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SMALL SAMPLE ASYMPTOTIC EXPANSIONS
FOR MULTIVARIATE M-ESTIMATES'

By CHRISTOPHER FIELD

Dalhousie University

Asymptotic expansions are derived for the densities of multivariate
M-estimates. The expansion is based on a saddlepoint technique and yields
good accuracy in the tails for small sample sizes. Numerical results are given
for robust estimation of location and scale and these are compared with known
Monte Carlo results.

1. Introduction. This paper considers asymptotic expansions for the densities of
multivariate M-estimates for small sample sizes. The technique is an adaptation of the
saddlepoint technique developed by Daniels (1954) and the small sample method of
Hampel (1973). Small sample approximations, very accurate even down to n = 3, were
developed for M-estimates of location with a monotone y-function in Field and Hampel
(1982). An approximating formula for a multivariate mean appears in Field (1978).

The approximating density at a fixed point is obtained by using a conjugate or associated
density to re-center the underlying density about the fixed point and then to use the
multivariate Edgeworth expansion locally to obtain an approximation to the density at the
fixed point. In contrast to the usual technique of using a single high order Edgeworth
expansion for all points at which the density is to be approximated, this approach uses a
different low order Edgeworth expansion for each point, using the Edgeworth expansion
only in the middle where it is very accurate.

Formally, consider observations x;, - - -, x, from an underlying density f;(x) where 8 =

@, ---, 0,), Note that the x,’s may be univariate or multivariate. To estimate 0, we use
the M-estimate T, which is a solution t of the system of equations:
(1) Yei(x,t)=0 for j=1,..-,p.

The problem is to find an asymptotic expansion for the density p, (t) of T,.

This paper is related to a recent paper of Barndorff-Nielsen and Cox (1979). Their paper
is similar in that they use saddlepoint or indirect Edgeworth expansions to approximate
densities. They restrict attention to standardized sums and develop asymptotic expansions
in the multivariate case for the standardized mean (eg. their formula (4.7)). From this
point, they concentrate on approximating the density of part of the standardized mean
conditional on the remainder of the standardized mean. This paper differs in that approx-
imations for a much broader class of estimates are given. As has been often noted (cf.
Huber, 1977), the class of M-estimates includes both the multivariate mean by setting
¥ (x, t) = (x, — ¢,) and maximum likelihood estimates by setting ¢, = (3f/a6,)/f, as well as
the so-called robust M-estimates which have bounded score functions y,. The univariate
case of M-estimates for location with monotone y has been treated in Field and Hampel
(1978). In that case, it is possible to use an approach similar that developed for the mean
by Daniels (1953) and, in fact, Professor Daniels has carried out some computations for
robust location estimates which are given in Field and Hampel (1982, Table 1).

The generalization of the saddlepoint approach to multivariate M-estimates requires a
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local expansion of the estimate in terms of functions of means and an application of the
asymptotic expansion for the means.
The steps in the argument are as follows:

(i) Show that the density of T, at t, under fy(x) can be computed as the density of T, at
to under a conjugate or associated density which has been centered at t,.

(ii) Find a Taylor series expansion for T, — to which is valid locally.

(iii) Use a multivariate Edgeworth expansion at 0 with the centered conjugate density to
obtain an approximation to p,(t).

Step (i) enables us to approximate the density at t, using an Edgeworth approximation
only in the neighborhood of the expected value of T,.. This ensures that at any point t,, we
obtain the very good numerical accuracy of the Edgeworth approximation at its expected
value. The result given in Lemma 1 is a generalization of equation (2.6) in Barndorff-
Nielsen and Cox (1979) which in turn is essentially given by Daniels (1954). Steps (ii) and
(iii) follow very closely arguments given in Bhattacharya and Ghosh (1978).

The next section of the paper develops the asymptotic formula for the density. Following
this, the approximating formula is examined for the arithmetic mean and for robust
estimates of location and scale. Numerical computations have been carried out for robust
estimates of location and scale and the results are compared to existing Monte-Carlo
results where appropriate. The percentiles of a “studentized” statistic are computed and
the validity of using ¢-densities with reduced degrees of freedom to determine the percen-
tiles is examined.

It should be noted that the asymptotic expansions obtained by Pfanzagl (1973) for
univariate minimum contrast estimators are closely related to the expansions given by
Bhattacharya and Ghosh (1978) for multivariate estimates and could be used as a starting
point for saddle-point approximations for univariate M-estimates.

2. Asymptotic formula. In order to carry out the step (i) above, the following assump-
tions are made:

AssumPTION 1. The system of equations (1) has a unique solution.

AssuMPTION 2. The joint density of (Y7=1 ¢1(X,, to), - -+, X i=1 ¥ (X,, to), Tr) exists
and has Fourier transforms which are absolutely integrable both under f; and A, .

In general, Assumption 1 may be somewhat difficult to verify and is probably not
absolutely essential. The question of how multiple roots might be handled is addressed in
the final section. Results concerning the uniqueness of roots of a non-linear system of
equations can be found in Ortego and Rheinboldt (1970, Section 5.4). Assumption 2
requires that n > 2p and is used primarily in step (i) of the development; if it does not
hold, the arguments can be modified to handle other possibilities. In fact, it is possible to
give a direct proof of the lemma using only the density of T, and certain regularity
conditions.

For ease of notation, the underlying density f; to be used in evaluating the density of T,
at to will be denoted by f suppressing the dependence on 6. In situations in which there is
some invariance, it may be necessary to evaluate the density only for a subset of fy’s as
would be the case in location or location/scale problems with invariant M-estimates.

To proceed, the density of T, at some point to, p, (to), is to be approximated. The next
lemma carries out step (i).

LEMMA 1. If Assumptions 1 and 2 hold, and the underlying density is f, then
Pn (tO) = C_"(to)(In (tO))
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where q,(to) is the density of T, with the underlying density
he,(x) = f(x)exp (YL, ani(x, to)}Clto)
and

Cl(to) = f f(x)exp{Y7_, a;(x, to)} dx.

ProOF. Let Z = (Xi-1 1(Xi, to), -+, =1 ¥»(Xk, to)) and denote the density of
(Z, T,) by g(z, t) under f and g:(z, t) under A, . Writing T, = (T1(x), ---, Tp(x)) with
x = (xy, -+, X,), the moment generating function of (Z, T,) can be written as

M, v) = f cee f eXp{ZLl Zf=1 w;(x, to) + Zf=| vt (x)} [Tk=1 f(x,) dxy -+« dx.

Choose u = (a1 + ty1, a2 + iyz, -+, ap + iyp) = a + iy, v = (iwy, -+ -, iWp) = iw.

Now
M(a + iy, iw)=f fexp{EZ=1 TPyl (xe, o) + 2P iwit;(x)}

X exp{Xi-1 X7-1 ¥y (xk, to)} [1k-1 f(xs) dxy - dx,

= C™(to) f feXP{ZLIZﬁLl Y (%, to)

+ X0 iy T (@) TThet by, (52) dxs - -+ dxa = C"(t0) Mi (i, iw),

where M, is the moment generating function of (Z, T,) under A,,. Since both M and M, are
absolutely integrable, we can apply the Fourier inversion formula to give

1

gz, t) = Wf ce j eXp{_Zfﬂ Uiz, — Zf=1 vit,}M(u, v) du dv,

where components of u and v are integrated along the path from ¢ — i to ¢ + i for some
¢. Choosing u = (a + iy) and v = iw, we have

1 . . ..
g(z, t) = Wj ‘e f exp{—Y7_, (o + iy))z, — Y iw it Y M(« +iy, iw) dy dw

C™"(to ' .
- S e (Siws) [ o [ emigt s -5 )

‘M, (ty, iw) dy dw

= C™"(to)exp{—X/-, &2} &i(z, t).
Now '
T.x)=to=Yi1¢(x,t) =0, j=1,...,p=z=0.
Hence, g(z, to) = C"(ty)g:1(z, to) and from this the result follows. 0

Before proceeding with step (ii), the Taylor series expansion of T, — to, a parﬁcular value
of a will be chosen. For fixed ty, a is chosen so that the random variables ¢, (X, t,) will
have mean zero under the conjugate density i.e. choose ai, - - -, a, so that

(2) j ¥ (x, to)exp{ X2, ajty (x, to)}f(x) dx =0, j=1,...,p.
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Although a is dependent on ty, the dependence will be suppressed throughout the proof
but will be exhibited in the final formula.

In order to carry out steps (ii) and (iii), we need the following assumptions which
correspond to Assumptions A;-As in Bhattacharya and Ghosh (1978, page 439). For
nonnegative integral vectors » = (', - .. p'?) write |v| =2V + ... + 2P, P! = p VAN

- »'Plandlet D" = (Dy)" --- (D,)"" denote the »th derivative with respect to 6.

AssumPTION 3. (i). {X,},=: are i.i.d. m-dimensional random variables such that there
is an open subset U of R™ such that (a) for each § € 6 C R”, [v fy(x) dx = 1 and (b) for
each v, 1 = |v| < s, the functions ¢,, j = 1, - - -, p have vth derivatives with respect to 6

(ii) For each compact K C © and each », 1 < |v| < s — 1, supgex Eo| D" §,(X, 0) |**' < o0;
and for each compact K there exists ¢ < 0 such that

supy,ex Eg,{maxjs—g,=<c| DY, (X, 0) |}* < 0

if |»| =sforj=1, ... p. Here Ey denotes expected value with respect to the conjugate
density A, with o chosen as in equation (2).

(iii) For each 60, € O, the matrices

1(00) = {—E4 D (X, 09)}, Do) = {Eg (X, o) (X, 00)}
are non-singular.

(iv) The functions 1(8), Eo (D", (X, 0)D"Y.(X, 0)}, 1 < |v|,|v |=s—1,1=<i r=pare
continuous on O.

(v) The map 6 — F,, where Fy is the cdf of f5, on © into the space of all probability
measures on R™ is continuous when the latter space is given the (variation) norm topology.

(vi) For each @ and each », 1 = |v| = s — 1, DY, (x, ) is continuously differentiable in y on
U.

As can be seen by comparison, these conditions correspond to those in Bhattacharya
and Ghosh (1978) with the convention that all expectations are with respect to the
conjugate density and D,f is replaced by .

For the cases of interest, robust M-estimates, these conditions create no difficulties
since the score functions i, are bounded and the underlying densities of interest are well-
behaved. It should be noted that the conditions on differentiability can be weakened to
allow piecewise differentiable score functions.

Although the arguments required to carry out steps (ii) and (iii) are essentially given in
Bhattacharya and Ghosh (1978, cf. page 448 and page 435 noting misprint in (2.35)), it
seems appropriate, in the interest of more complete exposition, to provide a short summary
of the technique. We focus on the case when s = 3. Note that the expansion obtained will
be assuming the underlying density is h;. Lemma 1 can then be used to obtain the
expansion under f.

To begin, consider the first two terms in the Taylor’s series expansion of (1) about ¢,

0= E:):l \l/r(xz, t)/n = Z:l:l ll/r(xl) tO)/n + Zf:l (tj - t{)j) Z:’:] Dj\l/r(xly tO)/n
(3)
+ Z],/ (tj - tOj)(t/ - tO/) Zl":I D/Djll/l'(xly tO)/2n)

where D, represents differentiation with respect to ¢,, and D.D, is used to represent
differentiation with respect to ¢, and then ¢, instead of the more usual D,, to avoid
notational confusion later on. The expansion we obtain will actually be for the solution of
the right hand side of (3). As is shown by Bhattacharya and Ghosh (1978, page 449), the
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remainder term in (3) which has been ignored gives rise to terms with order of magnitude
of the eventual error terms. With this in mind, we refer to the solution of the right hand
of (3) as T,.

In terms of notation, let Z, = 4, (X, to), Z,;, = DY (X, t), Z,,, = D.:D,¢, (X, to) and let E
denote expectation with respect to A, where a is chosen as in (2) above. Then EZ, = 0 and
we let EZ,, = p,y, EZ,,, = piys,

p
—~A—
a=1(0,+,0, g1, 12, **+, tops M111, 1125 * 5 Mppp)

and Z* = (Z, -++, Zp, Z11, Z12, +++, Zppp). Consider the following system of equations,
which correspond to the expansion in (3)

1
ﬂ(z*, t) =2+ Zf=1 (tj - tOj)zrj + 5 2/,[ (tj - tOj)(t/’ - tO/)Zry'Z

forr=1,...,p,ie. f=(fi, ---, f,) maps R**? into R? where k = p + p% + p®. Since by
Assumption 3, the matrix A = {u;;}%,-1 is non-singular and f(a, to) = 0, the implicit
function theorem can be applied to prove there exists a unique differentiable function,
H(z"), H: R* 5R?, such that f(z*, H(z*)) = 0 for z* in a neighbourhood of a and H(z")
in a neighbourhood of to. From this it follows that

(4) T,=H(Z*) and t,=H(a) where Z, =Y",¢(X;, t)/n, etc.

The next step is to expand H(Z*) in a Taylor series expansion about a. Using the first
two terms of the expansion, and using the relationship f(Z*, H(Z*)) = 0 to evaluate
derivatives, it is straightforward to obtain the following expansion

6) (To—t0).=Y,0,Z, -3, {3 6:C.(*NZZ, + 3,3, bub,Z, Y, + error term,

where b, is the (i, r) element of A™ = {u,}", Y., = Z., — pe and C,(r) =
2mm, b thrmm, bmy -

The next step, working out the Edgeworth expansion, requires the cumulants of
n'?(T, — to). The results of James and Mayne (1962) can be used here for the polynomial
part. This will suffice since Bhattacharya and Ghosh (1978) show that the polynomial part
determines the expansion. We denote the cumulant of order (r1, - -, r,,) for n'/*(T, — to)
by x" " and the cumulants of (Z,, - -, Z,, Y1, Y1z, -+, ¥pp) by K*, K", KY, K"
where

K'=EZ =0, K""=EY, =0, KY=EZZ, K'Y =EZY, andsoon

where the expectation is with respect to A, .

Since the random variables involved are all means, it is straightforward to verify that
all the rth order cumulants K*""~* are of order n~"*'. The cumulants of n'/*(T, — t;) can
be expressed in terms of K’s as follows (cf. James and Mayne, 1962, page 51):

As' = X(O,...,l,--.,U) = nl/Z{ZJ,’/ (Zr bs,rQ/(r))Kﬂ + 2/,",/ birb/JKj(r/)} + O(n—3/2)

s =d,/n'?+ 0(n
A2 = X(o,...,l,...,l ,,,,, 0 2// bs‘jbxz/Kj/ + 0™
T
58 = (A7 T (A Y + 0T =, + O(7Y),
where Yy = {K’'}1=,., =p, and
)\sw«m = X(O‘...,l,..._l ,,,,, 1..., 0) d.s' s /nl/Z + O(n_:’/z).
T
S1 S22 83

All higher order cumulants can be shown to be of order O(n™") or higher.

(3
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The final step is to write out the characteristic function of n"*(T, — t,), using the
expressions for the cumulants above and then apply a Fourier inversion. (cf. Bhattacharya
and Ghosh, 1978, page 436). Since Assumption 3 holds, the results of Theorem 3 with
s = 3 in Bhattacharya and Ghosh (1978) can be applied to our problem and we have the
result that for every compact set K C O,

sup,ex | P {n'/*(T, — to) € B} — J [1+ Y51 d D {¢(x)}/n'?
B

+ X0 Ao D, DiD,($e(x)} /0" *1pc(x) dx | = O(n™'%),

where the probability Py, is computed with the dens1ty h¢, and ¢. is the multivariate normal
density with mean 0 and covariance C = A~ ¥, (A7), A = {ED/(X, to)}1=r/=p, Dl
refers to differentiation with respect to ¢, Y, = {E¥(X, to)¥/(X, to)}1</< and all
expectations are with respect to h,.

This result holds uniformly over every class % of Borel sets of R” satisfying

suptnexsupBE”J’ ¢c(x) dx=0() as €0
(aB)!

where (dB)* is the e-neighborhood of B.

By applying Theorem 3 with s = 4, it follows that the order of the error in the expression
above is in fact O(r"). Since the above result holds uniformly over the class % above, it
can be shown that the density of n'/*(T, — to) under A, at X is

gn(X) = ¢ (X)[1 + -1 & D, {9(x)}/n'"* + T s dine D, DaD($c(x)} /0> + O(1/n)].

The density of (T, — to) under A, at 0 is ga(to) = n”/?g,(0). Using the results of Lemma 1,
it follows that p.(ts) = {C(to)}"n"’’g,(0). Putting the results together, we have the
following.

THEOREM 1. If T, represents the solution of Yi=1 Yy(x,, t) =0, r=1, .-+, p, and
Assumptions 1-3 are satisfied, then an asymptotic expansion for the density of T, say
D, IS

(6) pn(to) = (n/2w)p/2[J’exp{2,_1 a, (to)y, (x, to)}f(x)dx] {|det Alldety |_1/2+0<%>},

where a(to) is the solution of

f\b, x, to)exp{ Y h-1 aYi(x, to)} f(x) dx =0 for r=1,.--,p,

= (B, (x, ) /3t | =t 1=rvmps 2 = {Es (x, to)¥r(x, to) hisr/=p,

and all expectations are with respect to the conjugate density

-1
h(x) = exp{ X1 a (to)d; (x, tO)}f(x)[J' exp{Y5-1 oy (to)d; (¥, to)} () dy:l .

The error term holds uniformly for all t in a compact set.

Note. Following the practice advocated by Hampel (1974), the integrating constant
(n/27)"”? will not be used in numerical work but the constant will be determined numeri-
cally. Previous numerical experience suggests that this will substantially improve the
accuracy of the approximation.

In applications of formula (6), it is usually probabilities obtained by the integration of
pn(t) which are of interest. Since the approximation in (6) is uniform for all t in a compact
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set, we can state that for K compact

p/2 n
f palt) dt = (%) j [j exp{X-1 a () (1)} f(x) dx] |det Al [det Te| % dt
K K

1\/n\"
+ O(;) (5;) f C7(t) dt.
K

To be more specific here, it is necessary to examine the behavior of C7(t) over a
compact set. In the cases which we have examined, C~!(t) is a continuous function so the
last term above can be bounded on any compact set.

A more useful result here would be to have the above result hold for any arbitrary K.
This would ensure that probability integrals of marginal densities would still be correct to
order O(1/n).

In the case of the univariate mean, Daniels (1954, see Section 7) shows that under
certain conditions on the cumulants of the conjugate-density the saddlepoint approxima-
tion (formula (6)) holds uniformly over the whole parameter space in the sense that the
relative error of (6) is uniformly bounded. Barndorff-Nielsen and Cox (1979, see Appendix)
have a uniformity result for the multivariate mean provided that «(t) remains in a compact
subset of the parameter space. Although at present no similar results are available for
general Y(x, t), a careful generalization of the approach given by Daniels might yield
interesting results. It should be noted that both the above approaches appear to use
critically the special form of i for the case of the mean to parametrize the conjugate
density by a parameter which remains in a compact set in many cases of interest. The
analogue for the general y-function is not clear.

As has been pointed out by a referee, the key idea in the above development can be
expressed as follows. We have a statistic T((F,) where F, is the empirical distribution
function whose density has an Edgeworth expansion and which has an expansion of the
form

T(F,) = T(F) + n™" T A™N(x;, 0) + Op(n7).

The conjugate density is determined by the linear part of the statistic and is followed by
making an Edgeworth expansion. If the statistic is linear, we have the classical saddlepoint
method. In this form, it seems likely that the method may have applicability to quite
general non-linear statistics.

3. Special cases and numerical results. In what follows, the formula (6) will be
applied to a number of specific settings and some numerical computations carried out
where necessary. It should be noted that the motivation for developing (6) was to find a
good approximation to the density of M-estimates. The comparisons involving standard
results are presented here to give an idea of how the approximation works in classical
situations.

(a) One-dimensional location: p = 1 and Y(x, t) = Y(x — t). The score function, i, must
be monotone to ensure uniqueness of the solution. This case has been studied extensively
in Field and Hampel (1982) and numerical results are given showing the approximating
density to be very accurate in the extreme tail down to n = 3. The derivation in Field
and Hampel is based on an expansion of p.,/p, and uses the fact that Pr(T, < ¢t) =
Pr{}%-i (X, — t) = 0}. Daniels, in an unpublished note, has derived the same formula
using saddlepoint techniques.

(b) Multivariate mean: If X = (x1, - - -, x,) and ¥, (x, t) = (x- — ¢,), then T, = X,,, the p-
variate mean. We assume that X, X», - - -, X, are independent and identically distributed.
In Field (1978), this case is considered and an approximating formula is derived by means
of an expansion of p,'(dp,/dt). Except for the constant of integration, the formula is
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equivalent to (6) above for this case. The approximating formula becomes

p/2 n

n )
() palto) = (5—7;) | det Eq,l"/ZU’ feXp{Ef=n aj(to) (x; — to)} f(X) dixi, + -, dxp] .
If the components are independent, this formula is the product of the one-dimensional

approximation for the mean given in Daniels (1954, cf. (2.6)).
For the case of observations from a multivariate normal,

f(x) = (1/2m)"” (det ¥)™*exp (— % x"y x),
the sample mean has density
Pa(to) = (n/2m)P*(det ¥)7'/* exp (— g to Y to).
The solution of the equations
j .- f (x; — t))exp{Y5-1 o, (x; — t)) }exp (—%XTZ_I x) dx =0

forj=1,---,pisalt)” =t ¥ " and
(1/27)"*(det 3) "2 f ... f exp{toT S (x — to) — % Ty x} dxy -+ dxp

1
= exp (— 5 toy! to).

This implies that the conjugate density
he,(x) = (1/27)"*(det E)“/zexp{-;- th Y to}exp{toT T (x — to) — % x7y! x}

1
= (1/27)""*(det Z)'”zexp{— 3 (x—t)T Y (x — to)}.
From this it follows that Y, = Y and the approximating formula (7) becomes
Palto) = (n/2m)"*(det 3) ™"/ 2e):p(- g tiy! to)
which is exact.
If the observations X; are a p X p matrix with a Wishart density, W(}, p, m) it is known

that Y2, X; is W(3, p, mn) so that X, has an exact density

Da(t) = nen™ P V2 (det ¢) P/ 2exp{ - g try! t}(det )/

where ¢ = [2™%#/2gP P~ VA TP T'((mn + 1 — j)/2)]" for ¢ > 0. The solution of the equations

f e J (x,; — t.)exp{ Tk, arlotn, — trr) } (det x)™ P~/ 2exp(— —;— tr Y x) dx =0

is given by a(¢) = ¥7'/2 — mt~'/2. The conjugate density can be shown to be Wishart,
W(t, p, m) and the integral in expression (7) is equal to

(det 2)—'"/2exp{—- % try! t}(det ™2

up to a constant. It remains to compute the determinant of the covariance matrix of the
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conjugate density. Using results in Anderson (1958, page 162), it is possible to show that
this deteminant is (det Y,)**'. Upon substitution this yields the correct density except for
the normalizing constant. For the case of the univariate mean, Daniels (1980) has shown
that the normal, gamma and inverse normal are the only possible densities in which the
renormalized saddlepoint approximation (i.e. (7) with the constant determined numeri-
cally) is exact. For the multivariate case, it would be interesting to determine those
densities, if any, beyond the normal and Wishart for which the renormalized saddlepoint
is exact. We now show some computations using formula (7) for a case in which the
approximating formula is not exact. In particular, let Z, = (Z,,, Z»), i = 1, --- n where Z
= BX for (X, X;) independent uniform random variables on [—1, 1]. Since the density of
the mean of uniform observations is known, it is straight-forward to verify that the joint
density of (Z,, Z,) is

Palz1, 22) = {n*/2%(n — D!} |4 (30 (—1)S<’S’) <1-(B'Z),— 2s/n >"""}(det B)™},

whenever | B7'z| = (1, 1)7 and 0 otherwise. Note that < x > = x if x > 0 and 0 otherwise.
Formula (7) was used to determine the approximate density for sample sizes n = 2 to 8. In
order to measure the accuracy of the approximation, cumulative distributions were
evaluated by numerical integration for both the exact and the approximate, after adjust-
ment for the constant of integration. For the particular case with

25 .75
B= [.67 .33]’
the results of this computation are shown in Table 1 for selected values of (¢, £). The
value of the exact cumulative is given in the first column, the difference between the exact

cumulative and the approximate cumulative is in the second column and the percent
relative error is the third column. This last quantity is computed as

100(exact cumulative — approximate cumulative)

min (exact cumulative, 1 — exact cumulative)

As can be seen by an examination of the percent relative errors in the table, the
approximation is very accurate in the extreme tail even down to n = 2. For instance, with
n = 2, the percent relative errors are all less than 10% and at the point (.95, .95), the
approximate cumulative differs from the exact cumulative of 99996 by 4 in the sixth
decimal. For many practical purposes, this is already accurate enough. As n increases, the
accuracy increases giving excellent agreement between the exact and the approximation at
n = 8. This accuracy is consistent with the results found previously in the univariate case
(cf. Field and Hampel, 1982).

(¢} Location and scale: We assume 0 = (y, o), fo(x) = f((x — w)/o) and Yu(x, ) =
Yi((x — p)/0), i = 1, 2. In particular set ¥ (x) = min{k, max(— &, x)}, ¢u(x) = Y3(x) — B with
B = E,(i(x)). This corresponds to “Proposal 2” of Huber (1964) and gives translation and
scale invariant estimates.

For £ = +oo, we have classical least squares with T, = (X, s) where s* = Y, (x, — £)%/
n. As a first example assume X, .-, X, are independent observations from a .4 ©, 1)
population. The equations

f Yi(x, thexplai(x — t1)/t: + c{(x — t1)*/t5 — 1} — x%/2] dx = 0, i=1,2,
have solutions a;(t) = t,¢;, ax(t) = (t3 — 1)/2. In addition

J' exp{Y -1 a, ()Y, (x, £)} f(x) dx = t, exp{—t3/2 — £3/2 + 1/2}
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TABLE 1
Exact cumulative and error in approximation for density of bivariate mean using formula (7) for
n=2to8
n=2 n=4
(& ) Exact Cumulative % Relative Exact Cumulative % Relative
Cumulative Error Error Cumulative Error Error
(0, 0) 37178 —.37E-2 —1.00 37261 —.22E-3 —.06
(.25, 0) 47362 .23E-3 .05 49189 .54E-4 .01
(.25, .50) .46860 —.17E-4 —.00 48941 —.30E-5 —.00
(.50, 0) .67854 —.22E-3 -.07 .80041 —.36E-3 —.18
(.50, .50) .90707 21E-2 2.27 .98224 —.19E-3 —1.06
(.50, .75) 93217 .15E-2 2.23 .98762 —.19E-3 —1.52
(.75, .50) .94609 12E-2 2.18 99141 —.58E-4 —.68
(.75, .75) .99046 .58E-3 6.06 99988 .19E-5 1.55
(.75, .80) 99157 .52E-3 6.22 99990 .19E-5 1.65
(.80, .75) .99266 .51E-3 6.99 .99994 11E-5 1.97
(.80, .80) .99407 43E-3 7.31 .99998 .65E-6 2.57
(.80, .90) .99530 .35E-3 7.38 199998 .50E-6 2.73
(.90, .80) .99626 .33E-3 8.68 199999 49E-6 3.19
(.90, .90) .99947 .50E-4 9.51 1.00000 .62E-8 4.71
(.90, .95) 199961 37E-4 9.50 1.00000 A40E-8 5.18
(.95, .90) .99975 .24E-4 9.60 1.00000 .30E-8 4.07
(.95, .95) .99996 A40E-5 9.78 1.00000 —.63E-10 4.07
n =6 n =8

(0, 0) .37289 —.57E-4 .02 .37268 —.19E-4 —-.01
(.25, 0) .49653 .38E-4 .01 49793 .19E-4 .00
(.25, .50) 49526 29E-4 .01 49729 15E-4 .00
(.50, 0) .86853 —.10E-3 .08 91150 .70E-4 —.08
(.50, .50) .99636 —.81E-4 —2.22 .99928 —.27E-4 —-3.74
(.50, .75) .99743 —.75E-4 —2.92 .99948 —.26E-4 —4.97
(.75, .50) 99846 —.12E-4 -.76 .99972 —.18E-5 —.64
(.75, .75) .99999 —.17E-7 .85 1.00000 .25E-9 .68
(.75, .80) .99999 .13E-7 .79 1.00000 .16E-9 49
(.80, .75) 1.00000 .54E-8 2.00 1.00000 40E-10 —.44
(.80, .80) 1.00000 —46E-9 .19 1.00000 —.53E-10 40
(.80, .90) 1.00000 —-.57E-9 .25 1.00000 —48E-10 41
(.90, .80) 1.00000 .99E-9 5.31 1.00000 —.15E-11 11

(.90, .90) 1.00000 —.38E-11 1.67 1.00000 *

(.90, .95) 1.00000 —.33E-11 1.58 1.00000 *

(.95, .90) 1.00000 —.37E-12 2.60 1.00000 *

(.95, .95) 1.00000 * 1.00000 *

* This indicates that the error in the cumulative is less than 107" which is approaching the limits of
accuracy available in this computation.

so that the conjugate density A(x) is normal with mean ¢ and variance ¢3. The matrix
E(-1/t) —2E(X — t))/t3 -1/t 0

’

—-EX - t)/t; —2E(X — t)*/t3 0 -2/t
so that detA = 2/¢3. Similarly detY = 2. Hence the approximating formula (6) becomes
Dalty, t2) = (n/2m)t5 2exp(—nt3/2 — nt3/2 + n'/%)22,

[ 3
s
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TABLE 2
Approximation to joint density of robust estimates of location and scale using Huber’s Proposal 2
withk =15
n=5 n=10
1 iy
normal ts slash Cauchy normal L3 slash  Cauchy
000 .05 .012856 .009371 .007691 .005387 .000003  .000002 .000001 .000001
0.05 .05 007407 .004776 .004672 .002197 .000001 0 0 0
1.00 .05 .001431 .000839 .001082 .000335 0 0 0 0
1.50 .05 .000096 .000087 .000107 .000048 0 0 0 0
200 .05 0 0 .000006 .000009 0 0 0 0
3.00 .05 0 0 0 .000001 0 0 0 0
400 .05 0 0 0 0 0 0 0 0
0.00 .50 788738 .536291 .483449 .273190 504604  .258916  .208629 .078980
0.50 .50 436232 .284199 .286543 .13439%4 156203  .074583  .075231 .019391
1.00 .50 .074330 .052233 .062209 .023784 .004716  .002719 .003850 .000663
1.50 .50 .003990 .005354 .005707 .003332 .000015  .000032 .000037 .000015
2.00 .50 .000070 .000472 .000294 .000564 0 0 0 0
3.00 .50 0 .000005 0 .000033 0 0 0 0
4.00 .50 0 0 0 .000004 0 0 0 0
5.00 .50 0 0 0 .000001 0 0 0 0
0.00 1.00 941091 .651625 .693093 .693093 1.882181 1.199300 1.263642 425929
050 1.00 510072 416783 427590 .231780 558563 488809  .502669 .199933
1.00 1.00 081463 .114013 .107231 .077477 014700  .036937 .035675 .021036
1.50 1.00 .003873 .016072 .013034 .014750 .000035  .000778 .000614 .000799
2.00 1.00 .000056 .001607 .000977 .002492 0 .000009 .000004 .000026
3.00 1.00 0 .000017 — .000127 0 0 0 0
4.00 1.00 0 0 .000005 .000014 0 0 0 0
500 1.00 0 0 0 .000002 0 0 0 0
0.00 2.00 017740 .092733 .076215 .110021 001786 098294  .081975 .218988
050 2.00 009514 .080232 .967794 .102566 .000516  .071258 .064659 .180062
1.00 2.00 .001468 .049090 .043112 .078223 .000012  .024586 .025895 .090319
1.50 2.00 .000065 .018907 .016886 .041991 0 .003333 .003854 .021953
2.00 2.00 .000001 .004405 .003957 .014694 0 .000172  .000198 .002430
3.00 2.00 0 .000080 .000074 .000900 0 0 .000004 .000010
4.00 2.00 0 .000002 .000001 .000069 0 0 0 0
5.00 2.00 0 0 0 .000010 0 0 0 0
0.00 3.00 000003 .008352 .007853 .033976 0 002132  .002132 .055246
0.50 3.00 000002 .008156 .008281 .033681 0 001962 .003645 .052255
1.00 3.00 0 .007339 .009137 .032197 0 .001446  .003787 .042583
1.50 3.00 0 .005824 .008654 .027821 0 .000701  .002738 .026525
2.00 3.00 0 .002925 .005405 .019309 0 .000172  .000869 .010439
3.00 3.00 0 .000241 .000489 .003687 0 .000001  .000005 .000303
4.00 3.00 0 .000007 .000016  .000359 0 0 0 .000003
500 3.00 0 0 .000001  .000037 0 0 0 0
0.00 4.00 0 .000985 .001927 .012603 0 .000063 .000448 .015383
0.50 4.00 0 .001001 .001927 .012679 0 .000063 .000475 .015168
1.00 4.00 0 111034 .002205 .012830 0 .000055 .000647 .012404
2.00 4.00 0 .000913 .002960 .011952 0 .000032 .000604 .008956
3.00 4.00 0 .000274 .001183 .006007 0 .000002 .000058 .001541
4.00 4.00 0 .000021 .000010 .001190 0 0 0 .000052
500 4.00 0 .000001 .000005 .000160 0 0 0 .000001
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TABLE 2—continued

n=5 n=10
21 ts

normal ts slash Cauchy normal ts slash  Cauchy
0.00 5.00 0 .000162 .000645 .005495 0 .000003 .000101  .005064
1.00 5.00 0 .000179 .000743 .005692 0 .000003 .000122  .005040
3.00 5.00 0 .000168 .001259  .005229 0 .000002 .000125  .002213
5.00 5.00 0 000005 .000028 .000460 0 0 0 .000012

10.00  5.00 0 0 0 0 0 0 0 0
0.00 10.00 0 0 .000031  .000346 0 0 .000001  .000109
1.00 10.00 0 0 .000032 .000355 0 0 000001  .000113
3.00 10.00 0 0 .000048 .000431 0 0 .000001  .000137
5.00 10.00 0 0 .000114  .000597 0 0 .000003  .000151

10.00 10.00 0 0 .000001  .000018 0 0 0 0
0.00 15.00 0 0 .000006 .000065 0 0 0 .000010
1.00 15.00 0 0 000006  .000066 0 0 0 .000012
5.00 15.00 0 0 .000010  .000094 0 0 0 .000016
10.00 15.00 0 0 .000017 .000116 0 0 0 .000007
0.00 20.00 0 0 0 .000019 0 0 0 .000002
1.00 20.00 0 0 0 .000020 0 0 0 .000002
3.00 20.00 0 0 0 .000022 0 0 0 .000002
5.00 20.00 0 0 0 .000025 0 0 0 .000003
10.00 20.00 0 0 0 .000056 0 0 0 .000006

15.00 20.00 0 0 0 .000016 0 0 0 0

This agrees with exact formula except for the constant terms which are in the ratio
/212322072 ;P ((n. — 1) /2). For n = 9, this ratio equals .897 so that the error from
the constant term is relatively large, reemphasizing the need for a numerical determination
of the constant.

For k < o, we have robust M-estimates of location and scale. Our choice of 8 above
would be appropriate for models in which we expect the distribution to be in some
neighborhood of the normal. The level of % represents the extent to which we wish to
minimize the influence of outliers and usual values of £ would be in the range from 1 to 2.

Numerical computations have been carried out using formula (6) to determine the
approximate joint density of (7', T2) where T is the location estimate and T. the scale
estimate. In what follows, samples of the joint density are reported, the marginal density
of T is computed and compared with Monte Carlo results from Andrews et al (1971), and
finally the percentiles of a “studentized” ratio are computed.

In particular, computations have been carried out with 2 = 1.5 for the following
underlying densities: normal, ¢;, slash (ratio of normal and uniform on [0, 1]) and Cauchy.
The first step in the computation is to solve the pair of non-linear equations:

J’ i(x, t)exp{andi(x, t) + asd(x, t)}f(x) dx =0 for i=1,2

for a(t) = (ai(t), az(t)) over a grid of points in the (¢, £;) plane. With these values, p,(t1, t2)
can be evaluated in a straightforward and inexpensive way for any value of n. The marginal
density of T and the density of R = T/T> are determined by numerical integrations.
Table 2 gives a sample of the values of p,(t1, t;) for n = 5 and 10 and for the four densities.
As can be seen from the table, the values of p,(¢, ¢») vary considerably over the four
densities. Figure 1 shows the regions where p,(¢,, t;) > .5 X 107° for each density.
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By looking at Table 2, or simply at Figure 1, it can be seen that there is a lack of
independence between T and T’ and that this dependence becomes more pronounced for
longer-tailed densities. To illustrate this point, the following table gives the difference
between the joint density and the product of the marginal densities of T and T relative
to the value of the joint density. Let q,(¢;) and 7.(,) be the marginal densities of T and T,
respectively.

Using the values in Table 3 as a rough measure of the degree of dependence between T
and T, we can see from the table that even for n = 20, there is little evidence of
independence and in fact, not a substantial change from the situation with n = 5.
Examinations of Table 2 and Figure 1 show that the main mass in p,(¢,, £) occurs along a
strip moving to the right and upwards. The positive values in Table 3 correspond to the
regions with relatively large values of p,(¢1, £2) while the negative values occur in regions
with relatively low p. (¢, t;). The results here show that although T\ and T are asymptot-
ically independent, the rate at which this independence is approached may be very slow
even with an underlying normal density.

The only results with which the approximation can be checked in this example are
some simulation results for the marginal density of T, obtained during the Princeton
Robustness Study and reported, in part, by Andrews et al. (1971). The complete results
have been provided most kindly by F. Hampel. In Table 4, the values of the pseudovari-
ances and n times the variance are reported both for the asymptotic approximation and
the Monte Carlo results. The pseudovariance is defined as n(t,1-./2:-.)? where t11-« and
Z1-4 represent the (1 — a) quantile of T and a standard normal variate respectively.

In order to make an assessment of whether the differences between the asymptotic and
Monte Carlo results are to within the sampling errors in the Monte Carlo experiment, we
can look at two bits of evidence. The first is provided by Exhibit 5-13 of Andrews et al.
(1971) in which Monte Carlo and exact results for the percentage points are compared for
the median with n = 5. Table 5 gives these differences in terms of the pseudo-variances
and lists the differences from Table 4 above.

As can be seen from the table, for the normal case the differences between the
asymptotic and Monte Carlo results from Table 4 are well within the errors inherent in

tp

25

204 Cauchy

104

Normal ts Slash Cauchy

Fic. 1. Region where joint density of robust location and scale estimates (Huber’s Proposal 2,
k = 1.5) exceeds .5 X 107° for n = 5.

wd
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TABLE 3
Relative difference of joint and marginal densities { p,(ti, t2) — qn(t:1)r(t2)} /pn (b1, t2) for Huber's
Proposal 2, k = 1.5

n=5 n=10

151 L2

normal t3 slash Cauchy normal t3 slash Cauchy
0 .05 .538 527 627 814 — — — —
1 .05 .629 .729 446  —.187 — — — —
2 .05 — — —8.65 —12.21 — — — —
3 1 .562 425 619 .716 514 .5565 .555 .708
1 1 .547 .832 484 521 497 —-1.8 —1.52 —15.00
2 1 462 936 —4.32 -3.35 e -2.0 X E3 —-5.6 X E5 —4.7 %X Eb
0 2 .565 .078 .339 486 .520 282 174 471
1 2 531 911 .756 713 .359 942 .955 .543
2 2 .328 995 754 .554 —_ 912 -1.97 —44.25
0 5 —_— —2.60 —2.421 —.549 — -3.03 —4.97 —.705
3 5 — 1.00 .990 .926 — 1.00 1.00 .987
5 5 — 1.00 .898 .769 —_ — —4.69 —27.01
0 8 — —8.86 —6.15 —1.95 — — —-16.03 —2.59
3 8 — 1.00 .790 .897 — —_ 1.00 .998
5 8 —_— 1.00 997 972 —_ — 1.00 999
0 15 — — —-17.26 —6.17 —_ — —74.76 —10.45
4 15 — — 970 875 —_ — 1.00 999
8 15 — — 992 990 — — 1.00 1.00

the Monte Carlo results. For the Cauchy, the differences observed in Table 4 for Huber’s
estimate with 2 = 1.5 are larger than the errors in the Monte Carlo for the median. To
shed light on whether we can place any faith in the asymptotic results for the Cauchy, it
is worth looking at the Monte Carlo results for n = 10. For this situation, there were two
simulations carried out in the Princeton study and the replication gives an indication of
the Monte Carlo errors. From Table 4, with the Cauchy and n = 10, the asymptotic results
lie between the two Monte Carlo replications except for 0.1% and n X variance. This gives
a strong indication of the reliability of the asymptotic results for n = 10. Until the exact
marginal densities are computed in some fashion, or until additional Monte Carlo studies
are done, further comparisons are difficult. To see that the large discrepancies for the
Cauchy at n = 5 may be due to Monte Carlo variation, it is instructive to look at Figure 2.

From the graph, we note that the Monte Carlo results for n = 5 do not follow the
pattern exhibited by the other values of n. In particular, it appears that the extreme
percentiles for the Monte Carlo with n = 5 are not large enough. This would lead to the
large differences observed in Table 5. While this is not a proof that the asymptotic results
are accurate, it suggests that the precision of the asymptotic results may be very good
even in the extreme case of the Cauchy with n = 5.

As a further step in this example, we consider the percentiles of a “studentized” version
of T'. Since the asymptotic variance of T} is

o’ Ep*(X)/{E) (X))?,

an appropriate “studentized” version of Ti would be n'/?T;/(Tzy) with y = Eg3(X)/
{E»¢1(X)}% This assumes that the estimate has been chosen as though the underlying
density is normal. This was implicit in the definition of ¥, at the beginning of the example.
In practice, it would be more desirable to replace y by its estimated form where @ is
replaced by the empirical distribution. However the problem of working out the percentiles
of this more complicated expression introduces some computational difficulties which are
currently being worked on.



686 CHRISTOPHER FIELD

TABLE 4
Pseudovariances and asymptotic variances of Ty as computed by approximation (A) and Monte
Carlo (MC)
n=5 n=10 n=20 n =40
A MC A MC A MC A MC
Normal
Pseudo- 25% 1.0345 1.0412 1.0357 1.0312 1.0368 1.036 1.0380 1.0392
variances 10% 1.0352 1.0411 1.0360 1.0303 1.0366 1.0356 1.0373 1.0380
2.5% 1.0367 1.0432 1.0366 1.0306 1.0368 1.0357 1.0372 1.0380
1% 1.0449 1.0462 1.0371 1.0310 1.0370 1.0359 1.0372 1.0382
5% 1.0385 1.0462 1.0374 1.0313 1.0372 1.0361 1.0372 1.0383
A% 1.0398 1.0496 1.0384 1.0321 1.0376 1.0366 1.0373 1.0386
nXvar 10360 1.0427 1.0364 1.0308 1.0369 1.0360 1.0375 1.0384
Slash
Pseudo- 25% 1.7610  1.8597 1.6856  1.6599  1.6457 1.6559 1.6284 1.5953
variances 10% 19548 20715 1.7624 1.7265 1.6758 1.6902 1.6392 1.6076
25% 2.8046 2.8036 19878  1.8941 1.7529  1.7679 1.6711 1.6341
1% 4.5851 42350 22613 2.0682 1.8283 1.8234 1.6962 1.6535
5% 7.3134 6.7839 25974 22829 1.8880 1.8876 1.7166 1.6686
1% 184117 19.7112 4.3116 45852 21149  2.0288 1.7755 1.7040
n X var 3.549 3.87562 2.0776  3.5681 1.7419 1.7986 1.6629 1.6246
Cauchy
Pseudo- 25% 4.607 3.75 4.590 45731  4.907 4.648  4.4852 4.0
variances 4.74*
10% 7.256 54060 5.834 58120  5.094 4.8625 4.7554 4.2781
6.1554*
2.5% 17.405  11.590  9.392 9.2350  6.429 5.8338 5.3361 4.6673
9.3463*
1% 30.747  19.2729 13.434  14.6001  7.634 6.8401 5.8013 4.9629
12.1464*
5% 44.252  26.6878 17.897  21.2734  8.752 7.7168 6.1902 5.2147
14.9575*
1% 72.847 439043 35.365  47.2187 1245 10.1046  7.2629 6.1221
39.2633*
nXvar 16525 109373 9592 10.2658 6.172 5.6630 5.161 4.5469
23.7044*
ts
Pseudo- 25% 1.6275 1.6569 1.6556 1.655 1.6522
variances 10% 1.7670 1.7226 1.6870  1.6858 1.6671
2.5% 2.0690 1.8442 1.7488  1.7348 1.6968
1% 2.3447 1.9611 1.7948  1.7652 1.7158
5% 2.5572 2.0478 1.8323  1.7873 1.7360
1% 3.2904 2.2680 19245 1.837  1.7789
n X var 1.9953 1.8097 1.7273  1.7132 1.6870

* replication

The percentiles have been worked out by numerical integration of the joint density of
T, and T, over the appropriate region of the plane. The results are tabulated in Table 6.
It is important to remember that the estimate and y have been chosen as though the
underlying density is normal.

The first thing to check in Table 6 is the agreement of the percentiles under the normal
with the percentiles of a ¢-density. There is a good, but not perfect, agreement with the ¢-
density for degrees of freedom about 0.6n. This seems to hold over the whole range of n
values from 5 to 100. This result confirms some speculation that the “studentized” ratios
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TABLE 5
Pseudovariances for median; n = 5 and differences from Table 4
Normal Cauchy
Monte Difference Monte Difference
1-a Exact Carl from Exact Carlo from

arlo Table 4 Table 4
.25 1.426 1.446 L0067 2.459 2.361 .857
.10 1.427 1.463 .0059 3.173 3.024 1.850
.025 1.438 1.470 .0065 5.285 5.287 5.815
.01 1.432 1.474 .0071 7.781 8.802 11.474
.005 1.447 1.476 0077 10.629 13.707 17.562
.001 1.496 1.482 .0098 23.117 33.793 28.943

Tail Area
.001 |
.002
005

01

.02

20}

Asymptotic Results
sor Monte Carlo Results == — = ——

aof
50

" " n 2 " ' I 1 A I i 1 1 I n Iy \/‘i‘a
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n n "

F1c. 2. Plot of percentiles of VnT; on normal probability paper for Huber's Proposal 2, k = 1.5.

behave like a ¢-density with reduced degrees of freedom, but the reduction may be larger
than expected.

The important question of the stability of the percentiles as the underlying density
varies can be examined using these results. As is to be expected, the largest variation
occurs with small n and a Cauchy density. For n = 5, if we computed a 99% confidence
interval, based on the normal figures, the interval would be 1.43 times longer than the
correct interval for a Cauchy density while a 99.99% confidence interval would be 1.51
times longer than necessary. It should be noted that a procedure which estimates y rather
than leaving it fixed as though the underlying density is normal would give additional
stability to these results. These results, as they are, are an order of magnitude improvement
over results using a classical ¢-interval.

We now look at the marginal density of 7% and determine whether its density is related
to a Chi squared density with reduced degrees of freedom. Again we look at the results
obtained under the normal density. Using the results from classical theory suggests that
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TABLE 6
Percentiles of n'/*T\/(yT:) using Huber’s Proposal 2 with k = 1.5
Tail area normal ts slash Cauchy

n=5 25 .808 .831 837 871
.10 1.729 1.657 1.647 1.547

.05 2491 2.288 2.297 1.999

.025 3.382 3.020 3.075 2514

.01 4.860 4.249 4.389 3.387

.005 6.297 5.456 5.673 4.271

.001 11.269 9.667 10.139 7.450

.0001 25.365 21.651 23.028 16.770

n=10 .25 732 759 759 .807
.10 1.461 1.467 1.468 1.482

.05 1.965 1.923 1.925 1.863

.025 2.460 2.358 2.369 2.197

.01 3.143 2.937 2.975 2.626

.005 3.689 3.393 3.464 2.959

.001 5.124 4.597 4.759 3.828

.0001 7.749 6.823 7.147 5.472

n =20 25 701 728 724 775
.10 1.361 1.393 1.388 1.448

.05 1.783 1.802 1.797 1.835

.025 2.173 2.168 2.166 2.162

.01 2.665 2.613 2.620 2.536

.005 3.027 2.937 2.953 2.795

.001 3.866 3.664 3.714 3.395

.0001 5.118 4.726 4.845 4.139

n =40 25 .686 713 707 759
.10 1.318 1.359 1.350 1.430

.05 1.709 1.750 1.741 1.824

.025 2.060 2.095 2.086 2.156

.01 2.477 2.500 2.492 2.540

.005 2.781 2.785 2.781 2.794

.001 3.433 3.388 3.394 3.317

.0001 4.307 4.174 4.205 3.959

n =100 .25 679 .705 .698 750
.10 1.296 1.341 1.329 1.419

.05 1.668 1.722 1.708 1.817

.025 1.993 2.055 2.039 2.158

.01 2.383 2.445 2.428 2.550

.005 2.649 2.710 2.693 2917

.001 3.213 3.266 3.250 3.355

.0001 3.922 © 3.953 3.941 4.005

df x T3 should have a density similar to that of a Chi squared density with degree of
freedom df. To check this, Table 7 gives the percentiles of df X 7% and that of a Chi
squared density with df degrees of freedom.

The agreement appears to be quite reasonable even for n = 5. It is interesting that the
reduction in the degrees of freedom ranges from 0.73 at n = 40 to 0.60 at n = 5. This
constrasts with the constant reduction of degrees of freedom in the “studentized” ratio.
Why this is so remains an open question at this moment. It may have to do with the lack
of independence of T; and T. Some very preliminary computations suggest that the rate
at which asymptotic independence is reached may be rather slow.
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TABLE 7
Percentiles of df X T3 and x 3 under normal density for Huber’s Proposal 2, k = 1.5
n=40 n =20
Tail area
29 x T3 X320 14 x T3 X34
.10 38.57 39.09 20.41 21.06
.05 42.00 42.56 22.93 23.68
.025 45.13 45.72 25.26 26.12
.01 48.94 49.59 28.15 29.14
.005 51.65 52.33 30.22 31.32
n=10 n=35
Tail area
7 x T} X7 Xé 3x T3 X3 X3
.10 11.35 12.02 10.64 5.40 6.25 4.61
.05 13.29 14.07 12.59 6.70 7.81 5.99
.025 15.13 16.01 14.45 7.97 9.35 7.39
.01 17.45 18.47 16.81 9.60 11.34 9.21
.005 19.156 20.28 18.55 10.81 12.84 10.60

4. Conclusion. As has been illustrated by the extensive example, the asymptotic
approximation (6) can be successfully used to study the behavior of joint densities of
robust statistics. Up to this point, the numerical techniques that have been used are
relatively crude and it is anticipated that by refining the numerical methods, problems
involving four or five dimensions will be feasible. The application of these techniques to
maximum likelihood estimation and likelihood ratio tests is an area of considerable interest.
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