation (notably integration by parts) do not readily carry over to the set estimation
problem.

If X is one observation from a p-variate normal distribution with mean 6 and identity
covariance matrix, the confidence set

(1.1 Cy={0:10-X|P=<c?,

a sphere centered at X, has probability 1 — « of covering the true value of 6 if c? satisfies
P(x% =< ¢® = 1 — a. C% enjoys many optimality properties; for example, it is unbiased and
best translation invariant. It is also minimax, which means that among all procedures with
coverage probability at least 1 — a, C% minimizes the maximum expected volume.

A natural question that arises is whether C% is a unique minimax set estimator, or do
others exist. If so, then since the coverage probability of C% is constant for all 6, there
would be room to increase coverage probability without increasing volume. This question
was first posed by Stein (1962), who developed heuristic arguments that show that
improved set estimators can be developed. Later, Brown (1966) and Joshi (1967) indepen-
dently demonstrated the existence of a dominating (minimax) procedure for p = 3. Joshi
proved that the set

(1.2) Cl={0:]6-8"X)|P=<c?,

where 87(X) = {1 — a/(b + X'X)}X, has higher coverage probability than C% if a is
sufficiently small and b is sufficiently large. Olshen (1977) simulated the coverage proba-
bility of C” for selected a, b and | 8|. The results indicated that large gains can be achieved.
Morris (1977) also simulated coverage probabilities for certain generalized Bayes estimators
and again the results were good.

Two other important works are those of Faith (1976) and Berger (1980). Faith derives
confidence sets from Bayes credible sets and shows, for p = 3 or 5, that these sets have
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smaller volume and higher coverage probability than C% for all | 8| except an interval of
middle values. Berger also proceeds in a Bayesian fashion, but also considers the posterior
covariance matrix, and constructs confidence ellipsoids. These sets are shown to have
uniformly smaller volume, and to dominate in coverage probability for sufficiently large
| 9].

Casella (1980) extended the method of Faith and derived exact formulas for confidence
sets centered at the James Stein or positive-part James Stein estimator. No analytical
results were presented, but the computed coverage probabilities show that substantial
improvement is possible. The most recent work on this subject to appear (although the
research was done in 1974) is that of Stein (1981). Using a heuristic argument, a variable
radius confidence sphere is developed which is conjectured to have confidence coefficient
1-a

Thus far, however, no one has exhibited a procedure which can be proven to dominate
C% for all . Our main result is that for p = 4, R

(1.3) Cor={0:]16 - 8* X2 = ¢,

where 87(X) = (1 — a/X’X)*X (“+” denotes positive part) has, for a specified range of
values of a, higher coverage probability than C% for all 4. Since the volume of Cj+ is the
same as that of C%, it follows that Cs+ is minimax set estimator of 6.

It is unfortunate that the dominance result could not be obtained for p = 3, but, as will
be seen in Section 3, the integrand we must deal with changes drastically as p moves from
3 to 4, and is exceedingly difficult to deal with when p = 3. However, the results for p = 4
are surprisingly good. Even though our upper bound on a does not reach p — 2, the
coverage probabilities of Cs+ are a substantial improvement over C%, and are virtually
equal to those obtained with a = p — 2.

The proof of the dominance of Cs+ over C% proceeds in the following way. First we
establish that, for |§]| < ¢, P4(Cs+) = Py(C%). Then, since limygPy(Cs+) = Py(C%), a
sufficient condition for the minimaxity of Cs+ is that (3/9| 6|)P4(Cs,) < 0 for | 8| > c. The
major portion of this paper is dedicated to establishing this result. To obtain a workable
expression for (3/9| 8|)Ps(Cs+) we ultimately employ an integration by parts (in a manner
analogous to the point estimation problem) but, since our integrand is an indicator function
this gives us a Dirac delta function in the integrand. (A Dirac delta function, say A,.(t), is
defined by A,(¢) = 0 if ¢ % m and A.(m) = «.) By a spherical transformation, the p-
dimensional integral is reduced to a two-dimensional one. Then, by evaluating the delta
function, a one-dimensional representation is obtained. The condition on the constant a is
then derived (i.e., 0 < a < a,) which guarantees that the integrand is everywhere negative,
and hence that Py(Cs+) is decreasing in | | for | 8| > c.

In Section 2 we make this argument rigorous by expressing (3/3| )Py (Cs+) as the limit
of a sequence of integrals with differentiable integrands, and obtain the necessary repre-
sentation. In Section 3 we apply these results to the set (1.3) and determine ao such that
Py(Cs+) = Py(C%) if @ < a,. Section 4 contains some comments and generalizations.
Technical lemmas, needed in Section 2, are in the Appendix.

2. Representations of coverage probabilities and their derivatives. In this
section we show how to represent coverage probabilities and their derivatives (with respect
to |#]) as the limit of a sequence of integrals with differentiable integrands. By first
applying integration by parts and then taking limits we obtain workable expressions for
these quantities.

The results of this section are not restricted to the positive part James-Stein estimator,
but are valid for a more general form of estimator. Hence, we now consider estimators of
the form

(2.1) 8(X) =v(| XX,
and confidence sets,
2.2) Cs={0:]10-8X)|*=c?,
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where y(r) satisfies the following conditions.

CoNDITIONS. (i) y(r) = 0.
(ii) y(r) is nondecreasing.
(iii) y(r) is strictly increasing for all r such that y(r) > 0. (Hence, assume
v(r) >0forr>ry)
(iv) y(r) is continuous and differentiable for r > r,.
(v) Both y(r) and y’(r) can be bounded above by some polynomial.

We note that the positive-part James-Stein estimator satisfies these conditions, but the
ordinary James-Stein estimator does not.
In evaluating the coverage probability of Cj it is easier to work with the 6 section

(2.3) Co=(X:]6-8X)F=c?.

Since X € Cy if and only if 8 € C;, it follows that Py(Cy) = Ps(Cs).
Before proceeding to the representation theorems, we present the following theorems,
which establish the superiority of C, for | 6| < c.

THEOREM 2.1. For §(X) = y(| X|)X, where vy satisfies 0 < y(| X|) = 1, Py(Cy) = P4(C})
forall|8] =< c.

Proor. This result seems to be fairly well known, and is given here only for complete-
ness. The theorem follows by establishing that, for || < ¢, C} C C; or, equivalently, X €
Cj implies y(| X |)X € C}. Since | 8] < ¢, 0 € C} and hence if X € C} then (| X|)X € C by
convexity of Cj, since 0 < y(|X|) < 1. O

In light of this theorem, we only need be concerned with the case || > c. We proceed
with the following lemma, which shows how P, (Cs) and (3/8| 6|)Ps(Cs) can be expressed
as the limits of a sequence of integrals with differentiable integrands.

LeEmMMA 2.1. Let @, denote a univariate normal cdf with mean 0 and variance n™2.
Define

B.(0) = j . {c*— | y(| X DX - 0 "} fo(X) dX,
RP
where fy(X) is a multivariate normal density with mean 6 and identity covariance matrix,
and vy satisfies Conditions (i)-(v). Then

(8) litnuBa(8) = Po(Cs),  (b) limnw —= Ba(8) =—— Py(Cy) for |8] > c.

3| 9| 3] 4|
Proor. It follows from Condition (iii) that ¢y (¢) is strictly increasing, which implies
that Py {X:|y(| X)X — 6|* = c®} = 0. Then, by the fact that if £ = 0, ®,(¢) — I(t) where I(¢)

= 1if £ > 0 and 0 otherwise, (a) clearly follows by the Bounded Convergence Theorem. To
proceed with the proof of (b), first transform to spherical coordinates to obtain

Bo ry
(2.4)  Py(Cy) = Kj j r? 'sin” 28 exp{—(r®> — 2r | 8| cos B + | 6| /2} drdpB
0 r_

and

Bo [
(2.5) B.(0) = Kf f @, (w)r" 'sin” 2B exp{—(r* — 2r | 0] cos 8 + | 8|9 /2} drdp,
0 0
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Fic. 1. Two-dimensional representation of Co and C3 for | 8] > c. C} is the sphere of radius ¢ centered
at 0. As B (the angle between X and 8) varies, r.(B) traces the locus of points above the line AB,
while r-(B) traces out those below. Cy and C intersect at points A and B, where Bo satisfies sin Bo
= ¢/| 8] and r+(Bo) = 8] cos fo.

where r = | X|, B is the angle between X and 6,

K = (2m) 22 [[5? { J

0

sinitdt},
and
(2.6) w=w(r,B,0) =c’—|0sin’B — {y(r)r — | 8] cos B}

The limits of integration of (2.4) satisfy sin 8o = ¢/| 8|, 0 < o < 7/2, and r+ and r- (r- <
r+) are the roots of

2.7 r2y2(r) — 2r|8| y(r)cos B + |6° — c* =0,
which is equivalent to
(2.8) ry(r) =8| cos B £ (c* — | |’sin®B)".

Notice that, for 0 < 8 < B, we have c? > | 8 |%sin®8 and, moreover, | § |*cos’s > c* — | 8 ’sin’B
if | §] > c. Condition (iii) on y guarantees the uniqueness of the solutions of (2.8), and we
have

(2.9) rey(rs) =16| cos B = (c® — |8|*sin’8)> > |0| — ¢ > 0.

We also note that we are dealing with y(r) only for r satisfying y(r) > 0.
For fixed 6, as 8 varies, r.(8) and r_(8) define the boundary of Cy(3). Figure 1 illustrates
the set C, in two dimensions for 8 = §*. There is a flattening Cy on the side near the origin,
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and an expansion away from the origin. Both Cy and Cj are symmetric across the ray
through 4.

Since o, 7+, and r_ are all differentiable functions of | §|, expression (2.4) shows that
Py(Cy) is differentiable with respect to | 8|. For ease of notation define

(2.10) h(r, B) =r" 'sin”?B exp {— %(r* —2r|0| cos B +|6|%)}.

Differentiating with respect to | #| we obtain

Bo
(2.11) 3|0| —— Py(Cy) = —| 0| Po(Cy) + Kf j r cos Bh(r, B) drdp
+K’f0 h(r+,,3)a|0|d,3 KJ’ h(r-, B)alﬁl dp
and
(2.12) 6|0| —— B.(0) = —|0| B.(8) + Kj f D, (w)r cos B h(r, B) drdp

+Kf0 fo {md)n(w)}h(r,ﬁ)d,.dﬁ_

Note that in calculating (3/9 | 8])Ps(Cs), the term containing d80/d | 8| is zero. From part
(a), —| 8| Bn.(d) > —|8| Ps(Cs) and, from the Dominated Convergence Theorem, the
second term in (2.12) converges to the second term in (2.11). Thus it only remains to show
that

lim,_.B*(0) ¥ lim, K J’ J’ [i d)(w)]h(r, B) drdp
(2.13) o Jo LO16I

* () def _
—A(ﬁ)—KJ; [h(h,ﬁ)awl h(r-, 'B)alal] dp.
From Lemma 4 in the Appendix, we have
Bo ®
(2.14) lim,_.B}@) = KJ lim, .« J’ —2¢.(w){| | — ry(r)cos B}h(r, B) drdp,
0 0

where @, (¢) = (d/dt)P.(t). Note that w = w(r, B, | 6]) can be written
w(r, B, |0]) = {ry(r) — ray(r)}Hry(r) — ry(r)}.
Applying Lemma 3 in the Appendix to the inner integral in (2.14) yields

lim, .B*(@) = K o limn_,mUm —2¢,(r — r+){| 8| — ry(r)cos B} h(r, B) dr
0 0

Z("+)|7'+Y("+) - r—Y(r—)l
(2.15)

N f * =2@a(r — r-){|6] = ry(r)cos B}h(r, B) dr
0

C(r)| ray(rs) — r—y(r-)| ] w»

where ¢ (r) = (d/dr)ry(r) = ry’(r) + y(r) > 0. Taking the limit in (2.15) yields

{10] — r+y(ry)cos B h(rs, B)
Cr|rey(re) — roy ()]

{10] — r_y(r-)cos B}h(r-, B)
ey ) = oy )] ] 9B

Bo
(2.16) lim, ...B}(@) = Kf - 2[
0
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Lastly, it remains to be shown that (2.16) is equal to A*(6) as defined in (2.13). From (2.9)
we have that

ors 2{| 0| — r+y(r+)cos B}
2.17) 310] (2]6] cos B —2ry(rs)} £ (rs)’
and also
(2.18) 216 cos B — 2rey(rs) = F {rey(rs) — r-y(r-)}.

Substituting (2.17) and (2.18) into (2.16) shows that A*(f) is equal to expression (2.16),
and hence the lemma is proved. [

We now come to the main theorem of this section, which gives a representation for the
derivative of Py {Cy(5)}.

THEOREM 2.2. For v satisfying Conditions (i)-(v) and | 8| > c,

%ﬂ Po(Cy)
-K ol cos B{l =y (rare — y(rs)} h(r., B) dB
0 = sin’B{1 — y(r:)} {(¢*/| ) — sin®B} 7% | (roy/(rs) + v(re)}
(2.19) ,
x Bl cos B{1 = y'(ror — y(r)) h(r_, B) dB
i +sin’B{1 — y(r-)} {(c*/|0%) — sin’B} ™ | (ry'(r)) + v(r)}

where A(r) =1 — ry’(r) — y(r).

REMARK. It is interesting to note that if y(r) = 1 — a/r, then 1 — ry’(r) — y(r) = 0,
and it is then easily established that (2.19) is negative. This implies that the coverage
probability of the confidence set centered at §(X) = (1 — a/| X|)*X is decreasing in | | for
|| > c. However, it is also true that for this estimator, limy,_, .Ps(Cs) < P3(C%), so this
confidence set cannot dominate the usual one. More generally, if we define §¢(X) =
(1 — a/| X|"*)*X, then limyg..Ps(C;s?) = Py(C%) if and only if € > 0.

Proor. From Lemma 2.1, it is clear that P;(Cy) and B,(f) depend on 6 only through
| 6|. Hence, without loss of generality, let § = (|8, 0, - -, 0). Then

a a
mBn(a) = meq)n {w(X, 0)}o(X) dX

= J 29 {w(X, O} {y(| XX, — | 0]} fo(x) dX
R)P

+f D, {w(X, 0)} (X1 — |0])fo(X) dX,
RP

where w(X, 6) = ¢* — | y(| X|)X — 0| We now apply integration by parts to the second
integral, which allows us to replace @, {w(X, 8)}(X: — | 8]) by (3/aX,)®. {w(X, 9)}. After
performing the differentiation, collecting terms and writing X; = X ‘4/| 8|, we obtain

3 2
— B.(0) = — n {w(X, 0
30| (0) 7] quv {w(X, 0)}

X0y’ (|1 X])

Ja-v(x XDX'0—10/% -
[{ (| XDy (1 X)) 1017 x|

(| XDX - 0}’X]fg(X) dX.
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Once again we transform to spherical coordinates and obtain

]
a|6|

/2 0
Ba(6) = %K f f on (w(r, B, O)VE(r, B)A(r, B) dr dB,
0 (1]

where
H(r, B) = y(r)r| 8| cos B{1 — v(r) — y'(r)r} + y'(")r|0|*cos’8 — |0]|*{1 — y(r)}.
By first applying Lemma 4 and then Lemma 3 in the Appendix, we obtain

d . a
mpa(cﬂ) = lim, e m

_2K "“{H(n,ﬁ)h(u,m . H(r-,B)h(r-,,B)}
101 Jy Ure G + v Ty’ + () |

B.(0)

(2.20)

| rey(re) = ry(r-) |7 dB.

From (2.9) we have that r,y(r+) — r—y(r—) = 2(c* — | 8|* sin® 8)*/?, and a simple calculation
shows that

H(re, 8) = —{1 — y(r+)} | 0)*sin* B £ | 8] cos ﬂ(cz — 0] sin® B)2 {1 — y'(r+)re — y(r<)}.
Substitution of these two expressions in (2.20) yields expression (2.19), and the theorem is

proved. O

The expression given in Theorem 2.1 is still rather difficult to handle; however, we are
mainly concerned with the performance of the positive part James-Stein estimator. The
derivative of the coverage probability simplifies considerably for this estimator, and is
given in the following corollary.

CoROLLARY 2.1. For y(|X|) = (1 — a/| X|?)*, where a is a constant, and | 8| > c,

;2
a sin’g {h(r+,,8)+h(r_,,8)} dp

2/10)%) —sin®’B}% | ri+a  ri+a

Bo
_Kf acosﬂ{h(r+’ﬂ)_h(r—’ﬁ)} dﬂ.

r’+a ri+4a

3 Bo
—— Py(Co) = —-K j

Proor. Notice that, as mentioned in Lemma 2.1, we only need be concerned with the
region where y(-) > 0. Hence, we can let y(|X|) = (1 — a/| X |?). Substitution in Theorem
2.2 gives the result. O

As mentioned before, the ultimate goal is to show that (3/d ] 8|)Ps(Cs) is negative for
| @] > ¢, which implies dominance over the usual confidence set. This problem has been
reduced to showing that the expression given in (2.21) is negative but, alas, that task is still
formidable. It is possible, however, to find conditions under which the integrand in (2.21)
is negative and hence, produce confidence sets that dominate the usual one. In the next
section we find bounds on the constant a that guarantee that the integrand in (2.21) is
negative, and we examine the size of possible improvement.

3. Minimax confidence sets. In this section we concentrate on the positive-part
James-Stein estimator §*(X) = (1 — a/| X|*)*X, and determine values of the constant a
for which the sphere centered at §*(X) has higher coverage probability, for all 4, than that
centered at X. Our technique is to show that the integrand of (3/0|8|)Ps(Cy) is negative
for | 8| > ¢, which shows that Py(C;) decreases to its value at infinity. Since limys_. Py(Cy)
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TABLE 1
Coverage probabilities for the set Cs+ where a = a, and c® satisfies P(x% < c¢?) = 0.9

p
18]
3* 5 7 9 11 13 15 25

0 .9064 .9600 9842 9933 9970 9986 9994 9999
2 9047 .9506 9776 9896 9951 9976 .9988 .9999
4 .9009 9232 9519 9731 .9859 9924 .9959 9999
6 .9003 9109 9278 9451 .9606 9732 .9827 .9988
8 .9002 .9063 .9166 9283 .9402 9516 9618 9925
10 .9001 .9040 9109 9191 9278 .9366 .9452 9794
15 .9000 9018 .9050 .9089 9133 .9180 9230 .9481
20 .9000 .9010 .9028 9051 9077 .9105 9135 .9303
25 .9000 .9006 9018 .9033 .9050 .9068 .9088 9204
50 .9000 .9002 9005 .9008 9013 go17 .9028 .9055
100 .9000 .9000 .9001 .9002 .9003 .9004 .9006 9014
500 .9000 .9000 .9000 .9000 .9000 .9000 .9000 .9001
1000 .9000 .9000 .9000 .9000 .9000 .9000 .9000 9001

* This column is not covered by Theorem 3.1. The value of a, used is a, = .076. [See the discussion
following (3.8).]

TABLE 2 '
Coverage probabilities for the set Cs+ where a = p — 2 and c” satisfies P(x2 < c? = 0.9

P
16|
3 5 7 9 11 13 15 25

0 .9565 9879 9959 9985 19994 19998 9999 19999
2 9458 9809 9926 9972 9989 9995 9998 19999
4 9062 19343 9622 .9808 9949 9977 .9989 9999
6 .9026 9162 9337 9510 9661 9780 9866 9993
8 9014 9093 9202 9323 9443 .9556 9657 .9943
10 9009 .9060 9133 9218 9307 9397 9484 9819
15 .9004 9027 9061 9102 9147 9196 9247 19502
20 .9002 9015 9035 9059 9085 9114 9145 9317
25 9001 9010 9022 9038 9055 9075 9095 9214
50 9000 9002 9006 9010 9014 9019 9024 .9058
100 9000 9001 .9001 9002 9004 9005 9006 9015
500 9000 .9000 9000 9000 .9000 9000 .9000 9001
1000 .9000 9000 9000 .9000 9000 9000 .9000 .9000

= P4(C3), the dominance will be established for |#| > ¢, and the dominance for |§| < ¢
follows from Theorem 2.1.

By bounding the integrand, rather than the integral, the bounds obtained on the
constant a are smaller than necessary for dominance of P;(C§$). In fact, the upper bounds
on qa are less than p — 2, which was demonstrated numerically by Casella (1980) to yield
a dominating procedure for p = 3. It is also unfortunate that the result is not established
for p = 3; however, in this case the integrand becomes extremely difficult to handle.

For p = 4, the upper bounds obtained do provide substantial improvement in coverage
probability over the usual confidence set. Table 1 gives coverage probabilities for these
sets for 1 — a = .9, and it can be seen that the coverage probability can be as high as .99
at || = 0 if p = 9. Moreover, even though the upper bounds are smaller than p — 2, the
coverage probabilities we obtain are almost as high. Table 2 gives coverage probabilities
fora=p—2and 1 — a =.9, and comparison with Table 1 shows that the probabilities are
virtually identical.
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TABLE 3
Selected values of a,

P a=.10 a=.05 p a=.10 a=.05
4 0.54 0.50 15 9.50 9.29
5 1.28 1.21 16 10.34 10.12
6 2.06 1.97 17 11.18 10.96
7 2.86 2.75 18 12.02 11.79
8 3.67 3.55 19 12.86 12.63
9 4.49 4.35 20 13.71 13.47
10 5.32 5.17 21 14.55 14.30
11 6.15 5.99 22 15.40 15.14
12 6.98 6.81 23 16.24 15.98
13 7.82 7.63 24 17.09 16.82
14 8.66 8.46 25 17.94 17.67

N

It should also be mentioned that the choice @ = 2(p — 2) does not produce a confidence
set which dominates the usual one. (Recall that this is the largest value of a for which
8*(X) is minimax.) This statement is based on numerical evidence using the formula of
Casella (1980). Calculations show that for moderate values of | 8|, the coverage probability
of this set falls below that of the usual one.

The main result of this section, the sufficient condition for dominance of C% byCs-, is
given in the following theorem.

THEOREM 3.1. For fixed c* and p = 4, define ao as the unique solution to

2 1/2P~3
3.1) {M} e~Va = 1.

Vao

Then for all 0 < a < a, the sphere centered at §*(X) = (1 — a/|X|?)*X has higher
coverage probability than the sphere centered at X, i.e.,Cs+ is a minimax confidence set.

REMARK. Values of a, for p = 4(1)25 and c? corresponding to nominal 90% and 95%
procedures have been calculated. These values are presented in Table 3. It is evident that
these values are smaller than p — 2; however, as previously noted, the coverage probabilities
are very close to those of a = p — 2.

Proor. It is sufficient to show that expression (2.21) is negative for all | | > ¢, which
is implied by

_sin’B h(r, B)
{(c2 “Tor s o ‘*} TTra
. 2 h _,
* {P— T S °°SB}7(_%%)2 0, VE=ho [0]>ec

Notice that the function sin’8(c? — | 8|2 sin’8) "2 — cos B is increasing in 8. Define 8; <
Bo as the unique root of this function. Then for 8 > B; all the terms in (3.2) are positive
and, hence, we need only concentrate on 8 < S;.

If B < B, expression (3.2) is true if and only if

33 [o8 B(c? —|0|%sin®8)"% + sin’B) A(rs, B) [r2 +a
’ cos B(c® — | 0|*sin’B)% — sin®8| A(r_, B) |72 + a

The term in braces is = 1 if 8 < B1, and can be replaced by 1. Now recalling the definition

}2 1, VB< Bi, |0|>c.
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of h(r, B), we can write

h(r., B) _r% "' sin”’B exp{—(ri — 2r.|0| cos B +|6|)/2}
h(r_,B) rZ 'sin” 2B exp{—(rZ — 2r_|0| cos B +|0|*)/2}

= (:—*>  exp[—(r2 — 20r — )| 8] cos B — r2}/2].

Now, from (2.9), r y(r+) + r—y(r-) = 2| 8| cos B and, since y(r) =1 — (a/r?),

ri—2rs—r)|0|cos B—rt=ri—(rs —r_){re—(a/rs) +r-—(a/ro)} —r
<r+ r_)
=al=-—]).
r- re

h(rs, B)
h(r-, B)

Hence, we can write
(3.4) = t"'exp{—a(t — ¢t7')/2},

where t = r./r—. Furthermore,

2 2 2
ri(rz+a) 1+ a/rz
3.5 = =1 , 0] >¢,
(35) rtri+a) 1+a/ri™ " VB, 8]>c
since r2 < r2. Thus, combining (3.4) and (3.5), a sufficient condition for the derivative of

Py(Cy) to be negative is that
(3.6) o) =t P exp{—alt—t™")/2} =1, 0<B<pBo, |0 >c

It is straightforward to establish that p(1) = 1 and for ¢ > 1 p(¢) increases to a unique
maximum, then decreases to 0 as ¢ — o, Since ¢ = r,/r- = 1, (3.6) will be established if we
can show that p(¢*) = 1, where

t* = supp<p,jo>c(r+/r-).

For fixed | 8|, ¢ is decreasing in 8, hence

su g _|(7‘|+c+{(|t9|+c)2+4a}”2
Pisto £ =37 o [0 —c+ (0] = o7 + 47
where the last equality follows from (2.9). Also, differentiation will establish that supg ¢ is
decreasing in | 8| for | 8| > ¢, and hence, by substituting | 6| = c,

. c+ (c2+ a)?
t* = Supg<po,ig>c ¢ =f~
a

A little algebra will verify that ¢ — ¢t~ =2¢/ «/E, and hence (3.6) will hold if

2 1727 P38
c+ (c*+a) ] —

3.7 *(a) =
3.7) p*(a) [ 7

Since this function is decreasing in a, if we define a, as the unique solution to p*(a) = 1,
(3.7) is true for all @ < ao, and the theorem is proved. [

The coarsest inequality used in this proof is bounding (1 + a/r2)/(1 + a/r%) by 1 since,
for fixed B, this function is decreasing in | @ |. This means that this function would increase
the integrand at | 8| = ¢, 8 = 0. However, it seems rather difficult to bound the integrand
independent of | 8| if this function is left in. What is most unfortunate is that this bound
decreased the exponent of ¢ to p — 3, so the theorem does not cover the case p = 3.
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The inequality used on the term in braces in (3.3) probably did not lose very much.
This is because at B = 0 this term is equal to 1.

The technique used here, that of bounding the integrand, does not seem to be powerful
enough to cover the case p = 3. Although it has not been proved, we believe that when p
= 3 the minimum value of expression (3.3) is obtained at |#| = ¢, 8 = 0. This gives the
inequality

2e Ve {c + (c® + a)1/2}2> ]
a+ {c+ (c*+a)/?)? —

(3.8)

which we can think of as a necessary condition for the integrand of (8/8|8|)P; {Cy(8%)} to
be negative. If ¢” is taken to be the 90% cutoff point of a x3, then a, = .076. At | §| = 0, the
coverage probability of this set is .906, a minimal improvement. Thus, while the minimax
confidence sets developed here yield substantial improvements for p = 4, a much more
difficult technique (bounding the integral) is required to get substantial improvement
when p = 3.

4. Comments and generalizations. It has been shown that by merely recentering
the usual confidence set at a positive-part James-Stein estimator, the coverage probability
of the usual confidence set can be uniformly improved, with substantial gains for some
values of the parameter. Although our upper bound, a, is smaller than necessary, we have
seen that a larger upper bound (¢ = p — 2) will not substantially increase coverage
probabilities. Also, since there is numerical evidence that a = 2(p — 2) is too large, it
seems that there is not room for much improvement over the bound a,.

We have restricted consideration to recentered confidence sets, and have not dealt with
more complicated forms such as those of Faith (1976) or Berger (1980). It has been shown
that these sets can have reduced volume while maintaining a dominating coverage
probability over most of the parameter space. However, these sets are conceptually more
difficult to deal with. The recentered sets are easy to visualize, and can also yield confidence
intervals for the individual components of the parameter.

Finally, we note two straightforward generalizations of our results. Let X ~ N(4, 3),
known, and let

85(X) =60+ {1 —a/(X — 6)S"(X — )} (X — 0o),

where 6, is a prior guess at 6. Centering the estimator at a prior guess can be a great
benefit, since the region of maximum improvement in coverage probability will be near 6o.
For this situation, the usual confidence set is the ellipsoid

Ck={0:X-0y=""(X-0) = c?,
and the recentered set is
Csj, = {0:[64(X) — 0TZ7'[84(X) — 0] = ¢*}.
By applying the transformation Y = Z7'*(X — 6,), this set-up is transformed into that of
Section 3, and hence it follows that Cs+4, dominates C% for all 6.

Another straightforward generalization is to a wider class of loss functions. If we
measure the loss of the confidence procedure C by

L(C, 0) = w; Volume(C) — wo1c(6),
where Ic(f) = 1if § € C and 0 otherwise, and w; and w, are any two known positive weights,

it then follows that Cs+ dominates C% with respect to L(C, 8) for a < ao.

5. Acknowledgments. The authors wish to thank Dr. Jing-Huei Chen, a physicist
skilled in the application of Dirac delta functions, for helping with some of the technical
arguments.
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APPENDIX

Let ¢. be a normal density with mean 0 and variance n™% Let f be a continuous,
integrable function. The proof of the following three lemmas can be established using the
continuity of f and the Dominated Convergence Theorem. They are omitted here.

LEmMMA 1. For any constant a and € > 0,

limy e f onlt — @) f(t) dt = lim,_... f on(t — a)f(t) dt = f(a).
— {

t:|t—a|<e}
LEMMA 2. Leth:(c, d) — R be a strictly monotone function that satisfies h(a) = 0 for
some a € (c, d). Then

d d
. ey Pn(t — a)t) dt _  f(a)
hmn_mJ: ea[R()]f(2) dt = llmn_,w[ @] @]

LEMMA 3. Let h(t) be any strictly monotone differentiable function. Then for any
constants a and b,

limy e J' en{[A(8) — R(a)][R(¢) — h(D)1} f(2) dt

. T alt — a)f(2) dt . " palt — B)f(t)dt
= n—oo 1 n—00
tim J TR @ a0 = k] f R ® A - ra)]|

fla) f(d). ] 4
=|———+——||h(b) —h .
LEMMA 4. For BJ(0) as defined in (2.13), using the notation of Section 2, if |0| > ¢
then

(A1)  lim..., BX(6) = KJ

0

Bo L
{limn_,oo f — 2@ ()| 0| — ry(r)cos Bh(r, B) dr} dp.
0

The proof of this lemma is greatly complicated by the fact that the function in braces
in (A.1) has a singularity at 8 = Bo. This function is, however, integrable over (0, ),
which is the key to the proof. The detailed proof is quite lengthy, and only an outline is
given here. The interested reader is referred to Hwang and Casella (1981).

OUTLINE OF PRoOF. From (2.13), B} () is defined as
[T a
B;(@0) =K — ®(w) |A(r, B) dr dB
o Jo LOI0]

= Kf f — 2¢n(w)[| 8| — ry(r)cos Blh(r, B) dr dB.
0 0

We first show that, as n — o« the value of the integral over the region {8:8 > B} goes to
zero. It follows quickly that the integral over the region {8:7/2 < 8 < 7} goes to zero since
Pn(w) = n(27) "% exp{~[n(]| 0|* — c?)]?/2} — 0 as n — ». Thus we only need consider {8:
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Bo < B < 7/2}. For B in this region, | | sin’8 = ¢* and hence

(pn(w) = #exp{~n2w2/2}
< n n2 P . ; Y s
=Gn = P —~2—[[ry(r) —18|cos BT + (|8]? sin®B — ¢%)?]

def

= g, *(r, B),
where w is defined in (2.6). Now define
(A.2) h*(r) = supg{[| 8| — ry(r)cos BA(r, B)}
which is clearly integrable over (0, ). We then have

/2 0
K f J' | —2@n(w)[| 8] — ry(r)cos B]| h(r, B) dr dB
Bo 0

/2 oo
(A.3) = QKJ f @r(r, BYR*(r) dr df
Bo 0

/2
=2KJ' {f on(r, B) dﬁ}h*(r) dr,
0 Bo

where the last equality follows from Fubini’s Theorem. It can be shown that there exists
M(| 6]|), independent of n and r, such that

/2
f Qi(r,B) dB = M(|0]|) Vr.

The Dominated Convergence Theorem is then applied to expression (A.3) to obtain

o /2 o /2
(A4) limye J’ { J’ en(r, B) dﬁ}h*(r) dr =f {lim,HooJ’ on(r, B) dﬂ}h*(r) dr.
0 0

Bo Bo

Furthermore, it can be shown that

/2
(A.5) lim, e J’ oa(r,B)dB=0 Vr.
Bo

Hence, it has been demonstrated that
Bo [

(A.6) lim,.. B} (@) = K lim,_.» f f — 2p.(w)[| 8| — ry(r)cos BlA(r, B) dr dB,
0 0

and it remains to show that the limit can be passed through the first integral. Using the
fact that A*(r) is uniformly bounded by some constant, by the Dominated Convergence
Theorem it will be sufficient to demonstrate that

(A.7) <M1+M2(|0|)B))

J’ @nlw(r, B)] dr

where §5M,(| 8|, 8) dB < . This can be established if we choose Ms(| 8|, B) to be a
constant multiplied by (c* — | 8|* sin’8)"/%, which is integrable over (0, Bo). O
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