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AN APPROACH TO TESTING LINEAR TIME SERIES MODELS

By D. S. PoskIiTT AND A. R. TREMAYNE

University of York

The purpose of this paper is to develop diagnostic tests for open-loop
transfer function models with autoregressive-moving average stochastic dis-
turbances using the efficient scores procedure. The tests proposed are asymp-
totically equivalent to those based upon the likelihood ratio principle and
have the advantage that they do not involve a heavy computational burden.
_Consideration is given both to the standard case of nonsingular information
matrices and to the situation obtaining when there are identifiability problems
and application of conventional large sample test procedures is not feasible.
Relationships between score tests and portmanteau tests in time series anal-
ysis are also investigated. Some simulation evidence on the finite sample
behaviour of the tests is presented and it is seen that the tests of this paper
perform well.

1. Introduction. In this paper we are concerned with the linear, time-invariant,
open-loop transfer function model
a(B)
(11) y(t) = ———x(t) + (t), t= 0) ily 12) M)
B(B) "
where B is the backward shift operator. We assume that {x(¢)} is a zero mean, non-
deterministic, stationary and ergodic process and that

a(2) = a0 + Y= izt
and
B(2) =1 - Y& B2

have no common roots. The eta process is a stochastic disturbance independent of {x(t)}
specified as

¢(B)n(t) = 0(B)e(?)
where

o(2) =1 — Y1 ¢z’
and

0(z) =1-3%2,6:2"

have no roots in common and {e(¢)} is a Gaussian white noise process with zero mean and
variance o7, i.i.d. N(0, 62). The Gaussian assumption can be replaced by weaker regularity
conditions, as in Hannan and Heyde (1972), without affecting the results of the paper. It
is further assumed that the polynomials a(z), 8(z), ¢(z) and 6(z) satisfy the usual conditions
for the model to be realisable, stationary and invertible, as discussed in Box and Jenkins
(1976, Chapter 10). The polynomial ratio a(z)/B8(z) is commonly referred to as the transfer
function and hence we introduce the acronym ARMAT((q., p.)(p, q)) for this model.
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The ARMAT model has found application in a number of fields, for example control
engineering and econometrics, where it is known as a rational distributed lag model. It has
received attention in the statistical literature and the papers of Pierce (1972a,b) and Haugh
and Box (1977) develop the familiar iterative process of identification, estimation and
diagnostic checking for such dynamic-disturbance time series models. In particular, Pierce
(1972b) extended the work of Box and Pierce (1970) and developed portmanteau type tests
which can provide a useful diagnostic check of the adequacy of a fitted ARMAT model.

In this paper, tests of linear time series models based upon the score or Lagrangian
multiplier procedure due to Rao (1948) and Silvey (1959) are developed. These are obtained
by setting up a hypothesis testing framework in which a fitted model provides the null
hypothesis and the alternative is obtained by generalising the specification. The tests
possess similar asymptotic properties to those based upon the likelihood ratio principle.
Not only is the situation where the information matrix is of full rank investigated, but also
that obtaining when there are identifiability problems present and application of conven-
tional large sample test procedures is not straightforward. Such considerations lead to an
interpretation of the tests proposed as pure significance tests, Cox and Hinkley (1974,
Chapter 3). Furthermore, in the third section of the paper the tests resulting from
application of the score test principle are compared to those of the previous paragraph and
some interesting equivalences are found.

The tests advocated have certain attractions for the practicing time series analyst in
that the score test statistic can be easily computed and the researcher need only fit the
most parsimonious model of interest. The practical usefulness of these tests is also
contingent upon their performance in small and moderate samples and, in the final section
of the paper, some simulation evidence on these matters is provided to assess the relative
merits of score and portmanteau tests.

2. Hypothesis testing. Consider the problem of testing the null hypothesis
H((g-, p-)(p, q)), that { ¥(t)} and {x(¢)} are related by an ARMAT ((g-, p.)(p, ¢)) model,
against alternatives of the form H((g, + s., p. + r-)(p +r, ¢ + 8)), 8., -, 1, s = 0. Assume
that a realisation of T observations on {y(¢)} and {x(¢)} is available and denote the log
likelihood function by I(-). In order to test the above hypothesis using the score test
procedure, it is necessary to obtain the vector of efficient scores, say T-12d, and Fisher’s
measure of information per observation. The elements of d are:

(2.1) dl/ao? = (20¢) 7 TLi1 €X(t) — T(262)7";

(2.2) /3o = 0 T et)w(t — 1) i=0,:,q +8;
(2.3) al/oB; = 0% 1 e(t)E(t — i) i=1, ., p. +r1;
(2.4) al/ad; = o2 YL, e(t)ult — i) i=1 -, p+r;
(2.5) 3l/30; = —0% Y1 e(t)v(t — 1) i=1-..,q+s.

In the above expressions w(t) = ¢(B)x(t)/8(B)B(B), £(t) = a(B)w(t)/B(B), u(t) = €(t)/$(B)
and v(¢) = e(t)/6(B). All required pre-sample values are set equal to their unconditional
expectation of zero. The effect of this assumption is simply to introduce a transient error
of O(kT),0<k<1, T— .

In what follows it will be useful to employ the following notation. For any two processes
{u(t)} and {»(#)} y..(2) will denote the cross-covariance generating function. Then

(2.6) Yuu(2) = ym(2)/0(2)0(z7"),
(2.7) Yuo(2) = 14e(2)/0(2)8(z )
and

(2.8) yoo(2) = 02/0(2)0(z7").
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Further, defining A(z) = af/B(z)ﬁ(z‘l)y,,,, (2) we have

(2.9) You(2) = A(2)yx:(2),

(2.10) Yut(2) = AM2)yae(2)a(z271) /B(27")
and

(2.11) Y2e(2) = AM2)vax(2)a(2)alz7") /B(2)B(2 7).

Now, employing the linear transformation 7 defined in the Appendix, let

0’ = [IM I"ﬁ:l

Le g
where Iuax = gqu+sf+l)(qr+sr+l)[Yuu(z)/oz]; InB = g(-qf+sf+1pr+ry)[wa(z_l)z/a?] and IBB =
Tipropera| Yee(2) /02]. Similarly, let
2 Lo Ly
0. Be= |7
: [I«w Ioo]

where Ly, Ly and Iy are defined in terms of .7 and (2.6)-(2.8) in an appropriate manner.
After some manipulation the information matrix of the ARMAT((q. + s,, p. + r.)( p+r,
g + s)) model can be shown to be

2657 0 0
(2-12) Ias = 0:2 0 21 0
0 0 2

where 8 = (6%, a0, +++,Qg45,, B1y **+, Boars B1y vy Gpir, O1y + v+, Oges) = (81, 82, +++, 8);
compare Pierce (1972a).

The testing of H((q., p.)(p, ¢q)) against H((g, + s, p, + r,)(p + r, ¢ + s)) can be
represented as a test of the restrictions that certain elements of 8 are equal to zero; i.e.,

8,=0,j=1,---,M,M =s, + r. + r + s. This leads to a consideration of

THEOREM 1. If Iss is positive definite and 8§ satisfies the restrictions §,, = 0,
Jj=1, ..., M, then the statistic
(2.13) S =T'd¥I} ' d*

is asymptotically distributed as xir (a chi-squared variate with M degrees of freedom).

The asterisk is used to denote evaluation at the point 8 = 8*, that value which maximises
1(8) subject to the constraints §;, =0, j =1, - - -, M and the unrestricted elements of 8* are
simply the usual (nonlinear) least-squares maximum likelihood estimates of the parameters
of the ARMAT((q-, p.)(p, q)) model; see Pierce (1972a). A significantly large value of S,
indicates that the restrictions imposed are not consistent with the sample data. It should
be noted that the form of the test statistic of (2.13) and the structure of Is; indicate that
the transfer function and stochastic disturbance terms of the ARMAT model can be
investigated separately. Hence the researcher may entertain the evaluation of a trio of
score test statistics, one each for the transfer function and disturbance components
individually and a third for joint misspecification of both parts of the model.

Autoregressive-moving average processes of order (p, g), ARMA(p, q), arise naturally
as special cases of ARMAT models where {x(t)} = 0. When the null hypothesis that {n()}
is ARMA(p, g) is to be tested against the general ARMA(p + r, g + s) alternative, it is
well known that an identifiability problem occurs and the matrix X, will be singular. Using
the notation established above, this can be clearly seen by recognizing that the equations

Ym(2)$(27') = v,(2)8(z7")

Yre(2)9(2) = 026(2),
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together with (2.6)-(2.8) imply that 2,w» = 0 where
Wé = (1) - ¢l”’ 0;‘—11 1) _0:1) 0;—1))

0,. being an m element column vector of zeros, ¢, = (b1, ¢2, -+, ¢) and 0, = (61,
0, ---, 0;)’; compare Hannan (1970, pages 413-414). Similar identifiability problems are
also encountered with the transfer function component of the ARMAT model. Consider
simultaneously increasing the order of both the numerator and denominator polynomials
of the transfer function in the alternative hypothesis. Recall that (2.9)-(2.11) determine
the elements of X, and, setting {A(¢)} = {¥(¢)} — {n(t)} we obtain equations

(2.14) Yan(2)B(z7") = alz7)yxa(2)
and

(2.15) vmn(2)B(2) = a(2)yxn(2).
These expressions collectively imply that the vector

(2.16) wi=1(0,a;,0,-1,-1,8,,0 1),

aq, = (a0, ay, -+ +, a.) and B, = (B1, B2, -+ -, B, ), annihilates X, when the null hypothesis
is true.

The singularities present in the information matrix when considering alternative hy-
potheses in which both r and s are simultaneously non-zero and/or r, and s, > 0 indicate
that Theorem 1 is not applicable in these circumstances. However, Silvey (1959) has
considered how to adapt the theory of the score test procedure in order to drop the
assumption that Is; be nonsingular and, in the case of ARMAT models, his modification
leads to

THEOREM 2. Assume that Iss is singular of rank N — g and that §;,=0,j=1, ---, M.
IfG=1[d,/8.]i=1,.--,N,j=1, ---, M and G, is an appropriate N X g submatrix of
G such that Iss + G1G1 is positive definite, then the statistic

(2.17) S =T7'da¥(I% + GiG1) ™' a*
is asymptotically distributed as xir—g.

The proofs of this and the preceding theorem follow from application of Billingsley’s
(1968, page 206) martingale central limit theorem to show the asymptotic normality of the
score vector and Lemmas 5 and 7, respectively, of Silvey (1959).

In order to employ the statistic of Theorem 2 the rank of the information matrix under
the null hypothesis must be known. Let p be the rank of ;. Eliminating the last r, rows
and columns of X, corresponding to the additional denominator polynomial coefficients of
the transfer function in the alternative hypothesis, we obtain a submatrix of order ¢, + s,
+ 1 + p, of full rank. Deletion of the ¢, + 2 to (q. + s, + 1)th rows and columns of X,
results in a nonsingular square matrix of order ¢, + 1 + p, + r.. Hence p = max(q, + s, +
1+ p.,q. + 1 +p,+r)=1(q.+s +1+ p, +r) — min(s,, r.). Further, let R =
diag(CqTﬂ +1, Cp+r.) where C,, denotes the m X m circulant matrix with initial row (0, 0,

, 0, 1). Using expressions (2.14)-(2.16) and (2.9)-(2.11), it follows that each of the 2
lmearly independent vectors

a, = R'w, j=0,---,h =1, h=min(s,, r.),

provides an eigenvector of X, corresponding to a zero eigenvalue. Therefore, p = (g, + s,
+ 1 + p, + r.) — min(s,, r,). An analogous argument can be employed to show that the
rank of X, is (p + r + ¢ + s) — min(r, s), so that g = min(s,, r,) + min(r, s).

The form of the restrictions employed here makes it clear that G, will be null apart
from g appropriately positioned values of unity. Although the selection of G, must
guarantee that Iss + G,G{ is of full rank, various legitimate choices are available and this
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raises the question of the effect that any particular G; has upon the test statistic. From
Rao and Mitra (1971, Complement 5(b), page 40) (Irs + G:1Gi{) ™' is a generalized inverse of
I, say I. Since d (asymptotically) belongs to .#(Is), the vector space generated by the
columns of I, it follows from Rao and Mitra (1971, Lemma 2.2.4(ii), page 21) that the
statistic of Theorem 2 is, in fact, asymptotically invariant with respect to G;.

Aitchison and Silvey (1960) point out that the selection of a G, effectively requires that
& elements of & are zero under both null and alternative hypotheses in order to obtain the
identifiability of the remaining N — g parameters. For example, one possible choice of G,
when s, = r, and r = s corresponds to implicitly testing H((g., p.)(p, q)) against the
“restricted” alternative H((g, + s, p,)(p, ¢ + s)) while another amounts to testing this
null hypothesis against the “restricted” alternative H((q., p, + r.)(p + r, q)). Both of
these tests could, of course, be conducted explicitly using (2.13). In addition, it may be
possible to represent the null hypothesis using parametric restrictions other than simple
exclusions, but a simple corollary of the above invariance is that, provided I can be
augmented by a N X g submatrix of the gradient matrix of those restrictions to obtain
nonsingularity, the test statistic (2.17) remains unaffected asymptotically. This suggests
that, when considering any particular alternative hypothesis, the researcher is actually
implicitly testing the null hypothesis against a wider range of alternatives than is imme-
diately apparent.

We also have the interesting relationship between the test statistics of Theorems 1 and
2 enunciated in

THEOREM 3. The test statistic of Theorem 1, when used to explicitly test a “restricted”
ARMAT alternative implicit in the choice of a G: is asymptotically identical to the test
statistic of Theorem 2.

A theorem of this kind is proved in Poskitt and Tremayne (1980) in the context of
autoregressive-moving average processes and its extension to the models of the present
paper is comparatively straightforward.

An implication of the results obtained above is that, when applied to linear time series
models, the score test procedure assumes the role of a pure significance test, although the
transfer function and stochastic disturbance components of the model may be considered
separately. The test procedure advocated is to be interpreted as a general specification
error test of the adequacy of a fitted model. In common with portmanteau tests, the score
test does not provide a criterion for identifying the degrees of the polynomials in (1.1) and
should be regarded simply as a device for diagnostic checking.

3. Score tests and residual correlations. The diagnostic tests previously proposed
for ARMAT models have been of the portmanteau type and are structured in terms of
estimated residual auto and cross-correlations. In view of the interpretation of the proce-
dures of this paper as pure significance tests, it seems useful to investigate the relationship
between score and portmanteau tests of linear time series models.

Consider the situation in which an ARMAT((q., p.)(p, ¢)) model has been fitted and
the adequacy of the specification of the stochastic disturbance is to be assessed. Pierce
(1972b) has suggested that the Box and Pierce (1970) statistic @p = TrX'r¥, r. = (r(1),

-, 7(K))" a K element vector of residual autocorrelations, may be employed in these
circumstances. @p is approximately distributed x%-,-, for large K if the model is correct.
If the disturbance component of the model has been incorrectly specified, then one would
expect significant values of @p to be observed. However, Box and Jenkins (1976, Section
11.3.3) point out that it is possible that a large value of @p may arise because of a
misspecification of the transfer function component. Pierce (1972b) developed a portman-
teau statistic which is specifically designed to investigate the adequacy of this part of the
model. Given the assumptions of Section 1, we may write

(3.1) x(t) = Y=o m§(t — J)
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where | Y7 | < ® and {{(#)} is a non-autocorrelated p. ~cess with variance o7 so that v,.(z)
= 7(2)m(z7 "o} Let rq = (r(0), ---, re(K)) be a K + 1 component vector of cross-
correlations between {e(t)} and {{(¢)}. Pierce shows that @r = Tr%'rZ, which is approxi-
mately distributed x%, ., can provide a useful check of the specification of the transfer
function.

Now assume that it is desired to test H((g-., p-)(p, q)) against H((q. + s,, p.)(p, q)),
s, = K + 1 using the method of scores. The score test for testing the null hypothesis against
the proposed alternative is structured in terms of the subvector T-'* d, = [T~"%3l/da,], i
=gq,+1, ..., g + s of the score vector T~/ d. The asymptotic distribution of the
subvector T d, is Gaussian with zero mean vector and covariance matrix C — B'A™'B,
N(0, C — B’A'B), where:

Au=9pp

-

[\I/(Z)\P(Z’l)a(Z)a(z_l)O?

\P(Z)\P(Z‘l)a(z*)oq
Bi(2)B*(z el

}’ Az = Z’*“””[ B(2)B*(z Nz0?

>

~1y .2
Ay = .9—((]7-0-1”(]1*'1)[11/(2)11/(2 Jot :l

B(2)B(z7ol

B’ = [Bi:B3],

’

B(Z),BZ(Z_I)U;Z :’, B; = 97(1#1)37[—'8 (Z)B(z__l)o(g

[\P(Z)\l/(zl)o?}
B(z)B(z7")e?2

- -1 -1\ .2 qr+1 -1y .2
BF%f[zwu)wz Ja(z ")} 2 (22 )a;]

C=g;s

1

and Y(2) = 7(2)¢$(2)/6(z). Finally, set

= 9 ¢(271)0{ [ ’ R
D= Js's7|:qu+_l,3(z‘_T)7;| and E’ =[Ei:E%)],
_ [z )

Using the lemmas of the Appendix we have, for s, sufficiently large 7"/* d,, = T"/*Dr.;,
C = DD, E' =+ D"'B’ and A = EE'. Therefore, if s, - o such that s,/T — 0, T"?r,;
converges in distribution to N (0,1, — E'(EE’)'E), 1,, being an identity matrix of order m.
This proves

PropPosITION 1. Ifs, — o and T — o such that s,/T — 0 then the score test statistic
and the portmanteau statistic Qr are equivalent in the sense that the score vector
approaches a nonsingular linear transformation of the residual cross-autocorrelations.

REMARK 1. In view of the idempotency present as s, — o, the statistic of Theorem 1
is not in fact available, although one could compute 7' d¥'(D*D*)"' d* = Q7.

This proposition and its proof provide a parallel to the arguments of Pierce (1972b,
Sections 2.3 and 4). The relationship between @y and the test statistics of this paper ensues
from considering the score test of H((g., p.)(p, q)) against H((q., p.)(p, ¢ + s)), s = K and
is given by

PROPOSITION 2. As s — o with T such that s/T — 0 there is an equivalence between
the score test statistic and the portmanteau statistic Qp.
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That this proposition holds can be demonstrated in a similar manner to Proposition 1.
This type of relationship has been noted previously in the context of dynamic regression
models with no exogenous regressors by Breusch (1978).

Propositions 1 and 2, together with the invariance and asymptotic equivalence prop-
erties established in the previous section indicate that, in effect, both @p and @r do test
against a wide range of alternative misspecifications. A contrast between portmanteau and
score tests, however, is that the approximations of Box and Pierce (1970) and Pierce
(1972b) rely upon K — o, though at a slower rate than T, whereas the distributional results
of this paper do not require the degrees of freedom to be large.

REMARK 2. It should be pointed out that if it cannot be assumed that the stochastic
processes of interest are characterised by a finite number of parameters, so that there are
no “true” degrees, then the consistency of the test procedure would require the degrees of
freedom to increase without bound as T'— oo,

4. Practical considerations. In Sections 2 and 3 some formal results regarding the
large sample behaviour of score tests when applied to ARMAT models were obtained. The
concluding part of this paper investigates and discusses the implementation of score and
portmanteau tests in practice.

Some authors, see for example Breusch (1978) and Godfrey (1979), have presented
score tests in terms of T times a squared multiple correlation coefficient obtained from an
auxiliary regression. This convenient computational device can be exploited when testing
hypotheses concerning ARMAT models using the statistics of Theorems 1 and 2. To
demonstrate this let € = (e(1), --- , €(T')) and X’ = [de(t)/88:],i =2, --- ,N,t=1, ..., T.
Reorder and partition X into [X;:X,] where X;is TX N — g — 1 and X; is T X g, the
subscript 2 referring to those columns of X corresponding to coefficients restricted under
the alternative hypothesis so as to obtain identifiability. The information matrix of the
N — g — 1 parameters whose derivative processes appear in X; is now nonsingular and the
statistic of Theorem 1 when used to explicitly test the “restricted” alternative can thus be
structured as

4.1) S1 = Te¥X# (X' X¥) 'Xie*/e* e*.

The statistic of (2.17) may be expressed in a similar way by augmenting € and X. Setting
€, = [€':0,] and X}, = [X": G,], where G, =[0:1,] is a g X N — 1 matrix, we have

(4.2) y = Ter'Xa (X3 X2) XX ek/eker .

Both (4.1) and (4.2) are, apart from an asymptotically negligible nonzero sample mean
correction, T times the coefficient of determination resulting from the regression of €* on
X7 or € on Xi. However, when formulated in this way, the sample quantities constituting
the matrix and vector elements of S; and S, satisfy the algebraic relationships (2.6)-(2.11).
Arguments analogous to those previously employed can, therefore, now be used to show
that the finite sample behaviour of the score test parallels the asymptotic invariance and
equivalence properties of Section 2, namely S, is invariant with respect to the choice of
generalized inverse implicit in its construction and, moreover, is numerically identical to
S:1. An important corollary of our results is that, in empirical situations, the researcher
need only ever employ the statistic S;, the precise formulation of which depending on m,
= max(s,, r;) and m = max(r, s) in order to test a fitted ARMAT model against quite a
wide range of misspecification.

The tests proposed in this paper are large sample ones and their practical usefulness
depends upon their performance with small and moderate sample sizes. Godfrey (1979)
has, in the context of autoregressive-moving average models, provided simulation evidence
that the score test performs quite well with regard to both size and power characteristics
in finite samples. In view of the more elaborate nature of the transfer function models
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considered in this paper, further investigation of the empirical performance of diagnostic
tests on both components of the model seems in order.

To provide a comparative study of the performance of the statistics of this paper, a
number of variants of portmanteau tests are included in the simulation experiments. Two
versions of these tests are used to assess the adequacy of both the disturbance and transfer
function specifications. The statistic @p and the modification to this statistic suggested by
Ljung and Box (1978), hereafter @Lp, are used to test the lack of fit of the disturbance
part of the model. The statistics @r and that with the adjustment also advocated by Ljung
and Box are employed to test the transfer function. The notation QL7 is adopted for the
latter statistic. In order to employ the variants of the portmanteau statistics under
consideration, it is necessary to decide upon the number of terms to be used in their
computation. In many applications of portmanteau tests the value of K has been as high
as 20 or 30, even when the sample size used is by no means large, possibly less than 100.
This usage appears contrary to the theoretical derivations which require not only that
K — « with T, but also that K/T — 0. With this point in mind, three values of K are

chosen, K = 20, K = [«/7‘] and K = [(1 + g) ln(T)] , n being the number of coefficients

fitted to the part of the model under test. Similarly, in the case of score tests, values of m,
and m must be selected but, by contrast with portmanteau tests, they do not require the
degrees of freedom to be large. Furthermore, if the identification stage of the model
building process has been carefully carried out, it seems unlikely that the applied worker
will, on philosophical grounds, usually wish to consider m. or m at all large. Some further
discussion in the light of experimental results is given below but these quantities are
generally chosen as 1 or 2 for the purposes of estimating the size and power of the score
tests.
The size computations are all based on the model

0.
43 Y0 =T"0sB)
which is the model 105 of Box and Jenkins (1976, Section 10.2.3) with b = 0. The input
{x(t)} is chosen as i.i.d. N(0, 02), T = 100 and 6000 replications are used to ensure an
upper bound of 0.0065 on the standard error of the observed proportion of rejections. It
seems useful (in view, for example, of the common practice of quoting “prob-values” in
hypothesis testing) to check that the empirical size of a test statistic follows its theoretical
null distribution quite closely for a wide range of significance levels and not just at
conventional values such as 0.05 and 0.1. Accordingly, a grid of 13 such values, 0.9 (0.1)0.1,
0.05, 0.033, 0.02, 0.01 is used. Table 1 presents the results for this model. This table contains
no entries for m, = m = 2 as the results for these cases are virtually indistinguishable from
those obtained with m, = m = 1. Furthermore, portmanteau statistics without the
adjustments of Ljung and Box (1978) are also absent since there is no case in our
experiments in which their size characteristics match up to those of @L7 and QLp. This
finding is consistent with that obtained by Davies, Triggs and Newbold (1977), for example,
in the context of autoregressive-moving average models. Naturally, their power character-
istics are also invariably inferior to those of the adjusted portmanteau statistics, compare
Davies and Newbold (1979), and so there seems no reason to present results for these
tests. On perusal of the body of the table, the score tests and portmanteau tests employing
the square root and logarithmic rules for choice of K appear to perform quite satisfactorily.
The final row presents values of chi-squared goodness-of-fit statistics for each test. These
indicate in the case of portmanteau tests that K = 20 is not an appropriate choice and that
the logarithmic rule is to be preferred. The score tests invariably fit the null distribution
well.

Turning to an investigation of the empirical power of the tests, a situation in which
B(2) is misspecified is first considered. The fitted model is an ARMAT((0, 1)(1, 0)) and the
alternatives generated involve ¢(2) = 1 — 0.752, ap = 0.5 and B(2) = (1 — 0.52)(1 — b2)

x(t) + €(2) t=0,*1,%2 ...,
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TABLE 1
Empirical size characteristics of score and portmanteau tests for model (4.3) with T = 100
MODEL COMPONENT
SIGNIFICANCE Disturbance Transfer Function Both
LEVEL QLo s QL: s s
K=20 K=10 K=4 m=1 K=20 K=10 K=6 m,=1 m,+m=2

9 821 885 .893 .900 .849 904 904 907 .900

.8 .695 773 .795 801  .719 .798 803 .801 .803

7 578 .661  .689 .697 .600 692 701  .698 .708

.6 481 565 589 599 494 595 595 598 .607

5 .380 465 480 507  .392 493 500 501 .507

4 298 366 .380 402  .303 386 394 408 406

3 224 273 277 301  .219 284 291 .308 .306

2 151 179 181 202 .185 182 189 202 .205

1 .080 .086 .085 .100 .064 .089 .093 .104 .100

.05 .047 048 .047 .046 .028 .047 .043 051 .048

.033 .033 033 .029 .029 .017 .028 .029 .035 .027

.02 .021 022 018 .017 .009 018 .017 .023 .018

.01 .013 011 .010 .008 .004 009 .009 .011 .009

X 633.28 61.58 34.54 12.34 40692 26.87 1546 18.81 18.43

where b takes on 19 values —0.9(0.1)0.9. A summary of the simulation results, based upon
1000 replications, is provided by the power curves for the conventional 0.05 significance
level given in Figure 1. The graph with the dot symbols relates to the portmanteau statistic
utilising the logarithmic rule which, in all simulations conducted, provides the most
powerful variant of these tests. The curve identified by asterisks is that of the score test
with m. = 1, the true value, and it is evident that this test is the more powerful for all
nonzero values of 5. When m, is incorrectly chosen as 2, the empirical power of the score
test, which is not shown on the graph, is somewhat less than when m, = 1 but is still
noticeably higher than that of @Lz.

A significant feature of both power curves in Figure 1 is their declining ability to detect
the misspecification of the fitted model as the absolute value of b is increased beyond
about 0.7. This implies that the transfer function of an ARMAT ((0, 1)(1, 0)) model can
better approximate that of an ARMAT ((0, 2)(1, 0)) for some combinations of the roots of
B(2) than for others. Examination of the Fourier coefficients of the transfer function of the
alternative model reveals that this state of affairs will obtain whenever one root of 1 — ;2
— B22” is of moderate size and the other is close to the unit circle, or trivially, near zero.
Parallel results for the disturbance component of the model are implicit in Box and Jenkins
(1976, Sections 3.2.3-3.2.4). Further Monte Carlo experiments show that diagnostic checks
for this part of the model do exhibit similar empirical characteristics to those described for
the transfer function.

In view of the theoretical content of this paper, it seems natural to consider a case in
which the information matrix of the alternative model is singular when the null hypothesis
is true. Experimental results are, therefore, presented using y(f) = aox(¢) + €(¢) for the
fitted model with the observations being generated by

(1-6:B)

=B P

(4.4) y(t) = aox(t) +
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0
Value of b

Fic. 1. Empirical power curves of score and portmanteau tests when B(z) is
underspecified: T = 100

ap = 0.5, for various values of ¢; and 6.. In this case the equivalence established in
Proposition 2 holds exactly in finite samples, so that, apart from the adjustment of Ljung
and Box (1978), the score and portmanteau test statistics would be identical if m were
equal to K. The principal difference between the two approaches to diagnostic testing in
this instance lies, therefore, in the determination of the degrees of freedom. For the
particular case of interest here m = 1 and the score test statistic equals Tr¥*(1). It is worthy
of note that Hannan (1980) discusses the likelihood ratio test for this situation and shows
that there are circumstances when this may also be near to Tr*(1). As might be expected,
all test procedures considered here are substantially more powerful when the two param-
eters ¢; and 6; are highly distinct. However, no matter how these values are selected,
assuming no parameter redundancy, the empirical power of the portmanteau test is
invariably inferior to that of the appropriate score test at all conventional significance
levels. A typical example of the performance of the tests is given in Table 2 where ¢; = 0.3

TABLE 2
Observed power of diagnostic tests when both ¢ (z) and
0 (z) are underspecified: T = 100

S‘g‘l’l‘eﬁ‘fe‘:‘“’e Qlp K=4 S m=1
9 979 .988
8 958 967
7 922 945
6 877 918
5 819 895
4 .761 .856
3 671 812
2 573 737
1 437 612
05 321 482
033 268 413
02 219 340

.01 .155 .259
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Observed power of diagnostic tests wrfz‘:rn;l,‘:(f) and 6(z) are underspecified; T = 50
MODEL COMPONENT
SIGNIFICANCE Disturbance Transfer Function Both
LEVEL QLp S QL S S
K=3 m=1 m=2 K=7 m,=1 m.=3 m+m=2 m,+m=5
9 975 980 975 .980 .978 977 992 993
8 941 954 959 944 952 941 983 .983
7 902 932 922 901 917 .903 973 966
6 858 .893 876 .847 .878 .845 953 940
5 806 859 .824 .778 835 .789 935 914
4 736 805 761 .714 .786 720 .900 .870
3 644 742 693 614 .720 633 .855 .803
2 515 .648 597 491 634 502 798 .706
1 366 516 436 .328 482 342 .689 566
.05 249 387 309 222 .361 219 541 423
.033 199 318 244 171 292 170 467 335
.02 151 260 .188 128 224 129 .398 .245
.01 107 176 115 .092  .156 079 .298 151

and 6; = 0.1. This provides an alternative interpretation of the power of a test as the
cumulative distribution of “prob-values”, with one such distribution for each null and
alternative. See Cox and Hinkley (1974, Chapters 3 and 4).

There has been no discussion of the effects of variations in certain of the experimental
design parameters; for example, generalising the stochastic structure of the input process
or altering the ratio of the variances of the signal to noise components of the model. In
fact, such variations are incorporated in the collection of simulation experiments conducted,
but they do not change any of the basic conclusions reached in a material way. All results
so far quoted use T' = 100 but the sample size can be reduced quite considerably without
appreciable loss of empirical power or unusual size characteristics arising.

In practice, an a priori choice must be made for m, and m in the absence of knowledge
about their true values. As the degree of misspecification of the polynomials in (1.1) has
hitherto always been one, it is probably not surprising that the score tests prove effective
for choice of m, = m = 1, the correct values. In order to investigate the situation when this
is not so, an alternative model is considered in whichm, =r,=3,m=s=2ands,=r =
0 in truth. Table 3 relates to this case with 8(z) = 1 — 0.73z + 0.1682% — 0.0067z% +
0.00038z* and 8(z) = 1 — 0.3z + 0.02z? and where the fitted model is ARMAT ((0, 1)(0, 0)).
The sample size used is 50 and {x(£)} is generated as a first order autoregression with
parameter 0.3. From this table, it can be seen that there appear to be no gains obtainable
from setting m, and m equal to their true values, as opposed to following the simple rule
of fixing them at unity, thus emphasizing the role of the score test procedure as a pure
significance test. One caveat to the application of this rule occurs when some or other of
the intermediate coefficients of the polynomials are zero, as may happen, for example, in
seasonal models. It is straightforward to tailor the theoretical results of this paper so as to
obtain score test appropriate for such models and also, of course, for models exhibiting
dead time or delay. An additional observation to be made from the table is that the joint
score test generally has higher power than any of the tests on individual components.
Further investigation of the replications in a case where both parts of the model are
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misspecified shows that there are realisations for which the joint test correctly rejects the
fitted null model at conventional significance levels when no other test does.

Little reference is made above to the existence, or otherwise, of contamination of
diagnostic tests for one part of the model when that component is actually correctly
specified, though the other is not. This is because it does not occur in the situations
discussed, nor, in fact in most of the other cases for which we have simulation results.
However, there are conditions when contamination does arise. (For example, when an
ARMAT ((0, 1)(0, 0)) model is fitted to data generated from an ARMAT ((0, 2)(0, 0))
model with the roots of 8(2) close to the unit circle.) In such circumstances, the joint score
test always seems to have substantially more empirical power than any of the individual
test statistics. T'o sum up, therefore, we would recommend that all three score test statistics
should be computed when applying diagnostic checks to open-loop transfer function
models in practice.

APPENDIX

Let #[2] denote the field of rational power series with real coefficients
Rzl ={pR) =32wp2' |P.ER | Niwpi| <o}

and 2 *[z] = {p(2) € #[z]| p. = 0 for i < 0}; see Birkhoff and MacLane (1977). Consider
the mapping 7% [2] — % where, for each p(z) € #[2] and each m, n € A, Tp[p(2)] = P
a m X n matrix whose ijth element is given by the coefficient of 27 in p(z). 7 defines a
linear transformation from £ [z] to the class of band matrices 4.

For the purposes of this paper the following results are useful.

LEmMMA Al. For allp(z) € (2], if Tmilp(2)] = P then Jpu[p(z™")] = P".

LEmMMA A2. Let p(2), q(2) € R*[2). If Tumlp(2)] = P and Jn[q(2)] = Q then
Imlp(2)q(2)] = PQ.

LemMA A3. If p(2) € #7[2] is such that 1/p(2) € & *[2] then, for any m, Fnm[p(2)]
= P implies Tpm[1/p(2)] = P

LEMMA Ad. If p(2), ¢(2) € #7[2] and I[P (2)] = lim T p(2)], Tl (2)] =
lim,..7.[q (2)], then: Jum[p(z")q(2)] = Jmm[p(Z‘l)]Jmn[q(Z)] lim, o Tnfp(z7)]-
Imlq (2)].

Simple algebraic proofs of these lemmas, which are implicit in the results of Grenander
and Szego (1958), are available from the authors on request.
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