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ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR MODELS

By RAYMOND J. CARROLL' AND DavID RUPPERT?

We consider a heteroscedastic linear model in which the variances are
given by a parametric function of the mean responses and a parameter §. We
propose robust estimates for the regression parameter 8 and show that, as
long as a reasonable starting estimate of 8 is available, our estimates of 8 are
asymptotically equivalent to the natural estimate obtained with known vari-
ances. A particular method for estimating 6 is proposed and shown by Monte-
Carlo to work quite well, especially in power and exponential models for the
variances. We also briefly discuss a “feedback” estimate of 8.

1. Introduction. We consider the heteroscedastic linear model

.

(1.1) Y. =1+ o, T = xiﬂ, i=1,-..., N’

where {x;} and 1 X p design constants, 8 is a p X 1 regression parameter, {¢;} are
independent and identically distributed with mean zero and unknown symmetric distri-
bution function F, and {o;} are scaling constants which express the possible heteroscedas-
ticity. Our primary interest is in inference about the unknown regression parameter g.

Of course, one could ignore the {0;} and use classical methods such as least squares or
M-estimation (Huber, 1981), but such estimates are not efficient. In order to make more
efficient inference about B, it is necessary to get information about the {o;}. In one
approach to the problem, the {o;} are assumed completely unknown, but replication is
assumed feasible so that the {Y;} occur in groups of equal variance. Recent results in this
direction are due to Fuller and Rao (1978). Their results are complicated, and the delicate
calculations involved seem to depend very heavily on an assumption of Gaussian errors,
which is undesirable from the viewpoint of efficiency robustness; see Huber (1981) for
details and further references.

The second approach to the estimation problem for (1.1) avoids the replication assump-
tion by positing a known form for the error variance, i.e.,

(1.2) 0; = H(xi) B) 0)’

where 8 is an r X 1 vector of unknown coefficients and H is smooth and known. A model
such as (1.2) is behind the tests for homoscedasticity developed by Anscombe (1961),
Bickel (1978), and Carroll and Ruppert (1981). Of course, in many real problems we suspect
a heteroscedastic model because the dispersion of the residuals increases with the magni-
tude of the fitted values. Thus, it has become quite common to simplify (1.2) by assuming
o; is a function of 7; or | ;|, e.g.,

si=oc(l+|7|)% oei=o|m|* (BoxandHill 1974);
(1.3) o; = o exp(At;) (Bickel, 1978);
o;=0d(1+ ArHY2 (Jobson and Fuller, 1980).
(See also Dent and Hildreth, 1977.) Following these examples, we will thus assume that for
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some known H,
(1.4) o,=0H,(r;,\) =H(r;,0) with 8= (o, \).

Our results can be generalized to the model (1.2), but the statements of results and
assumptions then become extremely complicated.

Box and Hill (1974) and Jobson and Fuller (1980) both suggest a form of generalized
weighted least squares. One obtains estimates of (6, 8), constructs estimated weights &;,
and then performs ordinary weighted least squares. Their methods are constructed from
anormal error assumption, and their efficiency depends on this assumption. The maximum
likelihood estimates for § under the normality assumption have a quadratic influence curve
and may be particularly non-robust. As argued above, the recent literature demonstrates
some acceptance to the notion that estimators should be robust against departures from
normality. One purpose of this article is to provide a set of such robust estimates.

Implicit in the work of Box and Hill (1974) and Jobson and Fuller (1980) is the notion
that this problem is adaptable, i.e., the generalized weighted least squares methods are
asymptotically equivalent to the “optimal” weighted least squares estimate for the true
{0:}. Our second major aim is to show that there is a wide class of robust estimates of 8
which are adaptable for many distribution functions F and models (1.4).

2. A class of weighted robust estimates. Suppose we have estimates of (6, 8)
which are N%-consistent, i.e.,

@.1) N2@ - 0) = 0,(1), NY%(Bo— B) = 0,(1).

The existence of such estimates is discussed in the next section. We then form the
estimated o; as follows,

(2.2) Gi=H(t, 0), t=uxp.

If the {0:} were known, robustness considerations discussed by Huber (1973, 1981)
suggest a general class of weighted M-estimates formed by solving the minimization
problem in g;

Yi—xp

(2.3) zp{

} = minimum.
al
Here p is taken to be a convex function. If, for example, p (x) = x?/2, we get the “optimal”
weighted least squares estimate with known weights. In general, the unknown solution to
(2.3) is denoted Bopt.

The class of estimates we suggest are very simply generated by substituting {5,} into
(2.3). Taking derivatives, we suggest solving the equation

(2.4) S, (x—)¢{-’1;—"”} o,

(3 i
with solution denoted by f. Throughout we take y to be an odd, continuous function. The
non-robust generalized weighted least squares estimates suggested by Box and Hill (1974)
and Jobson and Fuller (1980) fall under the special case of (2.4) when {(x) = x; both
propose possibilities for B, and § of (2.1). As suggested by the literature, choosing a
bounded  can result in reasonably efficient and robust estimates of 8.
Define d; = x;/0; and assume that for a positive definite matrix S,

(2.5) Sy=N"'¥N,dldi—S.

Then by formal Taylor series arguments, the optimal robust weighted estimate ,éopt, which
solves (2.3), satisfies

(2.6) NY2(Bop— B) = N2 DAY df—tp(,fi—)— + 0p(1) = N(0, EY®’S™H(EY’)?).
EY'(e1)
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Our main result concerning adaptation is that when (2.1) holds, and hence we have a
reasonable estimate of 6, then our estimate B is asymptotically equivalent to B.p:. In stating
assumptions and proofs, we simplify (1.4) to

2.7) o; = exp{h(r;)0},

where A is a function from R to R”. The model (2.7) includes the first three models in (1.3),
but it is not strictly necessary for the validity of our results. Our reason for considering
only (2.7) in the formal aspects of this section is to avoid making already cumbersome
notation needlessly complicated. Generalizations to the model (1.4) required that H(-, -)
be smooth. Formally, we have the following.

THEOREM 1. Assume (2.1), (2.5), (2.7), the smoothness conditions B6 through B8
listed in Section 7, and
Bl. y monotone and odd, F symmetric, 0 < Ey?(e;) < oo, . EYy >0
B2. limy_osupi=n(| x: || + || A(r)|)N~"* = 0.
B3. supn{N7'IN1 (| % | + | ()|} < .
B4. The o; are bounded away from zero.
B5. On an open interval I (possibly infinite) containing all the {r.}, h is Lipschitz
continuous.
Then

(2-8) N1/2(BA - ﬁopt) —>p 0.

That B is robust against outliers in the errors when ¢ is bounded can be seen by
combining (2.6) and (2.8). The resulting influence curve is strikingly similar to the
unweighted case in homoscedastic models.

The proof is given in Section 7. Conditions Bl through B3 and B6 through B8 are
similar to those used by Bickel (1975) in his study of one-step M-estimates in the
homoscedastic model. Condition B4 ensures that we do not have infinite weights, and
condition B5 assures us that when ¢, = H(7;, §) = exp{A(7;)8}, the function H is sufficiently
smooth.

3. Estimation of 6. In the previous section we have shown that, except for certain
technical conditions, one can construct robust weighted estimates of 3 as long as one has
available estimates of 6 and 8 which satisfy (2.1). Preliminary estimates 3, satisfying (2.1)
are readily available and include (under reasonable assumptions) ordinary least squares
estimates and ordinary M-estimates; details of sufficient conditions for this are available
from the authors. Bounded influence regression estimates could also be used; see, e.g.,
Krasker and Welsch (1981). In this section, we propose a class of estimates of § which are
robust and satisfy (2.1). There are, of course, many possible ways to construct such
estimates, but our method has the necessary theoretical properties as well as encouraging
small sample properties; see the next section for details.

To motivate our estimates, suppose that the {r;} were known, that the {o;} satisfy (1.4),
and that the density f is proportional to exp{—p(x)}, where p and p’ = ¢ are as in the
previous section. This device is common in robustness studies; see Huber (1981), Bickel
and Doksum (1981), and Carroll (1980) for examples. In this instance, the log-likelihood
for @ is, up to a constant,

Yi_ i
(3.1) £(0) = YN, log H(r;, 0) — filp{ i 0)}

Taking derivatives in # suggests that we solve

(3:2) 0=17'(0) = YL [2:(0)¢{2:(0)) — 1] % H(r;, 0)/H(1;, 9),
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(Y;—m)
H(r, 0)
hence would, in general, lead to an unbounded influence function for the estimated ¢ and
an overall lack of robustness in our estimation procedure, we follow the common device
used in the homoscedastic case by Huber (1981) and Bickel and Doksum (1981) of replacing
xy(x) — 1 by a function x(-), as well as replacing 7; by ; = x; ,80, thus leading to estimates
obtained by solving

where 2;(8) = Because the term in square brackets in (3.2) is not bounded and

Yi—t
H(, 0)

Probably the most common choice of x(-) in the homoscedastic case is

3.3 0=Gn() =YX, x{ } H(t:, 0)/H(t;, ).

(34) x(¥) =x*y) - f V2 (x)p (x) dx.

This choice of x(-) gives bounded influence to our estimates of 6, and thus might
reasonably be preferred in our problem to yy(y) — 1, just as it is in the homoscedastic
case; see Huber (1981, Section 11.1) for certain optimality properties of this choice. In the
case of the special model (2.7), we have

(3.5) Gn(0) =YX x{((Yi — t)e "% h(t,).

We make the assumptions that x(-) is an even function with X(O) < 0, x(0) > 0. In the
model (1.4), o is a free parameter defined so that

(3.6) Ex< L= ”) =0.

o1

In the first model of (1.3), we have
8= (log 0, AT, h(r) =log(1 +| 7).

In many models (such as the first three models in (1.3), the third with 7; > 0), one can
show that solutions to the equation Gn(8) = Gn (o, A) = 0 exist. We have been unable to
show that the solutions are unique, although in all of our examples, unique solutions have
been obtained. More importantly, one may not wish to consider all possible values of 6,
e.g., in the first three models of (1.3), one may reasonably wish to restrict | 8| < 1.5 if one
assumes that the variances will be no larger than the cubes of the means. For these
reasons, we suggest the following procedure:

(3.7) Minimize || Gn(6)|| = || G~ (o, )| on the interval A € oJ.
If the solution is not unique, choose the one with smallest| A ||.

The solution to (3.7) is thus well-defined. In all of our examples when 8 is unrestricted, the
solutions to (3.3) and (3.7) have coincided. In the examples in which we have restricted 6,
(3.7) has always had a unique solution even when (3.3) has not had a solution in the
restricted space.

An appealing feature of these estimates is that they are natural generalizations of the
classical Huber Proposal 2 for the homoscedastic case.

THEOREM 2. Assume (2.5), (2.7), (3.6), and B2 through B5. Further assume that
N2(By — B) = O,(1). Finally, make the assumptions
Cl. 0< Ex*(e1) <=, and  is non-decreasing on [0, ).
C2. Asr,s—=0,for A(x) >0, Ex{(es +r)1 +s)} =A(x)s+o( r|+ | s|).
C3. Condition B7 holds for x.
C4. Condition B8 holds for x.
C5. If An is the minimal eigenvalue of Hyv = N7* YL, h()Th(z;), then lim inf Ay = Aw
> 0.
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Then if 8 solves (3.7), we have
(3.8) 6—6=0,(N".

The proof is given in Section 7. The conditions are similar to those of Bickel (1975),
with only C5 affected by hetreroscedasticity. Further details of implementation are
discussed in the next section.

One can also introduce redescending M-estimates by using ¢ redescending to zero.
Estimates for § and B8 can be obtained by doing one or two steps of Newton-Raphson for
(2.4) and (3.3) from any estimate satisfying (2.1). Proofs are similar to those given in the
appendices.

4. A Monte-Carlo study. Because Theorem 1 is an asymptotic result, we performed
a small Monte-Carlo study to assess the small sample properties of 8. The model was
simple linear regression, given by

(4.1) Yi=Bo+ Bici+ oie; =1+ 0i€;;, 1=1,.--,N.

In the study, the {c;} were equally spaced between —2 and +2, and we chose to study the
model

o; = o(1 + || )\
The experiments were each repeated two hundred times under the following circumstances:
(a) N=21, {e;} are N(0,1),06=.25,B0=2,B8: = 1.

(b) N = 41, {e:} are N(0, 1) with probability p = .90 and N (0, 9) with p = .10, ¢ = .25,
B() = 4, Bl = 2.

We made two choices for y. First was ¢/(x) = x, which yields the usual weighted least
squares estimate 1, and the second was Huber’s Y(x) = max{—2.0, min(x, 2.0) }. This gives
a version ﬁR of our robust weighted estimates. In constructing o;, we defined x as in
equation (3.4).

Both B, and Bz were constructed as follows:

Step (i). Let B. be the unweighted Huber Proposal 2 estimate (A = 0) with x given by
(3.4) and ¢(x) = max{—2.0, min(x, 2.0) }.

Step (ii). Solve (3.7) for (0., A.) and form inverse “weights”

wi=@1+ |ti|)m, ti = xif..

Step (iii). Solve a weighted Huber Proposal 2 by simultaneously solving (2.4) with the
desired function ¢ and the part of (3.6) given by

42) Y, X(Y“—"‘i@) -0,

ow;

The result is fo.
Step (iv). Repeat steps (ii) and (iii) to obtaint; = x;0, A, 6, 8.

The algorithm given here was chosen so as to reproduce Huber’s Proposal 2 in the
homoscedastic case A = 0. Direct application of the results of Section 2 involves only
solving (2.4) in Step (iii) and gave results essentially indistinguishable from those reported
here. In solving for (A, 6), we used the subroutine ZXGSN of the IMSL library.

In Table 1, we list part of the results of the study. The values listed are ratios of mean
square errors for estimating 8; in model (4.1), the ratio being with respect to the “optimal”
robust method one would use if w} = (1 + | 1|)* were known, i.e., solve (2.4) and (4.2)
simultaneously with the known weights. The study is fairly small, but it does seem to
indicate that our robust weighted estimate will work in situations in which heteroscedas-
ticity is suspected.
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TAaBLE 1
Monte-Carlo MSE ratio for simple linear regression under (6.1).

Sample Size N = 21 Sample Size N = 41
Bo = 20, B] = 1.0 Bo = 40, B] =20
Normal Errors Contaminated Errors
Estimator A=00 A=.5 A=10 A=00 A=.5 A=1.0
Unweighted LSE .98 1.18 1.67 1.24 1.51 2.31
“Optimal” WLSE, .98 .98 .98 1.24 1.19 1.18
known weights
Our WLSE, esti- 1.14 1.13 1.11 1.29 1.25 1.26
mated weights
Unweighted robust 1.00 1.18 1.66 1.00 1.21 1.79
estimate .
Our weighted robust 1.14 1.13 1.10 1.03 1.04 1.07
estimate, esti-
mated weights

It is important to note that our estimate has MSE never more than 15% larger than the
unknown estimate formed with the correct weights and seems to do better than unweighted
estimates when A 5 0. Note also the robustness feature; the efficiency of the weighted least
squares estimates (even the “optimal” one) depends heavily on the normality assumption
and is not very high in the contaminated case. All of the results tend to support the
applicability of Theorem 1.

We repeated the experiment, but with the model

oi = o exp(A| 7:|),

and obtained similar results, which seem to indicate that our theory is applicable for a
variety of models for the {o;}.

For testing and interval estimation, we use the following generalization of methods
suggested by Huber (1973) for the homoscedastic case. Using (2.6) and Theorem 1, we
estimate the covariance of NV%(8 — B) by

42) K(EV)S M (EY)™,

where

Ey' = N“E*P'(Y_i F xiﬁ), K=1+(p+2) 1—1\;5\é § = N Zalxd”

O;

and Ey’ is defined similarly to Ey’. In our Monte-Carlo experiment, we constructed
confidence intervals for the slope parameter 8; in (4.1), using (4.3) and ¢-percentage points
with N — p — r = N — 4 degrees of freedom. The intended coverage probability was 95%.
In none of these cases did the achieved coverage probability fall below 92%, and in the
majority of the cases it was at least 94%.

We also attempted to solve equations (2.4) and (3.5) simultaneously using the IMSL
routine ZSYSTM. Our experience was much like that of Froehlich (1973) in that the
algorithm converged most of the time but not always. Dent and Hildreth (1977) were able
to show that the difficulties experienced by Froehlich could be overcome by sophisticated
optimization techniques. We suspect that the same holds for our problem.

The particular method for estimating § = (o, A) outlined in Section 3 and explored in
this section is recommended for models such as the first three in (1.3), which satisfy (2.7).
In the fourth model of (1.3), an alternative procedure is preferable because we can exploit
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the relationship
of = a; + ap7h.

Here one would obtain initial estimates of (a;, az) by robust regression techniques, as long
as the lines of Jobson and Fuller (1980), working with the squares of the residuals from a
preliminary fit. One would then do one-step of a Newton-Raphson towards solving versions
of (3.3) which are obtained by working with (a;, a2) and following the line of reasoning in
(3.1) through (3.3). Monte-Carlo work, which will be reported elsewhere, indicates that
this technique can be quite successful.

5. Feedback. In the case of normal errors, Jobson and Fuller have suggested using
the information about B in the terms o; = H(m, 8). This essentially reduces to maximizing
(3.1) jointly in (6, B). In a very nice result, they show that if the error distribution is
exactly norinal and if (1.2) is exactly correct, then improvement over the weighted least
squares estimate can be achieved. It is clear that such feedback procedures will be
adversely affected by outliers or non-normal error distributions, and it is not clear how to
robustly modify them.

In cases where using feedback is conteniplated, a second form of robustness must also
be considered, i.e., robustness against misspecification of the functions H in (3.1). Carroll
and Ruppert (1981, unpublished) have shown that as long as H is correctly specified to
order O(N~'/2), the asymptotic properties of the weighted estimates ((2.4), (3.5)) are the
same as if H were correctly specified; in this sense, our weighted estimates are robust
against small errors in specifying H. They also show that such robustness is not the case
for feedback estimates. In fact, any gain from feedback can be more than offset by slight
errors in specifying H. Since our primary interest is in 8, and o; = H(r;, 8) is at best an
approximation, we suggest that feedback should not be automatically preferred in practical
use.

6. An example. In Figure 1, we plot the outcomes of 113 observations of Total
Esterase {C;} and Radioimmunoassay - RIA (Y;}, made available to us by Drs. D.
Horowitz and D. Proud of the National Heart, Lung and Blood Institute. The data are
clearly heteroscedastic, so we fit the model (4.1) with variance model

(6.1) o =o(l + |m|)*

and estimation done as in the previous section. The results are summarized in Table 2.
Since A appears to be fairly large, the results of the Monte-Carlo indicate that weighting
should be of real benefit. The confidence limits on A were obtained by bootstrapping
(using 60 simulations). In the weighted cases, the standard errors for 8, and B: were
obtained from (4.3); similar standard errors not reported here were found by bootstrapping.
The weighted results are fairly close together. While our purpose in presenting the numbers
is merely illustrative, we note that the values of A suggest that a logarithmic or square root
transformation might stabilize the variances (Box and Hill, 1974). A random coefficient
model might also be contemplated (Dent and Hildreth, 1977). We fit a quadratic model to
the data with little change.

A program has been written by Neal Thomas to solve equations (2.4) and (3.5)
simultaneously when the second model in (1.3) is used. Since the program utilizes the
IMSL package’s Levenberg-Marquardt algorithm, it can be used on non-linear regression
models. The program is now being tested on simulated data and has been used in a study
of migration patterns of the Atlantic menhaden, where it was tried on a data set exhibiting
heteroscedasticity and numerous outliers. There it produced estimates which, from a
biological viewpoint, seemed more credible than estimates from three other procedures:
least squares, least squares after a log transformation applied simultaneously to both the
dependent variable and the regression function, and Huber’s M-estimator with the MAD
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estimate of scale (Deriso, Reish, Ruppert, and Carroll, manuscript in preparation). Since
menhaden are relatively rare in the northern part of their range (New England), catch
data from that region exhibit small values but also low variability. Apparently, a weighted
estimator is needed in order to obtain reasonable estimates of migration rates to and from
northern waters.
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TABLE 2
Results of the analysis on the data for Figure 1 assuming (6.1).
4 Standard P Standard 4 90% Confidence
Method Po Error B Error A Limits for A
Unweighted —6.30 20.0 16.73 .89 — —
least squares
Our weighted —19.22 14.1 17.42 94 .68 (0.4,0.9)
least squares
Unweighted —6.54 174 16.67 77 — —
robust
Our weighted —26.99 11.8 17.73 .88 .85 (0.7,1.1)
robust

Proofs of theorems. The smoothness conditions mentioned in Sections 2 and 3 are
as follows:

B6. Asr—0 and s— 0, EY{(es +r)(1+8)} =rEY (&) + o(|r| + |s]).
B7. There exist K > 0 and Cp > 0 such that when0 <8< 1, |r| =<K, and |s| = K,
Esup[|¢{(e:+ Q1+ 8)} —yY{(@+r)VA1+5)}:|r—r'|<dand |s— §|=8]= Gé.
BS. lims.o E sup([¢{ (1 + (1 + 8)} — ¥ () 1% ||, |s| < 8) = 0.
The following general theorem will be used when studying B, 8, and 8.

THEOREM 7.1. Let g;, ki, and A(¢, i) standing for gn, kin, and A(¢, i, N), be
sequences of positive constants such that

(7.1) limpy_,wsupi<n (k; + k;g:) =0, supysupi=nA(e, i) < x,
and
(7.2) supy YN (B + kigt + N Y’gik;) = C) < o,

Let ¢; be a function from R?® to R* satisfying

(7.3) E$i(e1,0,0) =0 forall i.

Suppose that there exists K > 0 and Cy > 0 such that for all i,

(7.4) E sup{|¢i(er, r, 8) — ¢piler, ', ) |: |r=r'|,|s—§|=8}=Co gb
whenever 0 <8< 1, |r| =K, and |s| =K,

(7.5) supnsupi=ngi " E{¢i(e1, 1, 8) — ¢i(e1, 0,0) — A (o, D)r}=o(|r| +|s|) asr,s,— 0,
(7.6) lims .o supy supi=y E [Supyr=s |sj<s8i - {¢i(e1, 7, 8) — ¢i(e1, 0,0)}*]1 = 0,

and supy sup;=ngi 2E¢¥(e;, 0, 0) < oo. Let af’, af?, and af® be functions from R™ to R', R,
and R" respectively, and let z;(=z;n) be elements of R" satisfying

(7.7 a2(0)=0, ¢=1,2,3,

and for each compact set S there exists K such that

(7.8) (@) — o (y)| < kil x — y|| K, £=1,2,

and | a®(x) — a®(y)|| < ki||z:||x — y| K for all x and y in S,i=1, - -+, N, and
(7.9) N2\ z| < k.



438 RAYMOND J. CARROLL AND DAVID RUPPERT

For A € R™, define the process

Un(A) = N2 3K, ¢i{ei;, a'(A), aP(A)} {z: + «P(A)}.
Then, for all M > 0,
(7.10) supjaj=ul| Un(A) — Un(0) = N™2TE, A(¢, i) a’(A)zi|| = 0, (1).

ProoF oF THEOREM 7.1. For convenience, take M = 1. For 0 < § < 1, define
Sn(A, 8) =sup{||Un(A") — Un(Q)|: ||A" —A| = 8}.

We will show that
(7.11) E{Un(A) — Un(0)} = N2 3N, A($, i)aP(A)z: + 0(1),
(7.12) Un(A) — Un(0) — E{Un(A) — Un(0)} = 0,(1)

for each fixed A, and that there exists K depending upon M but not & such that for all 0
<8§<1l,all Nand all |A| =1,

(7.13) Sn(A, 8) — ESn(A, 8) = 0,(1) and ESy (4, 8) = K3,

where K does not depend upon é. Since for any 8, we can cover the ball of radius 1 in R™
with a finite number of balls of radius é, (7.11), (7.12) and (7.13) prove the theorem.
To prove (7.11), note that by (7.3),

E(Un(A) — Un(0)) = N2 3L, E[¢i{ei, o' (A), a(A)} — ¢i(ei, 0, 0)]{z: + a P (A)}.
We next have by (7.1), (7.7) and (7.8) that, for all large N,
(7.14) Iz + a(A)]| < 2||z|
(for simplicity, take K = 1 in (7.8)), and also by (7.5), (7.7) and (7.8),
E[¢:{e:;, a(A), a?(A)} — i(ei, 0,0)]] = A(9, D) (A) + 0(gik:)
uniformly in i. Therefore,
E{Un(A) = Un(0)} = N2 T A9, D)o’ (A)z: + o{ N2 T, giki zi |
+ N2 3L A, Dal’(A)aP(A)).

By (7.1), (7.7), (7.8), and (7.9), the last term on the RHS is o(1). By (7.2), (7.9) and the
Cauchy-Schwarz inequality, the second term is bounded by

o(TE1gkd) =0(1),
so that (7.11) holds. Then, using (7.14), we have that for N large,
% Var{Un(A) — Un(0)} = @N 7" B, g} || z:|*)supisngi *Elpi (i, o (A), o (A))
— ¢i(e1, 0,01 + E||N"2 3, ¢:(ei, 0, 00 (A) ||

The second term on the RHS is o(1) by (7.7) and (7.8). It also follows from (7.6) through
(7.8) that

supi=ngi ’E[¢i{e:, o' (A), aP(A)} — ¢i(e:, 0, 0)F = 0(1).

Therefore, (7.12) is proved by applying (7.2) and (7.9). Finally, by (7.14) ESn(A, 8) is less
than or equal to

2N'? 3K, E supja-ny=s|oi{e, a’(A), a?(A)} — ¢i{es, a"(A"), a®(A)} ||| il
+ N2 gL supya-sy=sll af’(A) — a (&) | E | ¢ifer, " (A"), o (A")}].
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Thus by (7.2), (7.4), (7.6), and (7.9),
ESn(A, 8) = Kb

for some K which is independent of 8. By (7.1), (7.2), (7.6), (7.8), and (7.9),
Var Sy(A, §) — 0.

Therefore, (7.13) is verified.

Proor oF THEOREM 1. For A; and A; in R?, A;in R”, and A = (A}, A,, As), define
a’(A) = N7'2d;A,
hi(A) = h(r; + x:AsN7'7%)
a}"”(A) = exp[—h;(A)A: N2 + (h(0) — h:(A)}6] — 1

and
a}‘”(A) = d,-a}z’(A).

Define the process

Un(A) = N7 3L Y[ {e — af(A)} (1 + P (A)}]){d: + aP(A)}.
Note that (2.4) can be rewritten as
(7.15) Un(N"*(B = B), N"*(0 — ), N"*(f, — B)) = 0.

Lettingg; =1, k; = N—I/Z{l + " d; " + Ilh('r,)"}, oile, r,8) =y{(e —r)(1 + s)}, di = z;, and
A(¢, i) = A(Y) = EY/, the conditions of Theorem 7.1 are implied by (2.5) and B1 through
B8, so for all M > 0,

(7.16) supjaj=ml| Un(A) — Un(0) + A(Y)SA:|| = 0,(1).
Now by Chebyshev’s theorem, B1 and B2,
Un(0) = 0,(1).

In proving the theorem, we will not assume that ﬁ actually solves (2.4), but rather that the
Lh.s. of (2.4) evaluated at ﬁ is less than twice its infimum over all 8. However, as noted by
Huber (1981, page 165), (2.4) will have a unique solution if ¥ is strictly monotone. From
the last equation, we have that if

Af =—{A®{)S}'Un(0) = O, (1),
then by (7.16), U(A*) = 0,(1). Consequently, by the equivalence of (2.4) and (7.15),
(7.17) | Un(NY*(B ~ B), N**(6 — 6), N'*(fo — B))|| = 2(| Un (A*)]| = 0, (1)
By (2.1), we need only establish that
(7.18) B=B=0,(N"

to conclude from (7.15) and (7.16) that (2.8) holds. But by (7.17), (7.18) holds if for each 7
> 0, ¢ > 0 and M,, there exists M, satisfying

(7.19) P{infya,)= 0, i0fyag= a, infyagy<an || Un(A) | >0} > 1 —&.

Now (7.19) follows from (7.16) in a manner quite similar to Jureékova’s (1977) proof of her
Lemma 5.2. 0O

ProoF oF THEOREM 2. For A;in R?, A;in RY and A’ = (A}, A}), define

hi(A) = h(r; + ;A N7'7?),
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(7.20) a’(A) = exp[—hi(A)A: N7 + {h;(0) — hi(A)}6] — 1,
(7.21) a?(A) = N"V2d,A,,

and

(7.22) aM(A) = hi(0) — hi(A).

Then let ¢(x, y, z2) = x{(x — 2)(1 + ¥)} and define the process
Wn(A) = =N 3L, ¢ (e, al"(A), aP(A)} {h(r;) — a®(A)}.

Note that (3.7) can be written as
I Wa {N"*(fo — B), N"*(f - 6)}|| = minimum.
However, by (3.6), C1 and Chebyshev’s inequality,
(7.23) Wn(0) = O,(1)
so that
Wi (N0 = B), N'*(8 — 8)} = O, (D).

We can therefore prove (3.8) by showing that for each M; >0, ¢ >0 and @ > 0, there exists
M, > 0 such that

(7.24) Plinf (|| Wx(A)||:[| A1 ]| < My, |Az]| = M) > Q]= 1 —e.

We will prove (7.24) by modifying the proof of Juretkova’s (1977) Lemma 5.2. We first
apply Theorem 7.1 with z; = ,(0), g = 1, A(¢, i) = A(x), and & = N™V%(| h(r:)|| + || x|
+ || d:||}. Then

supjaj=ul| Wn(A) — Wy (0) + A(X) N> I, h(r)af(A) | = 0,(1).
By a Taylor series expansion,
a{’(8) = =N""*h(r:) Az + {h:(0) — h(A)}6 + o(N~"7).
Thus, by C5 setting
Gn(A) = N2 FE, (hi(0) — hi(A)}Oh(r),
we obtain
(7.25) supjaj<mfl Wa(A) — Wn(0) — A(x)ATHy + Gn(A)| = 0,(1).
Now fix ¢ > 0, M; > 0, @ > 0. Use C1 to choose y such that
P{| Wxn(0)] = v/2} <e/2.

Define

D = supnsupja =l Gy (A)].

Then D <  (Gv depends only on A,). Define M by {A(x)A\aM;/2 —y— D} = Q. Using
C5 and (7.25), find N, such that Ay = A, /2 and

P{supjayj=mjan=snl Wn(A) — Wx(0) — A(x)ATHy — Gn(A)||
<v/2} =1-—¢/2 (N= N,).

If | Az || = Ma, || Ay || = My, and N = N,, then with probability at least 1 — &,
Wn(A)Az = —M, || Wn(0)|| + AT HyA2A(x) — MyD — Msy/2
= {A(x)AM;:/2 — vy — D} M, = QM.
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Since x is nondecreasing on [0, «) by C1, Wx (A1, A2s)A; is a nondecreasing function of s.
Thus, || Az || = M, implies

Wa(A)Ay = (||Az ||/ M) (M || Az || " Wa (A1, MaAz || Az||7HAL) = ||A2 ]| Q-
Thus,

Wn(4)A,
Az

which with the Cauchy-Schwarz inequality proves (3.8). 0O

P{infllAlllSMv"AzllZMz = Q} =1 —g
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