The Annals of Statistics
1982, Vol. 10, No. 2, 340-356

THE 1981 WALD MEMORIAL LECTURES
MAXIMUM LIKELIHOOD AND DECISION THEORY

BY BRADLEY EFRON

Stanford University

This paper discusses five questions concerning maximum likelihood esti-
mation: What kind of theory is maximum likelihood? How is maximum
likelihood used in practice? To what extent can this theory and practice be
justified from a decision-theoretic viewpoint? What are maximum likelihood’s
principal virtues and defects? What improvements have been suggested by
decision theory?

1. Purpose. Maximum likelihood is the most widely used statistical estimation
technique. It emerged in modern form 60 years ago in a series of remarkable papers by
Fisher (1922, 1925, 1934). The surprising fact is that maximum likelihood is still the source
of considerable controversy in the statistical community, as seen in Berkson’s 1980 paper
“Minimum chi-square, not maximum likelihood!” and the ensuing discussion.

The controversy centers on the relationship between decision theory and maximum
likelihood. Beginning with the Neyman-Pearson lemma, decision theory has reshaped the
theory and practice of hypothesis testing. The same cannot be said of estimation. Maximum
likelihood continues to dominate statistical practice, essentially in its original formulation,
not much affected by Waldian developments.

This paper concerns five main questions. (1) If maximum likelihood isn’t decision
theory, then what kind of theory is it? (2) How is maximum likelihood used in practice?
(3) To what extent can this theory and practice be justified from a decision-theoretic
viewpoint? (4) What are maximum likelihood’s principal virtues and defects? (5) What
genuine improvements have been suggested by decision theory?

Technical details are kept to a minimum in what follows. None of the technical points
are new, many of them dating back to Fisher. A good reference is Cox and Hinkley (1974,
Chapter 9). The discussion here is written entirely from a frequentist viewpoint. Every
attempt has been made to avoid the usual Bayesian-frequentist-Fisherian arguments. The
basic issue is more practical than philosophical: what does a statistician do when faced
with a new body of data? Maximum likelihood provides a practical way to begin and carry
out an analysis. We discuss the advantages and drawbacks of this program.

2. An example. Figure 1 compares the field goal kicking ability of Don Cockroft,
kicker for the Cleveland Browns, with the aggregated data for all field goal kickers in the
American Football Conference (AFC), 1969-1972. The data, which are taken from pub-
lished records of the National Football League, lists attempts and successes from various
distances. For instance, Cockroft successfully completed 15 of 32 attempts from between
30 and 39 yards out, compared to 238 of 372 for the entire AFC. Over all yardages Cockroft
completed 56 out of 100 attempts, compared to 891 successes out of 1494 attempts for the
AFC.

Also appearing in Figure 1 are estimated logistic regressions for the probability of
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F1c. 1. Field goal attempts and successes, 1969-1972, at various distances (yards away) from goal.
Circles indicate Cockroft’s success proportions, triangles proportions for the entire AFC. Solid curve
is the fitted logistic regression for Cockroft, dashed curve is the logistic regression for the AFC.

success. Letting y, be the probability of success from y yards out, the fitted model is
— 1 .
, 1+ exp{—a—B(y—30)}" ,
Since the published data is grouped, the following code for y was used in fitting (2.1) and
will be assumed in what follows:
0-19 yards, y = 12; 40-49 yards, y = 45;

20-29 yards, y = 25; 50+ yards, y = 55.
30-39 yards, y = 35.

(2.1) Yy

The solid curve is the regression (2.1) fitted by maximum likelihood to Cockroft’s 100 data
points, the dashed curve is the corresponding regression fitted to all 1494 data points.
To focus discussion, we consider the following deliberately simplified problem: estimate

(2.2) vss = Cockroft’s probability of success from 55 yards out.

Four different maximum likelihood estimates are indicated in Figure 1. (1) The estimate
based on Cockroft’s four attempts from 55 yards, .250 + .217. (2) The estimate based on
the logistic regression fit to all 100 Cockroft attempts, evaluated at y = 55, .139 + .064. (3)
The estimate based on the AFC’s 124 attempts from 55 yards, .234 + .038. (4) The estimate
based on the logistic regression fit to all 1494 AFC attempts, .228 + .020. These estimates
are all obtained by applying standard maximum likelihood theory, as described in Section
4.

3. What is “estimation”? In order to discuss maximum likelihood, we have to
describe what “estimation” means in a typical statistical situation such as the field goal
example. (See Barnard (1974) for an interesting dicussion of the same question.) Figure 2
schematically illustrates the major steps in a data analysis, and the place of estimation
theory.

The most basic statistical process is enumeration, the collecting and listing of individual
cases. The fundamental idea of statistics is that useful information can be accrued from
individual small bits of data. No one field goal try by itself tells us much, but together the
data speak clearly. A statistician looking at Figure 1 knows more about field goal
probabilities than do most professional sports commentators.
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Fic. 2. Four basic statistical operations, and how they relate to estimation.

In order to look at a body of data it first must be summarized. Summary is the
amalgamation of data, usually noisy data, to reveal interesting common features of the
situation, for example, that the 50% success distance for field goals is about 40 yards. The
circles in Figure 1 summarize Cockroft’s kicking record as five probabilities. The solid
curve is a more drastic summary, in terms of a two-parameter probability model.

Comparison is the process opposite to summary, the pulling apart of a data set to reveal
interesting differences. For example, it seems harder to kick a field goal from 55 years than
from 25 yards. Cockroft seems to be less successful than the AFC from 35-45 yards.

Much of our training as mathematical statisticians focuses on the top box in Figure 2.
Statistical inference extrapolates from the data at hand to what might be reasonably
expected given a much large, perhaps infinite, data set. For example, “.234 + .038” in the
third field goal model means the following: if we had available say 10,000 rather than 124
attempts from 55 yards, we expect that the observed proportion of successes would be
within .038 of .234, with about 68% confidence, in the usual terminology. An hypothesis
test is an inference about whether or not an observed comparison would stand up given a
lot more data. In this paper we shall not discuss the hypothesis testing side of Figure 2.

A typical data analysis is an interplay between summaries and comparisons, with the
data being repeatedly pulled apart and recombined to reveal similarities and differences.
Inferential theory is used as a check on this process, to prevent, as far as possible, errors
due to the limitations of the data set. Which of the four estimates would we prefer for ys5?
Standard hypothesis tests do not reject the logistic models, and also do not reject the
hypothesis that Cockroft’s kicking ability is no different than that of the entire AFL. This
suggests estimate (4) of vss, .228 + .020.

Estimation is the theory that concerns making summaries and inferences about sum-
maries. The inferences are usually in the form of point and interval estimates. Textbook
presentations of estimation tend to lose sight of the summary itself, in the excitement over
how the summary is used to form, say, a uniform minimum variance unbiased estimate of
some specific quantity. On the other hand, Fisher’s original presentation of maximum
likelihood stressed summarization. Fisher’s claim, which we shall examine in the following
sections, was that maximum likelihood is a superior method of data summarization, no
matter what specific inferences may eventually be needed.

Maximum likelihood as used in practice is really two theories, one for summarization,
the other for making specific point and interval estimates. (In the following sections,
“gstimation” and “estimate” will refer to this second process, that of making specific point
and interval guesses for unknown parameters.) The two theories are described explicitly in
the next section. Meanwhile, it is worth remembering that the real difficulty in most
estimation problems lies in deciding which data is relevant to the quantity being estimated,
not the specific form of the estimator. Can we really use all 1494 data points in estimating
55, as we do with estimate (4), or should we restrict attention to Cockroft’s 100 kicks, in
which case estimate (2) is preferred? Making such decisions, in this case trading off
variance for bias in the estimate of vyss, is the point of the summary-comparison-inference
cycle described above. (This approach to model building is not above criticism. The last
example in Section 8 illustrates some of its limitations and suggests, vaguely, the outlines
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of a more ambitious theory.) The summary aspect of maximum likelihood theory fits well
into this cycle, which accounts for a good deal of maximum likelihood’s popularity.

4. Maximum likelihood summarization and estimation. We now describe the
two aspects of maximum likelihood, as a summary device, and as a method of providing
specific point and interval estimates. Given a family of probability densities for X,

4.1) F=A{fi, 0 € 0},

we observe data X = x. Let 8 be that value of 6, assumed to exist, which maximizes the
probability density fy(x). The maximum likelihood summary of the data, abbreviated
MLS, is the density function corresponding to § = b,

4.2) MLS: f = f5.

There are three crucial points here. (i) The parameter “§” as used here is only a name,
and plays no role in the summanzatlon process. Any other way of naming the members of
& results in the same MLS f, given the same data x. (ii)) The MLS is not a number
or a vector, it is a probability density. We are summarizing a data set by a probability
mechanism. This will be particularly important in Section 5. (iii) The MLS is a superior
method of data summarization. This was Fisher’s main point, and will be examined in
Section 6.

Next, suppose that y( f) is a parameter (function of the unknown probabilty mechanism)
we wish to estimate. The maximum likelihood estimate, MLE, is the corresponding
function of f,

(4.3) MLE: 7 = y(f).

Maximum likelihood estimation takes the maximum likelihood summary as being the true
probability mechanism, and simply reads off any parameter of interest from the MLS.
The criticisms of maximum likelihood by Berkson (1980) and discussants are mostly
criticisms of the MLE as a point estimator, not of the MLS as a summarizer. We will try
to make this distinction explicit in what follows.
As an example, consider observ1ng n rephcates from a normal distribution with unknown
mean 6 but known variance o2, X1, Xz, + -, Xn~ 2 oy (0, 6%). We can write the family &

(4.4) F=A{fy=N/0,0)",0ER",

where the power notation is shorthand for the distribution on #” given by the product of
n independent ./(6, 0%) distributions. Havmg observed X = x, the MLS is f N(E, 62",
where X = Zx;/n. For the parameter y(f) = e, the MLE is y = e*

In this case one might well prefer the estimate y =e™ /", which is uniform minimum
variance unbiased for y. For 02 = 1, n = 10 the ratio of expected squared errors is
E( — y)*/E(¥ — v)® = 1.13. On the other hand, the MLS is unassailable as a summarizer,
since knowing f is equivalent to knowing the sufficient statistic . One of Fisher’s main
points was that in cases such as this where a sufficient statistic exists, it is automatically
captured by the MLS. Sufficiency was one of many ingenious evasions Fisher used to avoid
a detailed quantitative theory of point and interval estimation (i.e., decision theory), some
others being asymptotic efficiency, second order efficiency, pivotal quantities, and ancil-
larity.

What is the difference between a summary and an estimate? A summary may be used
for comparative purposes, such as Cockroft versus the rest of the AFC, with no specific
estimation problem in mind. (Comparison of summaries is often used to suggest which
estimates and hypothesis tests are of interest.) A summary may be used qualitatively,
“The probability of successfully kicking a field goal decreases smoothly with distance,”
with no attempt at quantitative assessment. Different functions of the same summary may
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be used to estimate the same parameter, e.g., e or ¢ */?" for estimating e’ in the example
above. A full summary such as the MLS is universal, applying to all questions we might
subsequently ask about the situation, while an estimate will apply to a particular aspect of
interest.

The virtue of a summary is that it gives the statistician a chance to look at the data in
compact form before proceeding further with the analysis. It is much easier to compare
Cockroft with the AFL using the logistic curves than in terms of the original 1494 data
points.

It would be easy to confuse summaries with descriptive statistics. A descriptive statistic
is purely a device for describing data already seen by the statistician, as opposed to an
estimate, which relates to data that might plausibly be seen in the future. A summary, as
we are using that term, occupies middle ground. It both describes the data already at
hand, and is a large first step toward making specific estimates. Descriptive statistics, as
explained in Tukey (1979) for example, can operate effectively without probability models
for the data. On the other hand, the MLS is a device for going Tfrom the data and a family
of probability models to an efficient summary.

Fisher’s claim for the superiority of the maximum likelihood summary as presented in
Section 6 has never been seriously challenged, and gives a solid theoretical basis to the
popularity of maximum likelihood in applied work. This aura of superiority has transformed
itself to maximum likelihood estimation, where it is less well founded. The MLE can be a
useful estimation device, with definite limitations which we shall try to make clear in later
sections.

5. Fisher’s information bound. If maximum likelihood estimation acts as if the
maximum likelihood summary is exactly true, how can the theory provide an assessment
of estimation error? The answer is simple, but ingenious. Define

(6.1) e(f) = Sds(y),

the standard deviation of the MLE y = y( f ) under the true probability mechanism f. Then
the parameter ¢ can itself be estimated by maximum likelihood, & = &( f ). Notice that we
are using the fact that the MLS f is a probability mechanism, and not just a number or
vector.

The standard error estimate ¢ is hard to compute in most cases. Fisher provided a
famous approximation, the Fisher information bound,

(5.2) £=1/VH(y),

where %(y) is the Fisher information for y, evaluated at point 4 in ©. This is not the usual
presentation of the information bound, and we will indicate the derivation of (5.2) in
Section 6. However, the important point is that the Fisher information bound is, approx-
imately, the standard deviation of the MLE v, assuming that the MLS f is true. (More
precisely, the Fisher information bound approximates the unconditional standard devia-
tion of y, averaged over the whole sample space. See the last two paragraphs of Section 6.)

For example, consider estimate (4) of Section 2, i.e. .228 = .020. The “+ .020” can be
interpreted as follows. Let X* be a hypothetical data set comprised of 1494 data points
(yi, Z¥), 1 =1, ---, 1494. For 128 of the data points y; = 55, for 449 of the data points y;
= 45, etc. as indicated in Figure 1. Each Z} is an independent Bernoulli trial generated
according to (2.1) with (a, 8) = (83, —.082). Let 7%; be the probability of success at y = 55
obtained by fitting model (2.1) to the hypothetical data X*. Then .020 is, approximately,
the standard deviation of 1%s.

The star notation indicates that we are not dealing with the real data X, which is
generated according to the real though unknown probablllty mechanism f, but rather with
hypothetical data X* from the MLS mechanism f. Since everything is known to the
statistician about f, the hypothetical data X* can actually be generated using Monte Carlo
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methods. Suppose we independently generate X*(1), X*(2), ..., X*(B), each X*(j)
consisting of 1494 points as described above, and calculate the corresponding vss; estimates
¥%5(1), 7%5(2), - -+, 7%5(B). If the number of replications B is fairly large, we can estimate
¢ from

(5.3) é = (Thly5() — 5()F/(B — D},

¥%5(+) = ¥, ¥%(/)/B, without using Fisher’s approxmation (5.2). As B — o, (5.3) ap-
proaches the original definition ¢ = &(f). The author (Efron, 1979) has suggested using
approach (5.3) under the name “bootstrap” for nonparametric situations, where the
information bound is difficult to calculate and/or unreliable.

6. The geometry of maximum likelihood summarization. In this section we
consider a particularly simple situation which illustrates the salient aspects of maximum
likelihood summarization. Fisher’s claim of superiority for the MLS will be made explicit.
This section is more technical than the remainder of the paper.

We consider a finite sample space £ = {1, 2, ---, L}, so that a probability distribution
on %is a vector 7 = (my, m2, +--, 7L),

(6.1) a,=Prob{X=¢}, ¢=12,..., L.
The vector = must lie in %, the L dimensional simplex,
(6.2) % = {7177/2 0, 2%:1 Te= 1}.

We restrict the choice further by assuming that « belongs to a subset % of % indexed by
a real parameter 6,

(6.3) 7 = {m(0), 0 € 6},

O a possibility infinite interval of the real line.
The data vector X = (Xi, X;, ---, X,) consists of n ii.d. replicates from #(@). The
observed data x = (x1, X2, - -+, X») has density function

(6.4) fo(x) = [[i1m.,(0).
Using the power notation of (4.4), the family of probability models for X is
(6.5) F={fo=m@)" 6 € O}.

Let p = (p1, p2, - -+, p)’ be the proportions of the observations x; in the L categories,
(6.6) pr=#{x,=7¢}/n.

Define 7,(8) = log x,(6) and 7,(6) =% 18), so

(6.7) 1(0) = (71(0)/m:(0), - - -, 7.(0)/7L(6)),

the dot indicating differentiation with respect to #. Using (6.4), the function 9/46 log fs(x)
equals

(6.8) n Y1 {p:— mA0)}1A0) = n{p — 7(6)}'1(6).

From this, we see that the linear subset L) of S, passing through a(6) orthogonal to
n(8),

(6.9) 2(0) =p:(p—7(0))7(@) = 0],

corresponds to those data vectors x having # as a solution to the maximum likelihood
equations (8/80) log f5(x) = 0. A careful discussion of the geometry of maximum likelihood
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Fic. 3. Maximum likelihood summarization: ¥ (@) is the level surface of data vectors p having
MLS f = «(6)". Another summarization method, with level surface Q(0), is also indicated. The

vector 14(8) has ¢/th component 7/0)/m.(8).

summarization, including the problems of multiple solutions, second-order efficiency,
statistical curvature, and Kullback-Leibler distance, can be found in Efron (1975b, 1978).

We can now give a simple picture of maximum likelihood summarization: data vectors
X havzng p on the level surface £(0) are summarized by the same probability distribution,
f = m(@)". This is illustrated in Figure 3.

What is so good about the MLS? Fisher’s original answer was in terms of asymptotic
efficiency. It simplifies discussion to think of # as an estimate of 6, even though we will
eventually interpret the results in terms of summary rather than estimation. An observed
vector of proportions p determines 6= 0(p) by projection to % along the level surfaces
& as indicated in Figure 3. Let  be another way of estimating 6, comparable to 6 in two
ways: § is a function of x through p, with the function ] (p) being defined for all p € ¥,
and

(6.10) G{m(0)} = 6.

Notice that 8 satisfies (6.10).

The first condition is easily justified since p is a sufficient statistic. Condition (6.10),
called “Fisher consistency,” says that 6 and 0 are estimating the same thing, in the sense
that if p falls on %, then both fand § give the same numerical estimate. This restriction
on the form of § also turns out to be innocuous for summary, though not for estimation, as
discussed later in the section.

Let @(0) be the level curves of constant estimation using 5,

(6.11) Q(6) = (p:d(p) = 0).

The theory of first order efficiency concerns what happens if, as in Figure 3, @(6) is not
tangent to £(#) at the point of intersection with 7. Let V(6) be the orthogonal to @ () at
the point 7(8), and define

(n(8)' XV (8)}?
((8)Xm(0)}{V(0)EN(6))
the squared cosine of the angle between 7(8) and V(8), in the inner product determined

by the matrix ¥, with /mth element #,(1 — 7,) if £{=m, — 7,7, if /7 m.
Under mild regularity conditions (Rao, 1973, Section 5e),

(6.13) Jnd -0) - L/V<0, %)

(6.12) cos’Ay =

0



MAXIMUM LIKELIHOOD AND DECISION THEORY 347

where iy = Y%, 7, (8)*/7,(8) is the Fisher information in a single observation, and also

(6.14) Vn(d -0 - m(o, —1—)

19cos’Ag

This shows that § is asymptotically inferior to § unless A, = 0, that is unless Q(0) is
tangent to £ () at w (). Fisher liked to state this in terms . of relative sample sizes: d based
on n observations has the same asymptotic distribution as 6 based on n cos?A, observations.
Using 6 instead of 0 wastes proportion sin’4, of the observations. This makes it clear that
the superiority of 6 is not tied to any specific estimation problem.

In fact, § can be thought of, asymptotically, as 6 plus random noise. Working in
“statistically large” neighborhoods of some fixed value 6, say 8 € 6, + n™"/3, we have

~ A tanAg
(6.15) =0+ 7 + 0,(n"V?),
Vnig,

where Z ~ A4 (0, 1) is independent of 0 (Efron, 1975b). A statistician given 9(p) and a
random number table can, asymptotically at least, duplicate the performance of any
decision rule based on § (p). From the decision-theoretic viewpoint, asymptotic sufficiency
is a more accurate name than asymptotic efficiency. Result (6.15) is an early example of an
asymptotic complete-class theorem.

If #is a one- parameter exponential family, then the summary surfaces #(§) are
parallel to each other, and fis a genuine sufficient statistic. If not, we can approximate &
near any parameter value 6, by the one-parameter exponential family % having log
probability vector 5(8) + 1(68) (8 — 6,). Then the level surfaces for #and % will agree at
0 = 6, both being #(8,) there. In this sense the MLS is locally sufficient as well as
asymptotically sufficient.

Sufficiency says everything about summarization, but leaves open the choice of specific
estimates for specific estirhation problems. In the example of Section 4, we certainly want
to estimate y = e’ with a function of %, but not necessarily the obvious function e*. The
MLE is a simple way to use the MLS for estimation. It does not enjoy the same degree of
theoretical justification as does the MLS. See Remark D, Section 7.

Pearson’s method of moments, which preceded Fisher’s theory, has @ () linear, but A4,
# 0, in most cases. Other methods, such as minimum chi squared, satisfy the tangency
property A; = 0, but have @(0) curved instead of linear. Second order efficiency describes
a more delicate version of (6.15) appropriate to this case,

(6.16) 6=10+ i E20(00)Z2 + 0,(n7Y),

where the A;(6) are known functions of 8, and Z,* .#(0, 1), independent of 8. See Efron
(1975b), Rao (1962), Ghosh and Subramanyan (1974), and Pfanzagl and Wefelmeyer (1978)
for discussions of second order efficiency.

The fact that the £(8) are linear has an appealing consequence in terms of combining
independent experiments. Suppose we take independent samples of size n; and n; according
to density (6.4), 6 the same in both samples, and observe vectors of proportion§ p: and p2
respectively. Suppose also that both p; and p; lie on the same level surface .#(8). Then so
will the linear combination p = (n;p; + n2p2)/(n: + nz). In other words, if both data sets
have MLS corresponding to § = 6, then so will the combined data set. This seemingly
obvious rule of combination is violated by any summary method having curved level
surfaces.

Fisher cons1stency, (6.10), seems to stack the deck in favor of maxlmum likelihood since
we insist that § have a property which is already known to hold for 6. In this discussion,
however, “0” is not a genuine parameter of interest, only a convenient way to name the
distributions in Z If 6 (p) is any statistic defined for all p € ¥, we can define the name ¢
by 8 = 6(x) for = € . The asymptotic sufficiency of 8, (6.15) or (6.16), still holds.

If 4 is a genuine parameter of interest which we want to estimate, then renaming % as
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above, is not so innocuous. This again reflects the difference between summary and more
specific estimation problems. Fisher consistency is not necessarily desirable in the latter
context. Notice that in the example of Section 4, the estimate ¥ =e**/?" is the MLE of
e?*/2" 50 ¥ is Fisher consistent for this parameter rather than for the parameter of
interest e’.

It is easy to motivate approximation (5.2), the Fisher information bound, in terms of
Figure 3. We take the parameter y(f) to be @ itself. Let X* be the hypothetical data vector
drawn according to the MLS f, and p* the corresponding vector of proportions, p* =
#{X} = ¢}/n. In this situation p* is distributed according to the rescaled multinomial
distribution on L categories, n draws, probability vector (0 )

(6.17) p* ~ Mult(n, 7(6))/n.
We show below that §* = § (p*) has the first order Taylor expansion

(6.18) b(p*) = o @) {p*— =)}

i

as a function of p*, with 6 fixed. This gives the approximation

7@ )’Cov(p* ) (0)

lA

(6.19) Var § (p*) =

where Cov(p*) is the covarlance matnx of p* under (6.17), havmg /mth entry 77,(0)(1 -
qr,(ﬁ))/n for /= m, and — qr,(ﬁ)qr,,,(ﬂ)/n for /% m. However 11(0 )’ Cov(p* )n(ﬂ) =iz/n
(using X7, (0) = (8/00)Z7A0)|5 = 0), so (6.19) gives (5.2),

(6.20) & =vVardpry =~ =1

nig %’
where .#; = nij is the total informatiop for estimating 6, evaluated at § = é
It remains to verify (6.18). Let df indicate the change in the MLE 6 resulting from
change dp in p. Since § + df# must satisfy the likelihood equation for data vector p + dp,
(6.9) gives

(6.21) 0=5(@)dp—[@)y=@)— (p—=@))i6)] dé,

ignoring higher order differentials. Notice that #(8)'# (§) =i;. Setting p = m(§) and p*
= 7(0) + dp gives (6.18). This result appears in Jaeckel (1971).

Higher ordeir summaries. Fisher (1934) argued persuasively that in some circum-
stances the observed Fisher information

62
I(x) = e log f5(x)

0=0

is superior to .; as a measure of information, in the sense that 1/I(x) is a more relevant
estimate of the variance of 8. See Efron and Hinkley (1978) for a discussion and extension
of Fisher’s results, and some dramatic numerical examples of their practical importance.
Usually I(x) is not recoverable from the MLS f, or equivalently 6, so that we have to
retain the bigger summary (0 I(x)) in order to make more exact inferences.

There is no contradiction here with the previous assertion that 6 is a superior summary
device. If we want the most compact possible summary of the data, just one number in the
context of Figure 3, then 6 is indeed asymptotlcally superior. By summarizing the data less
succinctly, keeping track of I(x) as well as 0 we can make better inferences. This line of
thought ends with the entire likelihood function as the summary statistic. The likelihood
function is always sufficient, but is too clumsy to be an effective summary device in most
situations, especially when @ is multidimensional. The summarization process usually stops
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with 6, equivalently 7 and either the information matrix .% or the matrix of second

derivatives of the log likelihood function evaluated at é.
Invariance. The MLS behaves correctly under invariant transformations of % Sup-

pose there exists one-to-one transformations mapping the parameter and sample spaces
onto themselves, 8’ = g(0) and X’ = A (x), which leave & invariant. That is,

(6.22) fF &) =fx)J(x—x') = frx'),

where J (x — x’) is the Jacobian. The last equality gives 6(x’) = g(8 (x)), or equivalently
g0(h7'x’) = 0 (x’), which shows that the MLS maps invariantly.

Minimum Distance Methods. Let D(x, m) = —log =, be thought of as a measure of
discrepancy between the possible outcome X = x and the probability vector #. Since
(6.23) %1 D(x;, m(0)) = —n Y i1 p/log 7/(8) = —log Yl mA0)™,

we see that minimizing 3;D(x;, m(8)) as a function of @ is the same as maximizing the
likelihood. Maximum likelihood summary can be thought of as a minimum distance
method (Wolfowitz, 1957), defined in terms of the component observations x;.

The fact that maximum likelihood can be defined in terms of the individual summands
D(x;, m(8)) is a handy property. In situations like logistic regression with continuous
prediction variables, which the football example would be if we could observe the original
ungrouped data, it means that preliminary grouping is not necessary to compute the MLS;
see Efron (1978b). Any choice of D(x, 7) other than —log 7, makes the minimizer of
3.D(x;, m(8)) first order inefficient; the level curves will be linear, but different from the
£(0).

Robust estimation. The theory of robust estimation, as described in Huber (1981),
considers the possibility of error in the specification of % The MLS theory, as pictured in
Figure 3, is modified in the following way: the level surfaces of equivalent summary are
kept linear, at least in m-estimation, but the orthogonal vector is constrained never to
point too closely toward a corner of % . In other words, the summary is not allowed to be
overly influenced by any one observation. This agrees with the characterization of statistics
as the science of gathering information in small pieces, as discussed in Section 3. (In his
discussion of Berkson’s paper (1980), LeCam, expanding on a result of Bahadur’s, gives an
interesting example where some robustification is necessary to make the MLS work, even
assuming that % is described correctly.

Robustness is an important addition to maximum likelihood theory. Whether it applies
to summary or estimation, or both, is still a point of debate. See Pratt’s comments on
Stigler’s paper (1977) for an incisive discussion. The robustness literature is mainly
decision-theoretic in character, and represents a potentially major Waldian contribution
to the practice of statistical estimation. Robustifying maximum likelihood in a way which
retains the convenience and generally high efficiency of Fisher’s theory is a formidable
project. Good progress has been made in robust regression and a few other areas; see
Huber (1981).

7. Some remarks on the MLE.

REMARK A. Suppose 0 increases monotonically as we move from left to right along
% in Figure 3. The MLE 6 will be smaller or greater than the true value 6 as p falls to
the left or right of #(8), since 8 (w(8)) = 6, because of Fisher consistency. But p ~
Mult(n, 7(8))/n has a limiting normal distribution centered at 7(8), so that

(7.1) Prob{f < 8} = .50 + O(n"?).

In general, asymptotic median unbiasedness to order n™'2 holds for the MLE under
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reasonable regularity conditions. The same result to O(n™") is true for unbiasedness in the
usual expectation sense; see Cox and Hinkley (1974, page 310). Unbiasedness is a popular
property among consumers of statistical methods since it conveys a feeling of scientific
objectivity. This point comes up again in Section 8, where we discuss estimates which are
deliberately biased.

REMARK B. Once we have calculated the MLS f, we have available the MLE for every
possible parameter y(f). The automatic way in which it produces estimates for even very
complicated parameters is another popular feature of maximum likelihood estimation.
This is particularly true since modern computers have made MLE computations feasible
in most situations.

The fact that it automatically estimates all possible parameters strongly suggests that
the MLE can be non-optimal if the statistician has one specific estimation problern in
mind. Arbitrarily bad counterexamples, along the line of the e’ example in Section 4, are
easy to construct. Nevertheless the MLE has a good reputation, acquired over 60 years of
heavy use, for producing reasonable point estimates. Useful general improvements on the
MLE, such as robust estimation (Section 6) and Stein estimation (Section 8), are all the
more impressive for their rarity.

REMARK C. Uniform minimum variance unbiased estimation is perhaps the best
known competitor to the MLE. Its major defect relates to Remark B: unlike the MLE, it
is difficult or impossible to produce UMVU estimates in most situations. (Imagine how
popular UMVU estimates would be if they could always be produced as easily as the
MLE))

Bayesian estimation, most often using a squared error loss function, is another compet-
itor just as universal as the MLE approach. A perceived lack of objectivity, Remark A,
seems to be the main barrier to the routine use of Bayesian methods. Efforts to construct
an objective Bayesian theory along the lines of Jeffreys (1967) have proved unexpectedly
difficult; see Efron (1978c).

REMARK D. How do the asymptotics of Section 6 relate to point estimation? If G is

Fisher consistent for 6, but ﬁrst-order inefficient, then (6.13) and (6.14) show that § is
asymptotically inferior to 6 as a point estimator of 6, for any reasonable loss function.
) If 6 is first-order efficient, then a more careful statement is necessary: some function of
8, not necessarily 4 itself, will asymptotically dominate §. Ghosh, Sinha, and Wieand (1980)
gave a nlce discussion and proof Their approach can roughly be described as follows: let
B(O) =Eof —0) Thenf =46 + ,8(0) has the same expectatlon as 0, and less variability,
to a high order of approximation. It is § which asymptotically dominates 6. Here we are
using 8 to correct itself by estimating 8, much as it was used to estimate & in Section 5.
Notice however, that this theory does not automatically produce a good estimate for 4. All
that is said is how to find one as good or better than a given estimate 4.

REMARK E. The MLE “maps correctly” in the sense that if § = g(y), then 8= g(y).
This mapping property will hold for any estimation method which first estimates the
entire probability mechanism f, and then reads off parameter estimates as if the estimate
of f were true. Minimum distance methods, mentioned in Section 6, are usually used in
this way.

REMARK F. Suppose A(X) is an ancillary statistic, one whose marginal distribution
does not depend upon the unknown parameter 6, so that we can write the density function
as

fo(x) = fA(a) ff4(x|a).
Notice that the MLE 9, the maximizer of f;(x), is also the maximizer of f¥'* (x |a). If
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v(8) is any function of 6, then the MLE y = y(é) has the same value whether or not we
condition on A = a. Here 6 is assumed to have an intrinsic meaning which can be defined
without reference to % and y(6) is a function of § which does not depend on how 8 relates
to & In (4.4), for example, y = e’ is allowable but ¢ = Sd (7 ) is not, as the next paragraph
shows.

Fisher (1934) argued persuasively that it is more relevant for statistical inference to
consider the conditional family of distributions #(a) = {f¥'“(x|a), § € ©} than the
unconditional family # = {fy(x), § € 6}. The MLE é, or y for any function y(8), is the
same in either case, but the MLS is different: f¥'*(x|a) versus f;(x). (Hinkley (1981)
makes the important point that the discarded factor f4(a) is crucial for testing the
adequacy of the family %)

This distinction concerning the MLS has important practical consequences. The stan-
dard deviation parameter ¢ is estimated differently at (5.1), depending on which MLS is
used. Consider the case Yvhere 0 is real-valued, and where the parameter of interest is 6
itself, so that ¢ = Sd(#). Efron and Hinkley (1978) and Hinkley (1980), show that
approximation (5.2), ¢ = 1/ NI appropriate for the unconditional family % is better

replaced by
. o 3’
e = 1/VI(x), I(x) =—6—0210gf6(x)

=0
in #(a).

REMARK G. Suppose the observed data x were obtained by some form of sequential
sampling. The football data, for example, might have been collected from the beginning of
1969 until the first time Cockroft kicked successfully from beyond 50 yards. As in Remark
F, this does not affect the MLE é, but does change the MLS.

REMARK H. Suppose the data consists of two parts, say x = (y, z), but we lose z. Let
9(y) be the MLE based just on y. We can imagine augmenting y with an infinite amount
of artificial data generated according to fiy)(z|y). If z were discrete, taking on K possible
values, the artificial data would consist of values (y, z,), (y, z2), - - -, (¥, Zx), with proportion
fooy (2 |y) of (y, z:). The maximum likelihood estimate of 6 based on the artificial data set
still equals 9(y). (Proof below.) This self-consistency property of the MLE has been
rediscovered in many different contexts since Fisher’s original papers. Dempster, Rubin,
and Laird (1976) make it the basis of their EM algorithm for calculating the MLE in

missing data situations.

PROOF OF SELF-CONSISTENCY. Let /¥ (y) be the marginal density of y, andf} (y) =
(8/36) f3 (y). Then
— fg(y)(y) _ fé‘(yy Z) fé(y)(y’ Z) _ fé(y)(y) Z)

= = = A dz.
To® ) To® D Fie® ] Frp® 7 lo(@1¥) da

(7.2) 0

The last quantity in (7.2) equaling zero shows that 9(y) satisfies the MLE equations for
the artificial data set, pretending that the artificial data is an i.i.d. sample (of infinite size)

from fy(y, z).

Remarks E, F, G, and H show four invariance properties of the MLE. These are
advantageous to the statistical practitioner, who gets the same estimate under a variety of
changing circumstances and hence can worry less about the circumstances. On the other
hand, worrying about the circumstances may give better estimates, as in the e’ example or
the baseball example of the next section.

8. The MLS, MLE, and Stein’s phenomenon. The second column of Table 1, taken
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from Efron (1975a) and Efron and Morris (1975) shows the observed batting averages of 18
major league baseball players after their first 45 times at bat in 1970. We assume that each
player’s results are independent Bernoulli trials, with true probability ; of a hit for player
l)

1 (“hit”) 0;
81 X,= prob. indep.i=1,2,...,18, j=1,2, ...,45,

0 (“out”) 1-6;

so that the MLE §; = = ;Xij /45 has expectation 6; and variance of=6,(1— 6:)/45.
The maximum likelihood summary is (8.1), with 6; replacing 6;,

A

1 ;
(8.2) MLS: X} = prob. . indep.i=1,...,18, j=1,...,45;
0 1-6;

Knowing the MLS is equivalent to knowing the sufficient statistic § = (,, - - -, f5), so that
the MLS perfectly summarizes the data in this case.

Stein (1955) pointed out a disturbing phenomenon of high dimensional ‘maximum
likelihood estimation. For the data in column 2 of Table 1, we calculate =%,(6; — 6.)*> =
.083. However, for hypothetlcal data calculated according to the MLS (8.2), defining or
=3,X};/45 and 6* =3, 0*/18 it is easy to see that EX (6F —6%?2 = .157, nearly twice the
observed value. The probability that =; (0 —6*)? will be equal or less than .083 is about
.034. We can see that the MLS (8.2) is unlikely to have generated the type of data actually
observed!

Stein’s phenomenon suggests that it is dangerous to read a certain parameter y from
the MLS, namely y = 2(0 —0.)2. The MLE 7 = 3(6; — 6.)%is strongly biased upwards’,
by amount (1 — 1/ k)Z, 107, k = 18. James and Stein (1960) used this fact to construct an
est}mabe 6=, ---,0) which, under normality assumptions, is always closer to # than
is @ in terms of expected squared distance,

(8.3) é,-=é.+{ i-yi)"—}(o d.).

Column 4 of Table 1 shows the §;, computed from (8.3) with o = 8.(1 — .)/45 = .0043. In
the baseball example, we have good independent estimates of the true 6;, and we can see
the superiority of d over 6:3(8; — 9%/ Z(éi — 6;)* = .29. Details of this calculation appear
in Efron and Morris (1975), and Efron (1975a).

Usually the statistician is not interested in simultaneously estimating all the 6;. A
typical situation is that certain low dimensional functions of @ are of particular interest,
often linear contrasts y. = Z¢;0;, where Z¢; = 0. (For instance in an ANOVA model, y.
might be the difference between two main effects.) A disturbing question raised by Stein’s
phenomenon is which linear contrasts vy. can safely be read off of the MLS, i.e., estimated
by the MLE 7.? Table 2 illustrates two aspects of the answer.

In the left half of Table 2, y. = % 246, — % Zp0;, A = {1, 2, 3,5, 6,9, 13, 16, 17} and B
= {4, 7, 8, 10, 11, 12, 14, 15, 18}. We might think of A as a Treatment group and B as a
Control group. In fact A consists of the nine best hitters, as measured by the true 6; in
column 3, and B the nine worst hitters. This choice is guaranteed to make the “treatment”
effective, but since the data going into column 3 is independent of Qhat in colqmn 2, Table
1, we can still legitimately compare estimating y. by y. = % 246, — % Zg8; or by 7. =
% =40, — Y% =56

Table 2 shows the MLE estimating y. quite well in this case, y. = .047 + .031 compared
to the true value y. = .056. The James-Stein estimate y. = .010 % .016 is much too small.

! In the context of Remark A, Section 7, let y(6) = 92 and suppose that the true value of 6 is near
zero, in the sense that both events {0 > |0} and {0 < —|8|} have substantial probability of
occurrence. Then the argument of Remark A fails for , and Prob {y > v} is substantially greater than
0.50. Essentially the same argument applies to y = =6, - 8.)%
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TABLE 1
1970 batting averages for 18 major league players after their first 45 at bats. Taken from Efron
(1975a) and Efron and Morris (1975)

. A Parameter §; James-Stein At .bats,
i MLE 6; . remainder of
value 0; estimator
1970

1 0.400 0.346 0.293 367

2 0.378 0.298 0.289 426

3 0.356 0.276 0.284 521

4 0,333 0.221 0.279 276

5 0.311 0.273 0.275 418

6 0.311 0.270 0.275 467

7 0.289 0.263 0.270 586

8 0.267 0.210 0.265 138

9 0.244 0.269 0.261 510
10 0.244 0.230 0.261 200
11 0.222 0.264 0.256 277
12 0.222 0.256 0.256 270
13 0.222 0.304 0.256 434
14 0.222 0.264 0.256 538
15 0.222 0.226 0.256 186
16 0.200 0.285 : 0.251 558
17 0.178 0.319 0.247 405
18 0.156 0.200 0.242 70

Player Batting average Batting average S(6; - 6:)? Average remain-
Number after 45 at bats remainder of 7 .- der at bats =
b 2(6.~ 6) 369.3

6. = .265 season

The right half of Table 2 cuts the other way. Here y. = % 2,4 6; — % Zp0; where A =
{1,2,...,9} and B = {10, 11, - - -, 18}; that is, y. is the true difference in average between
the nine players with the highest observed average in their first 45 at bats, and the nine
players with the lowest observed averages. In this case the James-Stein estimate .023 +
.016 is near the true value .010, while the MLE .111 + .031 greatly overestimates the true
difference.

Table 2 illustrates a general effect: prechosen contrasts (and other low-dimensional
functions of @) are well-estimated by the MLE. Contrasts obtained by “data-snooping” are
better estimated by the James-Stein method. For any contrast y., we have y. = (factor) ¥,
where (factor) = {1 — (k — 3)0?/7} is always less than 1. Shrinking the apparent contrasts
Y. toward zero is based on a Bayesian argument, see Efron and Morris (1972). The Bayesian
argument breaks down for prechosen contrasts, ones for which there is a priori belief that
an interesting effect may be present. This fact is noted in the original James-Stein paper
(1960), which suggests that a priori interesting contrasts be separated out and estimated
by maximum likelihood.

In a real data analysis, questions often arise which are neither prechosen nor purely a
result of having looked at the data. As an example, consider the question of whether or not
coffee drinking increases occurrence of pancreatic cancer. MacMahon et al. (1981) report
an estimated relative risk for coffee drinkers that is significantly greater than 1, with
significance in the range .01 through .05. The original subject of the MacMahon study was
the relationship between smoking, alcohol consumption, and pancreatic cancer. The
relationship with coffee consumption was, as the authors clearly state, unexpected. On the
other hand it turns out that there is some older epidemiological evidence for a possible
connection, and a single striking case history of husband-and-wife pancreatic cancer victims
who had fortified their ground coffee with extra coffee syrup. Here we are in the
uncomfortable middle ground between prechosen and purely post-hoc effects.
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TABLE 2
Estimates of two differences between the baseball players. Difference 1 is a prechosen contrast,
while Difference 2 is chosen on the basis of the observed data. The estimate of standard error for
the MLE is the usual one based on binomial variation. For the James-Stein method, the estimate
of error is an empirical Bayes standard deviation, as explained in Efron and Morris (1975).

A

6; b, 0; 0; b; 0;
MLE JS TRUE MLE JS TRUE
Average, 9 Best .289 .268 .293 Average, 9 Appar- 321 275 270
Players ent Best
Average, 9 Worst 242 258 237 Average, 9 Appar- 210 251 .260
Players ent Worst
Difference 1 .047 .010 .056 Difference 2 111 .023 .010
(Error) (.031) (.016) (Error) . (.031) (.016)

The James-Stein estimate is a dramatic decision-theoretic contribution to estimation
theory—as is the closely related theory of empirical Bayes estimation, Robbins (1956). It
has not yet been incorporated into common statistical practice. Part of the delay relates to
Remark B, the reluctance of scientists to report highly biased estimates. See Efron (1975a)
and Efron and Morris (1972). A bigger question, in the author’s opinion, relates to the
pancreatic cancer example: how do we construct improved estimates in the “uncomfortable
middle ground”? A successful answer is likely to be at least partly Bayesian while still
enjoying good frequentist properties, as in the James-Stein estimate itself.

As a final example, consider fitting a polynomial regression model

(84) Xi = Z}LO oij(tl) + €, 1= ]_, 2, cee,n,

where the ¢, are i.i.d. 4#7°(0, ¢?), and P;(¢) is a polynomial of degree j in the real variable ¢.
The polynomials P, are chosen to be orthogonal so that the least square (MLE) estimates
6, are mutually independent with equal variance. The value J is chosen deliberately large,
so that we are certain that Y ;21 6, P, (¢) is sufficient to describe the true regression function,
but we suspect that a lower degree polynomial may be adequate.

Various hypothesis-testing sequences have been suggested to select the appropriate
degree oJ, for the fitted polynomial ¥’ ;% 6, P,(t): step-down regression, step-up regression,
etc.; see Chapter 6 of Draper and Smith (1981). These amount to specific recipes for going
through the summary-comparison-inference cycle described in Section 3.

James-Stein estimation is a strong competitor in this situation, as are related methods
such as ridge regression. We might estimate the first few coefficients, say 6o, 61, 6z, by
maximum likelihood, and then shrink 93, cee, 4, towards 0, as in (8.3) but with 6. replaced
by 0. There are good theoretical grounds for believing that the regression estimated in this
way is closer to the true regression than is that estimated by the hypothesis testing
methods; see Sclove et al. (1972).

At this point we are verging on a new methodology for making summaries. The MLS
is difficult to beat when the family of models # is well specified, but that is not the case
for a stepwise fitted regression ¥ ;2 @ P,(¢#). On the other hand, can we use the James-
Stein estimated regression in a summary mode, reading off estimates of parameters of
interest as we do with the MLS? Objections can be raised. For example, the estimate of
the cubic component §; may be strongly biased toward zero. This can be unacceptable if
it later turns out that the magnitude of the cubic effect is of crucial importance to the
scientific interpretation of the experiment.

The James-Stein estimate suggests a more advanced approach to model building, and
therefore to the summary of data using probability models, an approach which felicitously
uses both Bayesian and frequentist ideas. So far this is just a suggestion. It will be no easy
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task to construct a comprehensive theory which incorporates both biased estimation and
believable summary statistics.

9. Acknowledgement. Peter Bickel, Persi Diaconis, and David Hinkley have given
me a great deal of useful advice in the preparation of this paper. Of course, they are not
responsible for the way in which that advice was used.
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