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SIMULTANEOUS CONFIDENCE INTERVALS FOR ALL DISTANCES
FROM THE “BEST”

By Jason C. Hsu

The Ohio State University

In practice, comparisons with the “best” are often the ones of primary
interest. In this paper, parametric and nonparametric simultaneous upper
confidence intervals for all distances from the “best” are derived under the
location model. Their improvement upon the results of Bechhofer (1954),
Gupta (1956, 1965), Fabian (1962), and Desu (1970) in the parametric case is
discussed. In the nonparametric case, no comparable confidence statements
were available previously.

1. Introduction and statement of the problem. Consider a balanced one-way
layout with 2 = 2 populations. A number of procedures for comparing all pairs of
populations are being used today. Of these, only Tukey’s and Scheffé’s procedures give
simultaneous confidence intervals. However, it often happens in practice that only com-
parisons with the “best” are of primary interest. In this paper we derive parametric and
nonparametric simultaneous upper confidence intervals for all distances from the “best”
under the location model. These confidence intervals are sharper than those that can be
deduced from Tukey’s or the nonparametric analogue of Tukey’s simultaneous confidence
intervals (p. 243, Lehmann, 1975) respectively.

In the parametric case these confidence intervals represent a substantial strengthening
of a result of Fabian (1962) on the Indifference Zone selection procedure of Bechhofer
(1954). They allow fuller assessment of the data than the selection procedure of Desu
(1970). Our approach also enables us to significantly strengthen the basic probability
statement associated with the Subset Selection procedure of Gupta (1956, 1965). In the
nonparametric case no comparable confidence statement was available previously.

Let my, ---, m be k independent populations. Assume that the distributions of the %
populations differ in location only. Fori =1, ... , &, let F'(x — 6;) be the distribution of X
in 7; and let Xj;, .- -, Xi» be a random sample from ; so that the joint distribution of X,
coo Xy oo s Xbty oo oy Xinis [[1 [[2=1 F (x:0 — 6;). The “best” population is the population
with the largest location parameter. Let 8 = (6, - - - , 6:) and let

Oy =--- =6

be the ordered location parameters. We shall derive 100P*% simultaneous upper confidence
intervals for

Oy — 01, -+, Oy — O

where we assume 1/k < P* < 1. The probler;l of simultaneous lower confidence intervals
for the same parameters is essentially different and is not discussed in this paper.

2. Confidence intervals for means of normal populations. Let F(x) = ®(x/0),
the distribution function of a normal random variable with mean 0 and standard deviation
a. We consider two cases according as o is known or unknown. ’
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2.1. 0 known. LetX,, ---, X, be the sample means of the % populations. For notation,
let

X[l] = ... _<_X[k]

be the ordered sample means. Let 7, be the unknown “best” population, i.e. E(Xy) =
011 In case more than one population has a #-value which is tied for the largest, then
exactly one of these tied populations is defined to be the “best” population 74, according
to some fixed rule.

Let di p- be the constant such that

P(ZkEZ,—dk_p' for i=1,~-',k—1)=P*’

where Z,, - - -, Z, are 1.1.d. standard normal random variables. It is easy to see that d; p- is
the solution of

J "2 + dpp) dO(2) = P*,

where ® is the standard normal distribution function. Tables of d.p+ can be found in
Gupta, Nagel and Panchapakesan (1973), Gupta (1963), Milton (1963), and Bechhofer
(1954).

Fori=1, ..., k, define

D, = max(max,« X, — X, + dyp-0/n, 0).
THEOREM 2.1. A set of 100P*% simultaneous confidence intervals for
Oy — 61, -+, Oy — O
is given by
(2.1) [0, D], «++, [0, D]
Proor.
P*=PZw=2Z —dpp for i=1,---,k, 1 # (k)
=P(Xp — b= X, — 6, — dppo/vn for i=1,-.-,k  i#(k)
=P(Xpy — O =X, — 0, — drpo/Nn for i# (k),0=0p —0,i= (k)
< P{max(max,. X, — X, + dip-o/Vn,0) =0y — 6, for i=1,.--,k)}
(2.2) =P(D, =0 —0, for i=1, -+, k).

REMARK 2.1. The probability (2.2) depends on the true parameter 8. However, if 6,
— -1 = di.p* o/\/; then the occurrence of the event { X — ;= X, — 0, — dk,pto/s/r_z for
i=1,..+,k, i (k)} implies X = X It follows that the nominal confidence coefficient
100P*% is attained whenever P* = 1/k and n = {dyp+0/ 6tz — Opp-1)} 2.

2.1.1. Relation to the Indifference Zone Selection Procedure of Bechhofer (1954).

Bechhofer (1954) considered the problem of selecting the “best” population when the
“best” and the remaining populations are sufficiently apart, that is, 8. — fz-1) = 6 * where
8* is a specified positive constant. Bechhofer’s procedure, which shall be denoted by
Rp(P*), is as follows:

R3(P*): Select the population yielding Xix.
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A Correct Decision (CD) is the event that the selected population is the “best” population.
Bechhofer (1954) showed that if, in designing the experiment, n is set so large that

dypa/Vn < 8%,
then
(23) P{CDIRB(P*)} = P* for all 4 such that 0[;;] - 0[)171] = §*.

If we define s to be the index of the selected population (i.e. 7, is the selected population),
then it is known that one can give the confidence statement concerning the single
parameter ) — 0,

(2.4) - Pl — 0s < 6*) = P*.
Fabian (1962) showed that (2.4) can be strengthened to
(2.5) P(6'[k] -6, =< Ds) = P*,

Our result is
Pl —6.<D;, for i=1,...,k)=P*

In other words, we have shown that without decreasing P*, (2.5) can be strengthened to
include the & — 1 additional confidence intervals [0, D;],i =1, -+, k, i 5 s, for ) — 0, i
=1,.--,k is#s.

2.1.2. Relation to the Selection Procedure of Desu (1970).
Desu (1970) considered the problem of selecting a subset of the populations so that
none of the selected populations is “bad.” More precisely, his formulation is as follows:
A population 7; is said to be
“good” if O — 6, < 6¢F
“bad” if6'[k] - 0; =8¢
where 8f, 63 are specified constants such that 0 < 8} < 8%. If S denotes the set of selected
populations, then Correct Decision (CD) is the event {fix; — 6; < 8¢ for all m; € S}.

For selecting normal populations, Desu’s procedure which shall be denoted by Rp(P*)
is as follows:

Rp(P*): Select m, iff Xy — X; + dypeo/vn < 8.

To ensure that a nonempty set is selected, in designing the experiment, n must be set so
large that

(2.6) dipeo/Vn < 83.
Desu (1970) showed
2.7 Py{CD|Rp(P*)} = P* for all € R*
so that after selection one can give the confidence statement
PO — 0.< 6% forall m €S)=P*

His proof of (2.7) involves first finding the least favorable configuration for fixed ¢, and ¢,
where ¢, and ¢, are the number of “good” and “bad” populations respectively, and then
minimizing over #, ¢. It can be readily seen that (2.7) follows immediately from the
confidence statement (2.2) of Theorem 2.1 and the above steps are unnecessary. In fact, it
is plain for the same data set, the simultaneous confidence intervals given by Theorem 2.1
allow fuller assessment of the data than Desu’s procedure. While Desu’s procedure asserts
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only that all those selected are within 85 of the “best,” the simultaneous confidence
intervals not only give bounds which are always sharper for the same populations, but also
bounds for the populations not selected by Desu’s procedure.

2.1.3. Relation to the Subset Selection Procedure of Gupta (1956, 1965).

Gupta (1956, 1965) considered the problem of selecting a subset of the populations to
contain the “best” population. A Correct Selection (CS) is the event that the selected
subset contains 7, the population associated with z;. (Recall that in case more than one
population has a #-value which is tied for the largest, then exactly one of these tied
populations is defined to be the “best” population =4, according to some fixed rule.)
Gupta’s procedure which shall be denoted by Rs(P*) is as follows:

Rg(P*)Z Select i iff K = X[k] - dk,pto/\/l—l.
Gupta (1956, 1965) showed
(2.8) P,{CS|Rg(P*)} = P* forall 8€ R*.

One criticism of the subset selection formulation has been that while one asserts that the
selected subset contains the “best” population with a probability of at least P*, no
statement is made concerning the individual populations in the selected set. The following
derivation shows, however, that (2.8) can be strengthened.

P* = P{Zy4) = Z; — drp+ for i=1,...,k l?é(k)}
(2.9) =P{Xp—Om=Xi— 0. —dppo/Vn for i=1 .-,k i%* (k)
= P{X(k) ZX[k] — dpp* 0/\/; and H[k] —0,<D; for i=1,-...,k}.

Since {CS} = { X = Xip) — dk’P'O/\/;} for Rg(P*), we have shown that for Gupta’s
procedure Rg(P*), not only can one assert (2.8), but without any decrease in P* one can
also give the simultaneous upper confidence intervals (2.1) for distances from the “best”
for all the populations.

2.2 0 unknown. We use the same notation as before. In addition, since o is unknown,
we estimate o by
W= (3£ Yr 1 Xie — X)?/k(n — 1)},

the usual pooled estimator of o with v = k(n — 1) degrees of freedom. Let dpp+, be the
constant such that

P(ZkZZi—dk,Pt,vW for 1=1, ~--,k—1)=P*,

where again Z,, ..., Z; are ii.d. standard normal random variables and W is a x,,/«/l?
random variable independent of Z,, - - . , Z;. It is easy to see that d; p-, is the solution of

f f oz + dipro w) dO(2) dQu(w) = P*,
0 —o00

where again ® is the standard normal distribution function and @, is the distribution
function of a x./ Vv random variable. Tables of djp+, can be found in Gupta and Sobel
(1957), Dunnett (1955), and Krishnaiah and Armitage (1966).

Fori=1, ..., k, define

D! = max(max., X, — X, + dip-,W/n, 0).
THEOREM 2.2. A set of 100P*% simultaneous confidence intervals for

Oy — 01, + -+, Oy — O
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is given by
(2.10) [0, D], ---, [0, Di].

Proor. Similar to Theorem 2.1.

REMARK 2.2.1. Under the formulation of either Bechhofer (1954) or Desu (1970), when
o is unknown, multi-stage (such as two-stage or sequential) sampling is required. In

contrast, the simultaneous confidence intervals (2.10) given by Theorem 2.2 enable the
researcher to assess the data for single-stage designs.

REMARK 2.22. For ¢ unknown, the Subset Selection procedure proposed by Gupta

(1956, 1965) which we shall denote by RG(P*) is as follows:
R&(P*): Select m; iff X; = Xy — diproW/Vn.

Gupta (1956, 1965) showed
(2.11) P,;,{CS|R&(P*)} = P* for all # € R*, 6 > 0.
Analogous to 2.1.3, it can be shown that
(212) P*<P{Xp =Xy — drpoW/Vn and Opy—0:;<D; for i=1,---,k}.
Since {CS} = (X = Xip) — drpr o W/ ~/r_t} for R&(P*), again the comment at the end of
Section 2.1.3 applies.

3. Nonparametric confidence intervals. Suppose F is absolutely continuous with
density f but otherwise unknown. For notation, let R/*(A) denote the rank of Xj, —A in the
combined sample

Xity -+, Ximy X — A, «++, Xjn — A
Forl=ij<kisJjlet
3.1) S{(A) = (2/n){Ta-1 a2 (RI*(D)) — naan},

where an(-) is a given score function converging in quadratic mean to a square integrable
function ¢(-):

1
limys e f {am(1 + [um]) — ¢(u)}? du = 0.
0
Here

1
a=m" Y anla) > f o(u) du=¢
0

and [um] denotes the largest integer contained in um. In case of ties, average scores are to
be used. For notation, let S} = S%(0).

We assume an(-) is a nondecreasing function and ¢ is non-constant.

As in hypothesis testing, we are particularly interested in the scores

(3.2) anla, fo) = E{o(US, f)}, l=a=m
and the approximate scores
(3.3) am(a, fo) = o(a/(m + 1), fy), l<=a=<m
where
y —1
olu, fiy = —PEC@) =y 1

fo(F5' ()’
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Here Uy is the ath order statistic of a sample of size m from the uniform distribution.
As before, let

y=--- =6y

be the ordered unknown parameters. Let 7 be the “best” population, i.e. the population
associated with 6, resolving ties as in the previous section.
Let ci.p+» be the smallest number such that

Po(SfZ—Ck,p‘,n fOI' l=1, --',k—l)ZP*,

where P, indicates that the probability is computed under 6, = .- . = §,.
Forl=ij=k(i#)),let

D! = inf{A: S/(A) < —cr.pr )
andfori=1, ... &k, let
D} = max(max;., D/, 0).
THEOREM 3.1. A set of 100P*% simultaneous confidence intervals for
Oy — 61, -+, Oy — Or
is given by

(3-4) [Or Dik]) ] [0: Df]

Proor.
P*<P{S® (0 — 0) = — crpn for i=1 ...k  i% (k)
=PD® =04 — 0, for i=1,---,k i%(k)
=P(D® = 0py—0; for i=1-..,ki#((k), 0=0u,m—0, i=(k)
< P{max(max;x; D’, 0) = fy;— 0, for i=1,... k)
=PDf=6;—0, for i=1, ... k).

ExaMPLE 3.1 Confidence intervals corresponding to the Wilcoxon statistic.
Consider the case when the scores are defined by (3.2) where f, is the logistic density so
that S{ are essentially the two-sample Wilcoxon statistics. For 1 < i, j < k(i # j), let

Dy =--- =Dy

denote the n? ordered differences Xjw — Xip, 1 =, B=<n.Let reprn = {n(2n + 1)/4}crprn
+ 1. Then it can be shown that

D,j = D{[n2/2'+rk‘,,.',,]
so that
(3.5) D¥ = max(max w; Diin2/2+r, 3, 0).

Tables of r p+.(more precisely, of n(2n + 1)/2 + rip+,) can be found in Miller (1966) and
Steel (1959).

ExAmPLE 3.2. Confidence intervals corresponding to the median statistic.
Consider the case when the scores are the approximate scores defined by (3.3) with fo
being the double exponential density so that

§{(8) = (2/n) i1 sign(R*(A) — (2n + 1)/2),

where sign (x) = 1,0,or —lasx >, =,0or <0. For1 < Lj<klet
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Xi[l] < e < X,‘[n]
Xim< -+ <Xjm

be the ordered samples from the ith and jth populations. Let msp+,, = (n/2)ck.p+». Then it
can be shown that

D{ = ¢Xj[(n+m,,’P.‘n)/2+ 11— XLI(n—m,,‘P..")/Z]
so that
(3.6) D} = max(max., X/[(n+m,,‘,,.v,,)/2+ n—X i[(n—my, pe )/2) 0).

There does not appear to be any published table of m g+, at the present tim~

REMARK 3.1. Lehmann (1963a) considered selection procedures that have the same
form as the procedure of Bechhofer (1954) except that k-sample statistics based on joint
ranks were used in place of the sample means. Randles (1970) and Ghosh (1973) considered
selection procedures that have the same form as the procedure of Bechhofer (1954) except
that point estimators based on ranks were used in place of the sample means. However, in
contrast to the situation in 2.1.1, these procedures cannot give confidence statements of
the kind given by Theorem 3.1.

REMARK 3.2. A class of nonparametric subset selection procedures based on the
statistics (3.1) has been proposed by Hsu (1980). Analogous to 2.1.3, the basic probability
statement associated with these procedures can be strengthened to include the simulta-
neous upper confidence intervals (3.4) for all distances from the “best”.

The relative efficiencies of confidence intervals can be measured in terms of their
abilities to exclude false parameter values. We define the asymptotic relative efficiency
(ARE) of a set of 100P*% confidence bounds D* relative to another set of 100P*%
confidence bound D to be the reciprocal of the limiting ratio of sample sizes needed so that
they have the same limiting probability of excluding parameter values ¢ = (y{”, ...
v¥) where

\l/,(n) = 0[” -0, + 8,-/n1/2 + o(nl/z). 6;>0)

In the sequel we assume F has a finite variance of o2.

THEOREM 3.2. Suppose f is bounded, then the ARE of the confidence intervals (3.5)
relative to the confidence intervals (2.10) is 1202 [*, f*(x) dx.

Proor. The asymptotic distribution of {n'/*(D4 — (6; — 6.)), i # j} can be obtained by
getting the asymptotic distribution of {n"*(D} — (0 9)), i < j} along the lines of
Lehmann (1963b), and then using Theorem 1 of Sen (1966). A comparison with the
asymptotic distribution of {n"*(X; — X; — (6, — 6,)) + dup-. W, i # j}yields the result.

REMARK 3.3. AREs for other confidence bounds D* with smooth ¢ satisfying the
regularity conditions of Koziol and Reid (1977) and Theorem 1 of Sen (1966) can be
obtained as outlined above using the results of those two papers.

THEOREM 3.3. Let &2 = inf{x: F(x) = '%}. Suppose, in a neighborhood of &, f is
positive and has a bounded derivative, then the ARE of the confidence intervals (3.6)
relative to the confidence intervals (2.10) is 40%f*(£12).

Proor. Here we utilize the well known asymptotlc distribution of sample medians and
the results of Bahadur (1966).
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TABLE 1
P* =95

v\k 2 5 10 20 30 50

2.48 3.34 3.78 4.17 4.37 4.62

15 3.01 4.37 5.20 5.96 6.38 6.89
30 2.40 3.19 3.59 3.92 4.10 4.31
2.89 4.10 4.82 5.48 5.83 6.27
60 2.36 3.12 3.50 3.82 3.99 4.19
2.83 3.98 4.65 5.24 5.57 5.96
o 2.33 3.06 3.42 3.72 3.88 4.07

2.77 3.86 4.74 5.01 5.30 5.65

Comparisons of dp» (upper entry) and q.r . (lower entry)

TABLE 2
P* =99
u\k 2 5 10 20 30 50
;5 368 454 499 538 558 58
417 556 644 726 773 830
g0 347 420 459 492 510 530
389 505 576 641 677 722
o 338 406 441 472 488 507
376 482 545 602 633 6.1
o 329 3% 425 452 467 485

3.64 4.60 5.16 5.65 5.91 6.23

Comparisons of dip» (upper entry) and qrp . (lower entry)

4. Concluding remarks. If comparisons with the “best” are the ones of interest, then
the results of this paper are sharper than those that can be deduced from an all pairwise
comparisons procedure. For example, in the setting of 2.2, if one were to deduce from
Tukey’s procedure upper bounds for #z; — 6, i =1, - - -, k, one would obtain (2.10) with
Qr.p., the upper P* quantile of the Studentized range distribution, substituting for dp ..
The difference is substantial, as can be seen from Tables 1 and 2. Comparisons with
Scheffé’s procedure are of course even more favorable.
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