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TESTING WITH REPLACEMENT AND THE PRODUCT
LIMIT ESTIMATOR

By R. D. GiLL

Mathematical Centre, Amsterdam

Let X1, X;, - - - be a sequence of i.i.d. nonnegative rv’s with nondegenerate
df F. Define N(t) = #{j: X, + --+ + X; < t}. In “testing with replacement”
(also known as “renewal testing”) n independent copies of N are observed
each over the time interval [0, 7] and we are interested in nonparametric
estimation of F based on these observations. We prove consistency of the
product limit estimator as n — o for arbitrary F, and weak convergence in the
case of integer valued X,. We state the analogue of this result for continuous
F and briefly discuss the similarity of our results with those for the product
limit estimator in the model of “random censorship.”

1. Introduction. Let X;, X;, --- be nonnegative i.i.d. random variables (rv’s) with
nondegenerate right continuous distribution function (df) F. Define T, =0, T; = Y- X;,
J=12,---and N(¢) = #{j = 1: T, = t}. We consider nonparametric estimation of F

based on the first n of an infinite sequence of independent realisations of N, each observed
over the fixed time interval [0, 7], 0 < 7 < . This situation, known as testing with
replacement or renewal testing, might arise when light bulbs are lifetested in a large
number n of sockets, failed bulbs being replaced immediately by new ones.

We call an X, such that 7, < 7 an uncensored observation: if T;_; = 7 < T, we call X
censored, for we only observe in this case that X, takes an unknown value strictly greater
than 7 — T;_,. An X, for which 7,_; > 7 is not observed at all.

If n — o the empirical df based on the uncensored observations is inconsistent. An
obvious alternative estimator of F is the product limit estimator of Kaplan and Meier
(1958) which also takes account of the censored observations; it is introduced in Section 3
of this paper. Crow and Shimi (1972) also consider nonparametric estimation of F for this
type of lifetesting and give references to examples of parametric analysis of renewal testing
in the literature. They, however, work in the case in which F' is known to have a monotone
failure rate.

In the next section we use renewal theory to establish a relation between the expected
values of processes related to the empirical distribution functions of the censored and
uncensored observations in the case of a single renewal process, n = 1. In Section 3 we
prove strong consistency as n — o of the product limit estimator with arbitrary F. In the
final section we apply maximum likelihood theory to prove weak convergence in the
discrete case (the case of integer valued X;). We also state a weak convergence result for
continuous F. It turns out that the limiting distributions involved are identical to those
arising in the usual models of random and fixed censorship (see e.g. Breslow and Crowley
(1974) and Meier (1975)); we briefly discuss the reason for this phenomenon as well as its
practical consequences.

We conclude the present section with a summary of notation and conventions; important
definitions are given at the beginning of Sections 2 and 3. Let A and B be two extended-
real-valued functions on (—oo, «). If A has left-hand limits everywhere we write A_ for the
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function defined by A_(¢) = A(t—); we define A, similarly. A(—») and A () denote the
limits as ¢ — —oo and + respectively of A (t). We write AA for the function A, — A_ and
A for the function A (w) — A_ if these are defined. So for a df F, F = 1 — F_. If the set
function u((s, t]) = A(¢+) — A(s+) generates a o-finite measure on the Borel sets of
(—oo, ), we write [; B(s) dA(s) for the Lebesgue-Stieltjes integral of B with respect to
this measure over the interval I. We denote by [ B dA the function defined by

(1) <J B dA>(t) =J' B(s) dA(s)
(—oo,t]

if this exists.
All this notation is also applied to the sample paths of stochastic processes. For a
stochastic process X = {X(¢)}/e(-=,«) we write £X for the function defined by

(2) (6X)(¢) = (X (¢))

if £(X(t)) exists for all ¢.

Some miscellaneous points of notation are x; for the indicator function of an interval I,
and — ., for convergence in distribution. .4 (u, £) denotes the multivariate normal distri-
bution with mean vector p and covariance matrix . The symbols A and v denote minimum
and maximum respectively. We make frequent use of the convention 0/0 = 0.

2. Observation of a single renewal process on [0, 7]. Consider a single renewal
process N as defined in the introduction. The distribution function F of interrenewal times
satisfies F(0—) = 0, F(0) < 1 but is otherwise arbitrary. Recall that £ = 1 — F_ and define
S=1-Fand H= [ F' dF. We also define F** to be the k-fold convolution of F with
itself; F** = x(0.=. Define U = xg0.., + § N = ¥ =, F’*. It is well known (see e.g. Prabhu
(1965) Chapter 5, Theorem 2.1) that N(r) is not only almost surely finite but in fact has
finite moments of all orders. We shall always neglect the event {N(7) = w}.

We next define two processes N and Y which together record the censored and
uncensored observations which result when N is observed on [0, ]:

3) Ni@t)=#{j=1.X;<t and T;=r1)}
the number of uncensored observations less than or equal to ¢;
4) Y(t)=#{j=z1:X,=¢t and T, = (r—1t) AT},

the number of censored or uncensored observations which are known to take a value
greater than or equal to t. For each ¢, define

M(t) = Y(—o) — Y(t+) — N(¢),

the number of censored observations censored at a value < ¢t. N and Y are nonnegative
integer valued, N nondecreasing and right continuous and Y nonincreasing and left
continuous. If T;_; = 7 for some j, we still count X; as an observation, so there is always
exactly one censored observation. (Other conventions as to what is observed at time t are
possible, and in fact lead to the same general results.) Note also that Y(t) = Y(0) = N(r)
+1and N(t) =0 for t < 0; and Y(¢) = 0 and N(¢) = N(r) = N(7) fort>7.So Nand Y
are dominated by the rv N(7) + 1 which has finite moments of all orders.

LEMMA 1.

£N=jé"YdH‘

Proor. Fort=0

EY(t) =Y P(Tiey=7—t and X.=1t)
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= Y FUV%(r = ) F(t)

=U(r - t)F(t)
and
EN() =32 Y PXi=t, Ty<t and Ty >71)
=YL JPXi=t, T,=7 and Ti1>1)
=Y, j(P(Xi<t and Tj<r1)—-P(X,<t and Tj.,<r1)).
But
PX,<t and T;<7) =j FY=D%(r — 5) dF(s)
[0.¢]
and
Y1 jF* (1) = U (1) = U(r)? < oo,
So

EN(t) =Y f FU=D%(r — 5) dF(s)

[0,¢]

= J’ U(r — s) dF(s)
[0.61

= J' &Y (s) dH(s). ]
[0.41

3. Strong consistency of the product limit estimator. Consider an infinite se-
quence of independent copies of the renewal process N, and let N, be the sum of the first
n independent realisations of N, similarly for Y, and M,. So given n renewal processes
observed on [0, 7], N.(¢) is the number of uncensored observations less than or equal to
t, Y,(t) the number of censored or uncensored observations known to be greater than or
equal to ¢, and M, (t) the number of censored observations less than or equal to ¢.

The product limit estimator of F is defined by

(5 Fo(t) =1 = [Jo=e (1 - AN"(S))

Y. (s)

where, by our convention 0/0 = 0, only s for which Y, (s) = AN,(s) > 0 give rise to a factor
not equal to 1 in the product. We also define
Sp=1-F,.

We shall consider the product limit estimator as a function of the random functions
n~'N,and n"'Y,. Using the techniques of the Glivenko-Cantelli theorem it is easy to show
that a.s. n7'N,(¢) and n™'Y,(¢) converge uniformly in ¢ to their respective expectations
&N(t) and €Y (¢); recall that N(¢), Y(¢) = N(r) + 1 for all ¢, and &N(r) < ». We shall
extend the definition of F, in a continuous way so that it is also defined as a function of
(6N, &Y).

Suppose G; and G are bounded, nondecreasing, right continuous functions on
(—oo0, ) such that G,(—x) = 0. Denote the space of such pairs (G:, Gz) as %. Think of
G (t) and G:(t) as being the number of uncensored and censored observations less than or
equal to ¢. Define G = G; + G;. We have Gi(t) = Gi() — G;(t—) and G(¢t) = G:(t) + Ga(t).
G plays the role of N and G that of Y. For (Gy, Gz) € ¥ define

~ AG;(s) ! dGi.(s)
6) (G, G) () = [Lo= <1“"—_’(‘;(s) )e"F’(‘J G(s) )

—
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where G,. is the continuous part of G; and by convention exp(—=) = 0. The infinite
product is defined as the limit as n — o of the product of the first n of the (at most)
countably many terms unequal to 1, taken in any enumeration of them. Note that

(7 S, =®(n"'N,, n"'M,)

and that ®(G,, G.) is a right continuous nonnegative nonincreasing function on (—oo, )
with ®(Gi, G2)(—») = 1. Our definition extends that of Peterson (1977) who required G,
and G: to have no jumps in common. He stated but did not prove that @ is continuous on
%, which is the content of the following lemma.

LEMMA 2. Let p, be the supremum metric on (=, ¢]. Let (G1, G2) € ¥ be fixed and
let 6 > 0 satisfy G(o) > 0. Then p,(®(G1, Gz2), ®(G1, G3)) — 0 as max(p,(G1, G1), p,(G2,
G5%)) — 0.

Proor. Let H = [ G™' dG,. H is right continuous, nondecreasing. Also H(—x) = 0,
H(o) < o and for s < 6,0 = AH(s) < 1; in fact it is easily shown that sup,e(-«,o) AH(S) <
1. (It is possible that AH(o) = 1). Then

(8) D(Gy, G2)(t) = exp[—H(t) + Y= {AH(s) + log(1 — AH(s))}]
and
(9) (G, G2)(0) = ®(Gy, Go)(0—)(1 — AH(0)).

Absolute convergence of the sum in (8), and thereby also of the product in (6), is proved
below. We first show that the mapping (G:, Gz>) — H is continuous. For ¢ < ¢ we find

o dGi(s) [ dGi(s) _ dGi (s) — dGi(s)
H(t) - H (t) - J{‘_w‘” G(S) J;‘m’t] C—;,(s) - J: Y G(S)
AG(t) — AGi(t) 1 1 ,
+T+ J:_w'l] <m - 57(";)‘) dGl(S)
_ {Gl(s) - G;(s)]“ LAG(1) —AGi(1)
(G)+(S) G(t)
, 1 3'(s) = G(s) .,
- ngm‘” (Gi(s) — Gi(s)) d<_(_}(s)> + J:_x,,]——é(s)é/(s) dGi(s)
_Gi(t) = Gi(t) . 1
= G(t) '[_w'“ (Gi(s) Gi(s)) d(G'(s))
G'(s)—G(s) , .,
+ J‘_w'”——G——WdGI(S),

so, provided that G(a) — p,(G, G') > 0,

po(G1, GY) | (G, G')(Gi(0) + p.(G1, G1))
G(o) G(0)(G(o) — p,(G, G'))

p.(H, H') =2

which proves continuity.

It remains to show that ® is continuous as a function of H. For fixed H define .7 =
T(8) ={t<o:AH(t)>8},8>0.So #7(5) <8 'H(o). Let € > 0 satisfy 2¢ < 1 — sup,<,
AH(s) and suppose p,(H, H') < €. Now s € (—», )\ = AH'(s) = § + 2¢. For all s,
|AH(s) — AH’(s)| < 2e. By Taylor expansion

1  AH(s)?

0= —{AH(s) +log(l — AH()} < 57— 27577
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sofort<o

(10) [ Ysewan s {AH(s) + log(l — AH(s))}|

1 AH(s)?

1 .
= 5 Z.-e(~w,n)\ 7 (ITI{(S))ZS 3 0H(0)(1 — sup,<, AH(s)) Z=R(8).

(Putting 8 = 1 proves absolute convergence of the sum in (8).) Similarly
(11) | Soeimin » (AH'(s) + log(1 — AH'(s))} |
=< %(8 + 2¢€)(H (o) + €)(1 — sups<, AH(s) — 2¢) 2 = R.(6, €).

By the relations

xvy
]logx—logy}=j s"dsslx—yl

XAy x A Y
we obtain
|{AH(s) + log(1 — AH(s))} — {AH'(s) + log(1 — AH'(s))}]|
<|AH(s) — AH'(s)|-{1+ (1 —AH(s) v AH'(s))™'}.
Sofort<o

12) Yoe rnwe | {AH(s) + log(1 — AH(s))} — {AH'(s) + log(1 — AH'(s))}|
< 8 'H(0)2¢(1 + (1 — sup.<, AH(s) — 2¢) ") = R3(8, €).

Therefore combining (10), (11) and (12)
SUP/<o | Ys=e {AH(s) + log(1 — AH(s))} — Y= {AH'(s) + log(1 — AH'(s))}]
= R;((‘i) + RZ(S, €) + Rg(a, E),

the right-hand member of which can be made arbitrarily small by choice of § and €. In
view of (8) this shows continuity of log ® as a function of H uniformly for ¢ € (—x, g).
Because sup,<, AH(s) < 1 the exponent in (8) is bounded and the same is true for H’;
hence ® is also continuous in H uniformly for ¢ € (—o, ¢) and by (9) uniformly for ¢t €
(=, 0]. O

CoroLLARY. For any df F
_ _AF(s) ' dF.(9)\ _ .
(I)(F, 0)(t) = H«”‘S’ (l —F,Ls—))exp( J:x—m) =1 F(t)

when F. denotes the continuous part of F.

REMARK. The result of this corollary is a generalization of a result contained in some
informal remarks in Cox (1972) page 188 and in Peterson (1977) Lemma 2.1. Jacod (1975)
Lemma 3.5 (proved in Jacod (1973)) and Liptser and Shiryayev (1978) Lemma 18.8 give a
result which is essentially the same and in fact is a special case of a result on semimartin-
gales due to Doléans-Dade (1970) Theorem 1.

Proor oF CoROLLARY. A df F can be arbitrarily well approximated by a step
(distribution) function making a finite number of jumps; and for such a df the result is
trivial. So by Lemma 2 the result holds for ¢ such that F(¢) > 0. If for some s, AF(s) = F(s)
> 0, it is easy to check that it now holds for all ¢; and otherwise it is easy to check that it
holds for all ¢ by taking limits as ¢, 1 so where sy = sup {¢: F(¢) > 0}. O
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Now (&N, M) € 9. Fix a 0 > 0 such that £Y (o) > 0; this condition is equivalent to
o < 7 and F(o¢) > 0. Combining the continuity of ® with the Glivenko-Cantelli theorem for
n'N,,n"'Y, gives

SUPrcio.o] | Sal(t) — ®(EN, EM)(t)| — 0 asn— o as.

It remains to evaluate ®(&N, £M). By Lemma 1,
AF(s) dF.(s)
£ s)=¢8Y —_— (s)=¢& —_—
AEN(s) = &Y (s) 75) and d(EN).(s) = EY(s) 7(s)
so for ¢ < o, using the fact that N + M =Y,

N o B AF(s) (" dF.(s)
(I)(éN, éM)(t) = Hssz (1 —-—F-—(-;)——)exp< J:w F(S) )

= S(t) by the corollary to Lemma 2.

Define 0y = sup{o < r: F(0) > 0}. If F(0) > 0, consistency has been proved on [0, 6,] and
so in effect on [0, 7]. Otherwise it has been proved on [0, o] for all 0 < 0, and F(o) 1 1 as
o 1 00. Because F.is increasing and bounded above by 1 it is easy to extend consistency to
[0, 00] and so in effect to [0, 7]; this proves

THEOREM 1.
Suprefo,] |F'n(t) —F(t)]—>0 as n— o as.
(which was conjectured in the closing remarks of Kaplan and Meier (1958)).

4. Weak convergence. Till further notice we suppose the X; take values in N =
{0, 1, - --}. All time variables s, t etc. and the fixed T are supposed to be in N. Hence

AN, (s)
Ya(s) )’

(13) Fu(t) =1 - ]=0 <1—

Recalling that H = [ F~! dF, we see that

_JPXi=t|Xi=1t) if P(X;i=t)>0
AH(t) = {O otherwise
and that
(14) F(¢) =1 —[[i-0 (1 — AH(s)).
Let (po, --+, pr) = (AH(0), ---, AH(1)). As the likelihood function, given a single
observation of N on [0, 7], equals [[i=o p2¥ (1 — p,) Y=V the log likelihood function
for (po, - -+, p-) based on our observations is

L(po, - -+, p,) = log([[i=o pi™ (1 — p,) ¥/ 8Nal0)),

We have for p,, p: € (0, 1)
% _AN,L(t) _ Yn(t) — ANL(2)

ap: Dt 1—p:
and
CANA(6)  Yalt) = ANA(0) ;
oL pi (1-p)?
ops0P:

0 s#F L.
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Disregarding the cases p, = 0 and p, = 1 for the moment we find that the maximum
likelihood estimator of (po, -« -, p.) is (AN,(0)/Y,(0), - -+, AN, (7)/Y,.(7)). Now forn = 1
and for ¢ such that 0 < p, < 1 using Lemma 1

(—62L) _6AN(¢)  &Y(t) — SAN(¢)

ap? pi (1~ po)*
_ EY(t) + EY(t) — p&Y(2)
P (1 - p)*
_EY()
- pi(l —po)’
é”(— oL )=O for s # t.
ops9Ip:
Therefore by Cramér (1946) Section 33.3 we find that
(15) {n'ﬂ(%%l - AH(t))} —, 4(0,%)
t=0,1,--.,7
where
AH(t)(1 — AH(t))
(). = EY (1) o=t
0 s# L.

It is easy to verify that this remains valid if p, = 0 or p, = 1 for some ¢ (recalling the
convention 0/0 = 0). Finally a standard Taylor series argument based on (13), (14) and
(15) (see e.g. Witting and Nolle (1970) Theorem 2.10(d) gives us

THEOREM 2. Suppose the X.’s are integer valued. Then
(nVAEu(8) = F@))imo,1,.... =0 A0, %) as n—w

where

AH(u)
1-AHW)EY ()’

(¥)se = S(s)S(8) ¥t (

Also by Cramér (1946) Section 33.3 we may conclude that

oL
El—1]=0
Bp,
oL oL ?
(0L L) _ _, "L
aps Op: op.op,
which gives us

(16) S(AN(t) — Y(£)AH(t)) =0

(already known from Lemma 1) and
E((AN(s) — Y(s)AH(s))(AN(t) — Y(t)AH(t)))

_]0 s#t
T 1AH(6)(1 — AH(t))EY () s=t

(17)

In Gill (1978) we prove an analogous result to (17) in the case of F continuous, which after
calculations on the lines of Breslow and Crowley (1974) gives us
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THEOREM 3. Suppose that F is continuous and let o < 7 satisfy F(o) < 1. Then
{(n'A(F(t) = F@)}ewn =« Z  in D[0, o]
(see e.g. Billingsley (1968)) where Z is a continuous zero mean Gaussian process with

" dH (u)
EY(u)

Cov(Z(s), Z(t)) = S(s)S(t) J'
0

Proor. See Gill (1978) Theorem 11. O

The significance of Theorems 2 and 3 is that the form of the limiting distributions is
identical to that obtained in the case of random censorship, so that e.g. confidence band
procedures there are also valid in testing with replacement (see for instance Gillespie and
Fisher (1979), Hall and Wellner (1980) or Gill (1980a)). This comes about because in
random censorship (16) and (17) are also valid; this is very easy to verify. In Gill (1980a)
and (1980b) we go into this matter in more detail.
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