THE ANNALS ISSN (0090-5364) of**STATISTICS**

An Official Journal of THE INSTITUTE OF MATHEMATICAL STATISTICS

The 1980 Wald Memorial Lectures

On adaptive estimation . P. J. BICKEL	647	
Articles		
Small sample asymptotic expansions for multivariate <i>M</i> -estimates Christopher Field Maximum likelihood estimation of isotonic modal regression Thomas W. Sager and Ronald A. Thisted	672 690	
An algorithm for isotonic regression for two or more independent variables RICHARD L. DYRSTRA AND TIM ROBERTSON	708	
Optimal estimation of a general regression function Towards a frequentist theory of upper and lower probability P. W. MILLAR	717	
PETER WALLEY AND TERRENCE L. FINE Large sample point estimation: a large deviation theory approach Nonparametric estimation in renewal processes Y. VARDI	741 762 772	
Time series discrimination by higher order crossings BENJAMIN KEDEM AND ERIC SLUD	786	
On the estimation of a probability density function by the maximum penalized likelihood method B. W. SILVERMAN	795	
Consistency of two nonparametric maximum penalized likelihood estimators of the probability density function V. K. Klonias Towards a calculus for admissibility Andreed Kozek	811 825	
General admissibility and inadmissibility results for estimation in a control problem James O. Berger, L. Mark Berliner and Asad Zaman	838	
Improving upon standard estimators in discrete exponential families with applications to Poisson and negative binomial cases JIUNN TZON HWANG	857	
Minimax confidence sets for the mean of a multivariate normal distribution JIUNN TZON HWANG AND GEORGE CASELLA Tests with parabolic boundary for the drift of a Wiener process BROOKS FEREBEE	868 882	
Asymptotic expansions for the error probabilities of some repeated significance tests MICHAEL WOODROOFE AND HAJIME TAKAHASHI	895	
Bounded regret of a sequential procedure for estimation of the mean Y. S. Chow and A. T. Martinsek	909	
Analysis of time series from mixed distributions P. M. Robinson Autocorrelation, autoregression and autoregressive approximation	915	
AN HONG-ZHI, CHEN ZHAO-GUO AND E. J. HANNAN Minimaxity of the method of regularization on stochastic processes KER-CHAU LI Detection of multivariate normal outliers	926 937	
STEVEN J. SCHWAGER AND BARRY H. MARGOLIN Distributions of maximal invariants using quotient measures STEEN ANDERSSON Minimal complete classes of tests of hypotheses with multivariate one-sided alternatives	943 955	
JOHN I. MARDEN A comment on best invariant predictors YOSHIKAZU TAKADA An exponential subfamily which admits UMPU tests based on a single test statistic	962 971	
SHAUL K. BAR-LEV AND BENJAMIN REISER Quick consistency of quasi maximum likelihood estimators THOMAS PFAFF	979 990	
Short Communications		
Convergence of Simar's algorithm for finding the maximum likelihood estimate of a compound Poisson process Dankmar Böhning A note on the minimax estimation of the Poisson intensity function ALBERT Y. Lo	1006 1009	
Estimation of the non-centrality parameter of a Chi squared distribution K. M. LAL SAXENA AND KHURSHEED ALAM	1012	
Stein's paradox is impossible in problems with finite sample space SAM GUTMANN A characterization of the multivariate Pareto distribution P. E. JUPP AND K. V. MARDIA A Bayes but not classically sufficient statistic D. BLACKWELL AND R. V. RAMAMOORTHI On the E-optimality of PBIB designs with a small number of blocks	1017 1021 1025	
Gregory M. Constantine Notes and Corrections	1027	
Editor's correction to "Transformation theory: How normal is a family of distributions?" Bradley Efron	1032	

Vol. 10, No. 3—September 1982

THE INSTITUTE OF MATHEMATICAL STATISTICS

(Organized September 12, 1935)

The purpose of the Institute of Mathematical Statistics is to encourage the development, dissemination, and application of mathematical statistics.

OFFICERS

President:

Mark Kac, Rockefeller University, New York, New York 10021

President-Elect:

Patrick Billingsley, Department of Statistics, University of Chicago, Chicago, Illinois 60637

Past President:

Peter Bickel, Department of Statistics, University of California, Berkeley, California 94720

Executive Secretary:

Kjell Doksum, Department of Statistics, University of California, Berkeley, California 94720

Treasurer:

Heebok Park, Department of Statistics, California State University, Hayward, California 94542

IMS Business Office, 3401 Investment Blvd., Suite 6, Hayward, California 94545

Program Secretary:

Richard Johnson, Department of Statistics, University of Wisconsin, 1210 West Dayton St., Madison, Wisconsin 53706

Editor: Annals of Statistics

David V. Hinkley, Department of Applied Statistics, University of Minnesota, St. Paul Campus, St. Paul, Minnesota 55108

Editor: Annals of Probability

Harry Kesten, Department of Mathematics, Cornell University, Ithaca, N.Y. 14853

Managing Editor:

Jagdish S. Rustagi, Department of Statistics, The Ohio State University, Columbus, Ohio 43210

Membership. Membership dues including a subscription to one *Annals* and *The Institute of Mathematical Statistics Bulletin* are \$37.00 per year for all members. Special rates of \$17.00 per year are available to students. The dues are approximately twenty five percent higher for members who wish both *Annals* as well as the *Bulletin*. Inquiries regarding membership in the Institute should be sent to the Treasurer at the Business Office.

Subscription Rates. Current volumes (four issues per calendar year) of the Annals of Probability are \$48.00. Single issues are \$13.00 each. Current volumes (four issues per calendar year) of the Annals of Statistics are \$55.00. Single issues are \$15.00 each. Members of the Institute of Mathematical Statistics pay different rates (see above). Back numbers of both Annals and the Annals of Mathematical Statistics (Volume 1 through 43) may be purchased from the Treasurer.

The Annals of Statistics. Volume 10, Number 3, September 1982. Published in March, June, September, and December by The Institute of Mathematical Statistics, IMS Business Office, 3401 Investment Blvd., Suite 6, Hayward, California 94545.

Mail to the Annals of Statistics should be addressed to either the Editor, Managing Editor or the Treasurer, as described above. It should not be addressed to Waverly Press.

NOTICE

Beginning with the calendar year 1982, the two journals of The Institute of Mathematical Statistics will be printed quarterly. The total numbers of pages per volume will be approximately the same as before. Months of publication for 1982 are as follows.

Annals of Statistics: March, June, September and December

Annals of Probability: February, May, August and November

EDITORIAL STAFF

EDITOR

DAVID V. HINKLEY

ASSOCIATE EDITORS

RUDOLPH J. BERAN JAMES O. BERGER DONALD A. BERRY A. PHILIP DAWID MORRIS L. EATON JOHN D. KALBFLEISCH BARRY H. MARGOLIN CARL N. MORRIS DONALD A. PIERCE JOHN RICE

> EDITORIAL ASSISTANT DAVID LARAWAY

BRIAN D. RIPLEY DAVID O. SIEGMUND WILLIAM D. SUDDERTH CHIEN-FU WU

Managing Editor Jagdish S. Rustagi

EDITORIAL ASSISTANTS

DOROTHY GARVIN TONJES

LINDALEE W. BROWNSTEIN

PAST EDITORS

Annals of Mathematical Statistics

H. C. Carver, 1930–1938
S. S. Wilks, 1938–1949
T. W. Anderson, 1950–1952
E. L. Lehmann, 1953–1955
T. E. Harris, 1955–1958

Annals of Statistics Ingram Olkin, 1972–1973 I. R. Savage, 1974–1976 Rupert G. Miller, Jr., 1977–1979 WILLIAM KRUSKAL, 1958-1961 J. L. HODGES, JR., 1961-1964 D. L. BURKHOLDER, 1964-1967 Z. W. BIRNBAUM, 1967-1970 INGRAM OLKIN, 1970-1972

Annals of Probability Ronald Pyke, 1972–1975 Patrick Billingsley, 1976–1978 R. M. Dudley, 1979–1981

EDITORIAL POLICY

The main purpose of the *Annals of Statistics* and the *Annals of Probability* is to publish contributions to the theory of statistics and probability and to their applications. The emphasis is on importance and interest, not formal novelty and correctness. Especially appropriate are authoritative expository papers and surveys of areas in vigorous development. All papers are refereed.

NOTICE

Manuscripts submitted for the $Annals\ of\ Statistics\$ should be sent to the Editor at the following address:

Until December 31, 1982:

David V. Hinkley Department of Applied Statistics University of Minnesota 1994 Buford Avenue St. Paul, Minnesota 55108 After January 1, 1983:

Michael D. Perlman Department of Statistics University of Washington-Seattle, Washington 98195

"SURE, GROUP LIFE INSURANCE FOR A NEW FAMILY IS A GREAT IDEA— BUT RIGHT NOW, HENRY?

Promising to buy life insurance isn't part of the marriage vows, but perhaps it should be.

After all, life insurance protection is a *must* for you and your family and—usually—an expensive must!

But then there is our low-cost Group Life Insurance with group buying power that can get you a lot more protection for the entire family—kids, too—for less money.

And if you change jobs on your way to success, your insurance goes with you every time...automatically.

Learn about the "better" buy in Group Life Insurance. Mail the coupon today. Promise? Or, call today, toll-free 800-424-9883 (In local Wash., DC area, 296-8030)

Administrator IMS Group Insurance Program 1707 L Street, N.W.—Suite 700 Washington, DC 20036 Please send me additional infor IMS Life Insurance Plan for myse	mation on the elf and my family
Name	Age
Address	
City	
State	Zıp
GROUP INSURAN	

THKUUGH IMS

IMS INSTITUTIONAL MEMBERS

AEROSPACE CORPORATION El Segundo, California

ARIZONA STATE UNIVERSITY Tempe, Arizona

BELL TELEPHONE LABORATORIES, TECHNICAL LIBRARY Murray Hill, N. J

Bowling Green State University, Dept. of Mathematics
Bowling Green, Ohio

CALIFORNIA STATE UNIVERSITY, FULLERTON,
DEPARTMENT OF MATHEMATICS
Fullerton California

CALIFORNIA STATE UNIVERSITY, HAYWARD,
DEPARTMENT OF STATISTICS
Hayward California

CASE WESTERN RESERVE UNIVERSITY, DE-PARTMENT OF MATHEMATICS Cleveland, Ohio

CORNELL UNIVERSITY, DEPARTMENT OF MATHEMATICS Ithaca, New York

FLORIDA STATE UNIVERSITY, DEPARTMENT OF STATISTICS
Tallahassee, Florida

GENERAL MOTORS CORPORATION, RESEARCH
LABORATORIES
Warren Michigan

GEORGE WASHINGTON UNIVERSITY, DEPART-MENT OF STATISTICS Washington, D C

INDIANA UNIVERSITY, MATHEMATICS DEPT. Bloomington, Indiana

INTERNATIONAL BUSINESS MACHINES CORPORATION
Armonk, New York

IOWA STATE UNIVERSITY, STATISTICAL LABO-RATORY Ames. Iowa

JOHNS HOPKINS UNIVERSITY, DEPARTMENT OF BIOSTATISTICS, DEPARTMENT OF MATHE-MATICAL SCIENCES Baltumore, Maryland

KANSAS STATE UNIVERSITY, STATISTICS DE-PARTMENT Manhattan, Kansas

MARQUETTE UNIVERSITY, MATHEMATICS AND STATISTICS DEPARTMENT Milwaukee, Wisconsin

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MATHEMATICS DEPARTMENT
Cambridge, Massachusetts

MIAMI UNIVERSITY, DEPARTMENT OF MATH-EMATICS Oxford, Ohio MICHIGAN STATE UNIVERSITY, DEPARTMENT OF STATISTICS AND PROBABILITY East Lansing, Michigan

NATIONAL SECURITY AGENCY Fort George G Meade, Maryland

NEW MEXICO STATE UNIVERSITY, DEPART-MENT OF MATHEMATICAL SCIENCES Las Cruces, New Mexico

NORTHERN ILLINOIS UNIVERSITY, DEPART-MENT OF MATHEMATICAL SCIENCES De Kalb, Illinois

NORTHWESTERN UNIVERSITY, DEPARTMENT OF MATHEMATICS
Evanston, Illinois

OHIO STATE UNIVERSITY, DEPARTMENT OF STATISTICS
Columbus, Ohio

OREGON STATE UNIVERSITY, DEPARTMENT OF STATISTICS Corvallis, Oregon

PENNSYLVANIA STATE UNIVERSITY, DEPART-MENT OF STATISTICS University Park, Pennsylvania

PRINCETON UNIVERSITY, DEPARTMENT OF STATISTICS Princeton, New Jersey

PURDUE UNIVERSITY LIBRARIES Lafayette, Indiana

QUEEN'S UNIVERSITY, DEPT. OF MATHEMATICS
AND STATISTICS
Kingston, Ontario, Canada

RICE UNIVERSITY, DEPARTMENT OF MATHE-MATICAL SCIENCES Houston, Texas

THE ROCKEFELLER UNIVERSITY New York, New York

SANDIA CORPORATION, SANDIA BASE Albuquerque, New Mexico

SIMON FRASER UNIVERSITY, MATHEMATICS DEPARTMENT
Burnaby, Canada

SOUTHERN ILLINOIS UNIVERSITY, MATHEMATICAL STUDIES
Edwardsville, Illinois

SOUTHERN METHODIST UNIVERSITY, DEPARTMENT OF STATISTICS
Dallas, Texas

STANFORD UNIVERSITY, GIRSHICK MEMORIAL LIBRARY
Stanford, California

STATE UNIVERSITY OF NEW YORK, BUFFALO, DEPARTMENT OF STATISTICS Amherst, New York

TEMPLE UNIVERSITY, MATHEMATICS DEPART-MENT Philadelphia, Pa

TEXAS TECH UNIVERSITY, DEPARTMENT OF MATHEMATICS
Lubbock, Texas 79409

THE TOBACCO INSTITUTE Washington, D.C.

Union Oil Company of California, Union RESEARCH CENTER Brea, California

University of Alberta, Department of MATHEMATICS Edmonton, Alberta, Canada

University of Arizona, Department of MATHEMATICS AND COMMITTEE ON STA-TISTICS Tucson, Arizona

University of British Columbia, Depart-MENT OF MATHEMATICS Vancouver, B.C., Canada

University of Calgary, Mathematics De-PARTMENT Calgary 44, Alberta, Canada

University of California, Berkeley, Sta-TISTICAL LABORATORY Berkeley, California

University of California, Davis, Division OF STATISTICS Davis, California

University of Cincinnati, Department of MATHEMATICAL SCIENCES Cincinnati, Ohio

University of Guelph, Mathematics and STATISTICS DEPARTMENT Guelph, Ontario, Canada

University of Illinois at Chicago Circle, DEPARTMENT OF MATHEMATICS Chicago, Illinois

University of Illinois, Mathematics Dept. Urbana, Illinois

University of Iowa, Division of Mathe-MATICAL SCIENCES
Iowa City, Iowa

University of Manitoba, Department of STATISTICS Winnipeg, Manitoba, Canada

University of Maryland, Department of MATHEMATICS College Park, Maryland

University of Michigan, Department of STATISTICS

University of Minnesota, School of Sta-TISTICS Minneapolis, Minnesota

University of Missouri, Department of STATISTICS Columbia, Missouri

University of Missouri at Rolla, Depart-MENT OF MATHEMATICS Rolla, Missouri

University of Montreal, Department of MATHEMATICS Montreal, Quebec, Canada

University of Nebraska, Mathematics AND STATISTICS DEPARTMENT Lincoln, Nebraska

University of New Mexico, Department OF MATHEMATICS AND STATISTICS Albuquerque, New Mexico

University of North Carolina, Depart-MENT OF STATISTICS Chapel Hill, North Carolina

University of Oregon, Mathematics De-PARTMENT Eugene, Oregon

University of Ottawa, Department of MATHEMATICS

University of South Carolina, Depart-MENT OF MATHEMATICS AND COMPUTER SCIENCE

Columbia, South Carolina

University of Texas, Department of MATHEMATICS Austin, Texas

University of Texas, Mathematics Dept. San Antonio, Texas

UNIVERSITY OF VICTORIA, DEPT. OF MATHE-MATICS Victoria, British Columbia, Canada

University of Virginia, Dept. of Mathe-MATICS Charlottesville, Virginia

University of Washington, Department OF MATHEMATICS Seattle, Washington

University of Waterloo, Statistics De-PARTMENT Waterloo, Ont., Canada

University of Wisconsin, Madison, De-PARTMENT OF STATISTICS Madison, Wisconsin

University of Wisconsin, Milwaukee, De-PARTMENT OF MATHEMATICS

VIRGINIA COMMONWEALTH UNIVERSITY, DE-PARTMENT OF MATHEMATICAL SCIENCES Richmond, Virginia

WAYNE STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS Detroit, Michigan

Westinghouse Electric Corporation, Re-SEARCH LABORATORIES Pittsburgh, Pennsylvania

THE ANNALS OF STATISTICS

INSTRUCTIONS FOR AUTHORS

Submission of Papers. Papers to be submitted for publication should be sent to the Editor of the Annals of Statistics. (For current address, see the latest issue of the Annals.) The original (or xerox copy) should be submitted with three additional copies on paper that will take ink corrections. The manuscript will not normally be returned to the author; when expressly requested by the author, one copy of the manuscript will be returned.

Preparation of Manuscripts, Manuscripts should be typewritten, entirely double-spaced, including references, with wide margins at sides, top and bottom. Dittoed or mimeographed papers are acceptable only if completely legible; xerox copies are preferable. When technical reports are submitted, all extraneous sheets and covers should be removed.

Submission of Reference Papers. Copies (preferably two) of unpublished or not easily available papers cited in the manuscript should be submitted with the manuscript.

Title and Abbreviated Title. The title should be descriptive and as concise as is feasible, i.e., it should indicate the topic of the paper as clearly as possible, but every word in it should be pertinent. An abbreviated title to be used as a running head is also required, and should be given below the main title. This should normally not exceed 35 characters. For example, a title might be "The Curvature of a Statistical Model, with Applications to Large-Sample Likelihood Methods," with the running head "Curvature of Statistical Model" or possibly "Asymptotics of Likelihood Methods," depending on the emphasis to be conveved.

Summary. Each manuscript is required to contain a summary, which will be printed immediately after the title, clearly separated from the rest of the paper. Its main purpose is to inform the reader quickly of the nature and results of the paper; it may also be used as an aid in retrieving information. The length of a summary will clearly depend on the length and difficulty of the paper, but in general it should not exceed 150 words. It should be typed on a separate page, under the heading "Summary," followed by the title of the paper. Formulas should be used as sparingly as possible. The summary should not make reference to results or formulas in the body of the paper—it should be selfcontained.

Footnotes. Footnotes should be reduced to a minimum and, where possible, should be replaced by remarks in the text or in the references; formulas in footnotes should be avoided. Footnotes in the text should be identified by superscript numbers and typed together, double-spaced, on a separate page.

Key Words. Included as the first footnote on page 1 should be the headings:

American Mathematical Society 1980 subject classifications. Primary—; Secondary—. Key words and phrases.

The classification numbers representing the primary and secondary subjects of the article may be found with instructions for its use in the *Mathematical Reviews Annual Subject Index*-1980. The key words and phrases should describe the subject matter of the article; generally they should be taken from the body of the paper.

Identification of Symbols. Manuscripts for publication should be clearly prepared to insure that all symbols are properly identified. Distinguish between "oh" and "zero", "ell" and "one"; "epsilon" and "element of"; "kappa" and "kay," etc. Indicate also when special type is required (Greek, German, script, boldface, etc.); other letters will be set in italics. Acronyms should be introduced sparingly.

Figures and Tables. Figures, charts, and diagrams should be prepared in a form suitable for photographic reproduction and should be professionally drawn twice the size they are to be printed. (These need not be submitted until the paper has been accepted for publication.) Tables should be typed on separate pages with accompanying footnotes immediately below the table.

Formulas. Fractions in the text are preferably written with the solidus or negative exponent; thus,

$$(a+b)/(c+d)$$
 is preferred to $\frac{a+b}{c+d}$, and $(2\pi)^{-1}$ or

$$1/(2\pi)$$
 to $\frac{1}{2\pi}$. Also, $a^{b(c)}$ and $a_{b(c)}$ are preferred to a^{b_c}

and $a_{b,r}$ respectively. Complicated exponentials should be represented with the symbol exp. A fractional exponent is preferable to a radical sign.

References. References should be typed double-spaced and should follow the style:

Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. *Ann. Statist.* 1 60-62.

In textual material, the format "... Wilks (1938) ..." should be used. Multiple references can be distinguished as "... Wilks (1938a)" Abbreviations for journals should be taken from a current index issue of *Mathematical Reviews*.

Proofs. Author will ordinarily receive galley proofs. Corrected galley proofs should be sent to the Managing Editor of the *Annals of Statistics*. (For current address, see the latest issue of the *Annals*.)