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A CLASS OF SCHUR PROCEDURES AND MINIMAX THEORY FOR
SUBSET SELECTION'

By JAN F. BigRNSTAD

University of California, Berkeley and Purdue University

The problem of selecting a random subset of good populations out of &
populations is considered. The populations IT;, - .., I1, are characterized by
the location parameters 6,, - - -, 6, and I, is said to be a good population if 8,
> maXi<;<+ §; — A, and a bad population if §; < max,=;=x 6, — A, where Ais a
specified positive constant.

A theory for a special class of procedures, called Schur procedures, is
developed, and applied to certain minimax problems. Subject to controlling
the minimum expected number of good populations selected or the probability
that the best population is in the selected subset, procedures are derived
which minimize the expected number of bad populations selected or some
similar criterion.

For normal populations it is known that the classical “maximum-type”’
procedure has certain minimax properties. In this paper, two other procedures
are shown to have several minimax properties. One is the “average-type”
procedure. The other procedure has not previously been considered as a
serious contender.

1. Introduction, basic concepts and notation. An important class of multiple
decision problems is concerned with the selection of good populations out of % possible
populations. We shall study the “subset selection approach,” first considered by Paulson
(1949), Seal (1955) and Gupta (1956), where the size of the selected subset is a random
variable.

The % populations I, -- -, I, are characterized by 6, ---, 6, respectively. Let § = (6,
-, 8;) and let © be the parameter space. Let X; be the statistic that is used to represent
I, - X =(Xy, -++, X3). Xi, -+, X; are assumed to be independent and X, has density

f(x — 8;) with respect to Lebesgue measure. We will assume that f(x — 8) has monotone
likelihood ratio (MLR) in x. Let p(x — @) = I1f(x; — 6;). Normal populations with X; being
the sample mean from I, is of course such a MLR location model. Another example is the
case of double exponential populations, letting X; be the sample medians of say 2m + 1
observations. Gupta and Leong (1979) have shown that the location density of X; has MLR
in x.

The ordered 6; are denoted by ) < --- = 6, and I1;, X, correspond to 6. I1; is
called a best population if §; = ;. Following an idea similar to Lehmann (1961), I, is said
to be a good population if 6; > 6 — A and a bad population if §; < f,; — A. Here A is a
given positive constant.

For the risk criteria we shall consider, two subset selection procedures are equivalent if
their individual selection probabilities are the same. Therefore we can define a subset
selection procedure by Y(x) = [y1(x), - - -, Yx(x)], where y;(x) = P(selecting I1, | X = x), for
| = 1’ cee, k.
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We will usually require that at least one population is selected which implies that
(1.1) Thox) =1, VYx

A correct selection (CS) is defined to be a selection that includes the best population I1,.
The usual basic condition has been to require that

(1.2) infeeq Po(CS |Y) = infeeq Eg (Y} = v, y<l

Here y, corresponds to ;7. The control condition we will mostly consider is to require
that { satisfies

(1.3) infoeq R(0, Y) = v,

where R(6, ¥) is the expected number of good populations selected. Let the class of
procecures satisfying (1.3) be denoted by %(y, A). The condition

(1.4) infeequ) Po(CS|Y) = v

is also of interest. (Also used by Ryan and Antle (1976).) Here Q(A) = {0 : Oy — G-y = A} .
Let %'(y, A) be the class of procedures satisfying (1.4), so that 2'(y) = Z'(y, 0) is the class
of procedures satisfying (1.2). We see that %(y, ) C Z'(y, ).

It can be argued that it is unnecessary to require that we select I1 if 6 is close to the
other 6;. Therefore (1.4) seems more appropriate than (1.2). However (1.4) does not control
what happens on Q°(A), leading then to control (1.3).

A fourth control condition, different in nature from the three mentioned above, is

(1.5) supgen S(6, ) = B.

Here, S(6, ¢) = Y. E¢({s), i.e., S is the expected size of the selected subset. The class of
procedures satisfying (1.5) is denoted by 2;(g).

Subject to a chosen control condition a procedure should exclude the bad or nonbest
populations. One criterion for excluding nonbest populations is

(1.6) S0, ¢) =Y Eo (Yo} -

S’(8, ¥) is the expected number of nonbest populations selected when 8.1} < 6. Let Ia
= In(0) = {i: 6; < 61y — A}. The related criterion for excluding only the bad populations
is

(1.7) B(0,Y) = Yie1, Eo({:).

B(8, ¥) is the expected number of bad populations selected. A widely used criterion in the
literature has been S(6, y). The author feels that B(#, ) and S’(8, y) are more appropriate
risk functions than S(@, y), since S(f, y) includes the probability of selecting the best
population.

The first papers on the subset selection problem dealt with normal means. Two rules
were proposed, ¢ and Y™ (see Seal (1955, 1957) and Gupta (1956)). The procedures are
given by

1
(1.8) Yi = lifinZij#in"C

(1.9) ll/,m =1iff X;= maX15j5kAXj - d.

Here ¢, d are determined such that the classical condition (1.2) holds with equality.

Our main concern is minimax theory. The lack of monotonicity results for the risk
criteria considered has been the main drawback for deriving minimax results. Sections 2,
3, 4 deal with this problem. In Section 2 a special class, the class of Schur procedures, is
defined. Section 3 presents a convexity result that is used in Section 4 to show that the
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class of Schur procedures has nice monotonicity properties for the risk criteria S’(6, ) and
B(6, y).

Section 5 deals with minimax theorems in the general location model for the risk
functions B(8, ), S’(0, ¥) and S(6, ¥), in the class Z'(y, A). Gupta and Studden (1966) and
Berger (1979) showed by using a monotonicity result for ¢™ given by Gupta (1965), that ™
is minimax with respect to the criteria S’(, ) and S(6, ¥) in the class Z'(y) provided
f(x — 0) has MLR in x. We show that y® has the same minimax properties if y is sufficiently
large.

In Section 6 we consider normal populations. It is shown that a new procedure y°, which
was studied in a different context by Studden (1967), has certain minimax properties in
the class 2(y, A) for the criteria B(8, y) and S’(8, ¥). If f(x) is the standard normal density,
then ¢ is defined by

(1.10) Y = 1iff Ce® = ¥ 2%,

Here C is determined such that (1.4) is satisfied with equality. In Section 6 we also present
some new minimax results for {°. In Section 7 the minimax properties of y¢ are proved.
Section 8 proves the minimax results for y°.

2. The Class of Schur procedures. Let s, t € R* with ordered components s;;;
S e=Supty= e =ty S is majorized by t, s <, t, le S = Z t; and

EI}=0 t[k_j] = E‘;'so Ste-11 for pP= 0, 1, LIS k-2

Let g be a real-valued function from R*. Then g is Schur-concave if s <, t = g(s) =
g(t). A subset A of R* is a Schur-concave set if the indicator function I4(u), is Schur-
concave, e, ifu' <, u,u € A=u’' € A.

If g (or log g) is concave and permutation-symmetric then g is Schur-concave. Also, a
Schur-concave function achieves maximum at a point where the coordinates are equal.

Applying results from Marshall and Olkin (1974), Mudholkar (1969) and Lehmann
(1959), page 330 we see that the MLR assumption is equivalent with the assumption that
p(x) is Schur-concave.

A procedure v is said to be just if y;(x) is nondecreasing in x; and nonincreasing in x;,
j#i;fori=1, ..., k. Let 4 be the class of just, permutation-invariant and translation-
invariant procedures. Nagel (1970) showed that if ¥ is just and permutation-invariant then
Ep {{xy} is nondecreasing in i. Foru € R*and i € {1, - - -, k) let

W= (U = Wiy ey Wimt = Uiy Uiel — Uiy ooy Uk — Ui).
It is readily shown (see Berger and Gupta (1980)) that y € 4" if and only if there exists a

permutation-symmetric function ¢’ : R*"! — R which is nonincreasing in each component,
such that for every i

vi(x) = ¢'(x7).

We are now in a position to define the class of Schur procedures.

DEeFINITION 2.1. A subset selection procedure y = (4, -- -, {,) is said to be a Schur
procedure if Y € A'and Y’ is a Schur-concave function.

Consider now the case where ¥ is a nonrandomized procedure, i.e.,
Yilx) = I (x), ACR'.

Then v is a Schur procedure if y;(x) = Ig(x}) for some Schur-concave set B C R* and B
is a monotone decreasing set, i.e.,ifu€ Band vy, <u;,j=1, ---, k — 1, then v € B.

X has a location density with parameter 8. If  is translation-invariant, y; is a function
only of X*. From well known properties of a location family of distributions (see Lehmann
(1955) and Alam (1973)) we have the following result.
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LEMMA 2.1. Let ¢ be a just and translation-invariant procedure. If for some i € {1,
<+, Rk}, 0i— 00 =<0, — 6 for all j # i, then E¢(y;) = Eg({:). In particular, infeeq Ps(CS | ¥)
occurs when 8, = ... = 0.

REMARK. If we want y to satisfy the basic condition (1.2) with equality we must have

(2.1) Eo,(i) =, for i=1,..-,k; 0=(,.--,0).

As the following observation indicates, many reasonable procedures are Schur proce-
dures. Consider the class ¥ discussed by Seal (1955), which can be described as follows.
Let X{y=< -+ = X{s-1) be the ordered {X;:j#i}. Lete=(c1, :+-, cx-1) € R*', ;=0 and
Y ¢i= 1. The procedure ¢° is defined by

ll/f =1 iff 25;{ C,'ij] - X, = d(e).

Here d(c) is determined such that (1.2) holds with equality, using Lemma 2.1 and (2.1). All
such procedures belong to.4. Note that condition (1.1) implies that d(e) = 0 which in turn
implies that y = 1/k. Seal’s class is given by

€= {{:Yhici=1 and y=1/k}).
The following result is proved in Bjgrnstad (1978).

LEMMA 22. LetGo={y*EC:c1 <.+ <cp1}. Assume y° € 6. Then
Y € 6 < Y is a Schur-procedure.
REMARK. The two procedures ¥ ¢, ¢ defined by (1.8) and (1.9) are both in %, and are
therefore Schur procedures.
To show that the procedure ¢°, defined by (1.10), is a Schur procedure, we can use the
following result from Ostrowski (1952). A permutation-symmetric and differentiable func-

tion, A : R™ — R, is Schur-concave if and only if (6h(x)/dx; — 0h(x)/dx;)(x;i — x;) =<0 Vi
# j and V(x,, - - -, X»). Using this result it is readily seen that ¢ is a Schur procedure.

3. A fundamental convexity lemma.

DEFINITION 3.1. Foru, v € R", v < u if for some a = 0
Wi+a - v+ a) <m(u, -, ).

The following result is then easily proved.

LEMMA 3.1. g: R" — R is nonincreasing with respect to “<” iff
(i) g ts Schur-concave and
(i) gx)=g(x;+a, -+, x, + a) Vx, Va=0.

i.e., g is nonincreasing for simultaneous shifts in all components.

The monotonicity results for the different risk criteria are based on the following lemma
that deals with the convexity property for a certain sum of functions.

LEMMA 3.2. Let g be a real-valued, Schur-concave function from R*™!, nonincreasing
for simultaneous shifts in all components. Define G : R* — R by:

G) = Y5 gufy)

where fori=1, ..., kanduymy < -+ < yp,
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(3.1) ufy = (upy — up, -+, Up-1y — U, Uiy — Ugip, =+ 0> Uy — Upi)-
Letv<,uand vy = uy fori=1, ---, k — 1. Then G(u) = G(v).

Proor. Letv <,u.Foreveryi€ {1, ---, k= 1}, ufy >, vis+ k/(k — 1) (v — uy)1
where 1 = (1, ---, 1). Hence v{j < ufi;, and from Lemma 3.1, g(ufi;) = g(v{). Since this

is true for every i, G(u) = G(v). O

REMARK. A natural question is whether G(u) is in fact Schur-concave. This is not in
general true, as can be seen by letting 2 = 3 and g(x;, x2) = ®(—x; — x2) where ® is the
distribution function of the .4#1(0, 1)-distribution. It can be shown that if g, in addition to
satisfying the conditions in Lemma 3.2, is also concave then G is Schur-concave. A proof
for the case where g admits partial derivatives can be found in Bjgrnstad (1978).

4. Some properties of Schur procedures. Applying Proposition 5.1 and Theorem
2.1 from Marshall and Olkin (1974) we obtain the first interesting result about Schur
procedures.

THEOREM 4.1. Let ¢ be a Schur procedure. Then E4({;) is Schur-concave in 8}.

Consider now the risk function S’(6, ¥) defined by (1.6). One of the main results for
Schur procedures is a monotonicity result for S’(4, ).

THEOREM 4.2. Let Y be a Schur procedure and let §' <, 8 and 6{;) = 6 for i
=1,-.-,k—1. Then S'(0 y) = S'(0', Y).

ProoF. Let g be defined by g(0f;) = E¢{{1y}, where 8 is defined in (3.1). (Since ¢ is
a Schur procedure g does not depend on i.) Then
S0, v) = T g(0).

From Theorem 4.1 and Lernma 2.1 we see that the assumptions in Lemma 3.2 are satisfied
and result follows. [0

As mentioned in Section 2 a nice property of Schur-concave functions is that they
achieve their maximum at a point where all components are equal. S’(8, ¥) is not quite
Schur-concave, but by applying Theorem 4.2 we can show similar result for S’(8, ¥) over
certain subsets of .

THEOREM 4.3. Let y be a Schur procedure. Let = 0 and define the slippage set
2:08)={0€Q: Oy — Q-3 = 6 + 25;12 Opr—ry— 61}

Then
Supgeq,(s) S0, ¢) = S/(as, Y)
where
(4.1) 0&] = 5. 0‘[5,-1 =0 fO" l = 1, ety k- 1.

Proor. Let 8 € Q.(5). We can assume 617 — ;11 > 0; otherwise the theorem is trivial.
Also, S’(8, ¥) is permutation-symmetric so we can let §; < ... < 6. From Lemma 2.1 it
follows that S’(#, y) is nonincreasing in 6,. Therefore we may take 6, = 6, + § +

“% (Bx-1 — 6,). Let now 8° = (8x—1, -+ -, Ox—1, Bx— + 8). Then 6° <,, 8 and 6{;; = 6;;, for i

< k — 1. From Theorem 4.2 it follows that S’(8, ¢) = S’(8°, y) = S"(6°, ). O
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REMARK. Gupta (1965) showed that supge S'(6, ¢™) = S’(6°% ™), where Q(8) = {0 :
Oy — Bx—1; = 8}. This is not true in general for Schur procedures, as can be seen by
considering ¢ and the case § =0, y < (k — 2)/(k — 1).

We shall next consider the corresponding problem for the risk B(#, ) given by (1.7).
THEOREM 4.4. Let  be a Schur procedure. Let Q,(A) = {8 € Q : 6y — 61y < A}, and
letforp=2,...,k—1
Q) ={0EQ: - <A and Ou— bp-n= A+ Y Grp-n— i)}
Let
(4.2) Q = Uk, 2,(A).
Then
supeeg, B(6, ¥) = B(8°, })
where 0* is defined by (4.1) for § = A.
ProoF. We can assume §; < ... < 6. Let § € Q,. Then 8 € Q,(A) for some p €
{1, .-+, k}. Let 8’ be defined by
0r,=0,0;=06;, for i=p-—1 and 6;=6,, for i1=p, ..., k—1.
Clearly, from Lemma 2.1
B(0,y) = Y& Ee() = Y Eg(4i) = B, V).
Since 8’ € (), the result now follows from Theorem 4.3. 0
REMARK. & consists of the cases where the good populations have “slipped” from the

bad populations. Also 2, contains the “classical” slippage set {§ € Q: ;= -+ - = fx-1yand
Orxy — Be—1) = A}

In the next section Theorems 4.3 and 4.4 are applied to derive a certain optimal
procedure which will be minimax with respect to slippage sets of the type £, and Q4(4).

5. Some general minimax theorems in the location model. Let §; be the vector
in R* where the ith coordinate is equal to 1 and the rest are equal to zero. Let 8} = AS§;,
and let p:(x) = p(x — 0?). Define the statistic

1 .
Ti(x) =m2j¢ipj(x), for 1=1,..-,k
Y’ is the subset selection procedure given by:
where C is determined by
(5.2) Ep ) =« for 1=1, ERR k.

THEOREM 5.1. Assume that |°, defined by (5.1), is a Schur procedure. Let Q, be given
by (4.2). Then ° minimizes for all y € Z'(y, A)

supsee, B(0,¢)  and supeeq,n) S'(0, ).

Proor. We prove the theorem only for B(6, y). The proof for S’(8, ¥) is exactly the
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same. From (5.2), y° € 2'(y, A). From Theorem 4.4 supseo, B(0, {°) = B(8?, y°) for i =
1, ---, k. Forany y € @'(y, A)

1
Supseq, B@4,y) = Zzal B(aiA, Y) = ; Eﬁvl J’ ll/j(ijPi) dv

Zj=] j \Pj(Zt#th) dV =7 Zz=l B(o Supoesz, B(ay ‘1’0)'

The second inequality follows from the Neyman-Pearson Lemma since Y} minimizes
f \Pj(zi,ﬁj pi) dv subject to [ Y;p;dv=v.0

Next we consider the problem of finding solutions to the dual goals

(5.3) maximizing infgeqa) Po(CS | ) for Y€ 2(P)
and
(5.4) minimizing supgeq S(6, V) for ¢ € 2'( v, A).

It is shown by the Hunt-Stein theorem that we can restrict attention to translation-
invariant subset selection procedures, i.e., we can assume that {; is a function of x, and
X’ has location density g(y — ), y € R*"!, where g is the density of (U, — Uy, ---,
Ui-1 — U), and Uy, - - -, U, are i.i.d. with density f(u).

THEOREM 5.2. Assume Q is translation-invariant. Define * by

sty = )1 U BXF+A8)>cgx))
¢9 vixr) {0 if gx*+A4)<cgx?).
Here A = (4, - - -, A). Assume Y* is a just procedure and that
(5.6) supgeq S(0, Y*)  occursat b, = ... = 0.

If c is determined by

(5.7) J Vy)gly) dely) =8/k  for i=1,.--,k

then y* maximizes infeeqn) Ps(CS | ) for all € 2,(p).
If ¢ 1s determined by

(5.8) f VIy)gly +A)dvly) =y  for i=1,.--,k

then y* minimizes supgeq S(6, ) for ally € 2'(y, A).

Proor. From the Hunt-Stein Theorem and Example 7, page 337 in Lehmann (1959)
it can be shown that for any procedure ¥ there exists a translation-invariant ¢/ such that
forj=1, -, k, Eo(y}) = lim;.« [ Ego(¥;) dv,(g), where G is the group of translations and
{v.} is a subsequence of the uniform probability distributions ». on the interval I(—n, n)
= {g: —n = g = n}. This implies that infgu) P(CS |¢/) = infon P(CS|yY). Also, since
S8, ') = limi... o S(g6, ¥) dv.(&) =< supa S(8, ¥), supe S(0, V') < supa S8, ¥). Let
Y € 2,(B). It follows that we may assume that ¢ is translation-invariant. The first result
now follows easily from a result of Gupta and Huang (1977), and the proof of the second
result goes in a similar way. 0

REMARK. Assume
(5.9) infgeq R(8, y*) = infsean) Po(CS |{*).
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Then if (5.7) is satisfied, y* maximizes, for all ¢ € Z:(B), infseq R(8, ¥). If (5.8) is satisfied
then ¢* minimizes for all ¢ € %(y, A), supseq S(4, V).

At last in this section we consider the classical problem of minimizing supgq S(4, ) and
supe S’(0, ¥) in the class Z'(y). From Berger (1979) we have that inf, ., supe S(8, V)
- (578, ¥)) = ky((k — D).

As mentioned in Section 1, y” is minimax in %’'(y) for S and S’ if f(x — §) has MLR in
x. We shall next show that y° has the same minimax property if y is large enough. For the
remainder of this section it is assumed that f(x) = f(—x) for all x.

THEOREM 5.3.

-2
supgee S'(0, y*) = S’(0,y%) = (k — 1)y if and only if y= :—_—1 .
-1
Supeen S(0, ll/a) = S(O, \Pa) = k‘y lf and only lf Y= k—k— .

We then have the following corollary.

COROLLARY 5.1. {* is minimax in 2'(y) for S if and only if y = (k — 1) /k, and for S’
ifand only if y = (k — 2)/(k — 1).

We prove Theorem 5.3 only for S. The proof for S’ is completely analogous. The proof
goes by a series of lemmas.

A location density has MLR in x if and only if it is strongly unimodal. Using the result
from Ibragimov (1956), that the convolution of two strongly unimodal densities is again
strongly unimodal, we readily get the following result.

LEMMA 5.1. Let for 1, -«-, b, Vi= (b — 1)7' Y (X, — X;) and i = (A — 17!
- Y% (6; — 6;). Then V; has density g(v — ), where g is symmetric around zero, i.e., g(v)
= g(—v) and g(v — p) has MLR in v.

Let G(v — ;) be the distribution function of V;, and let ¢(y) be the y-quantile in G, i.e.,
G(c(y)) = y. Then the critical constant ¢ in y* is equal to c¢(y). S(6, ¥°) is permutation-

symmetric in (6, ---, 6), so we can assume 6, < ... < 6,. Let t; = (i1 — 6:)/(k — 1).
Then

(5.10) S(0,y") = Ht) = T Glely) + T2 jt — Xj= (k= ))t)

where t = (¢, - -+, t,_1) and ¢; = O for all i. The next lemma considers the “if” part for
“large” t.

LEMMA 52. Lety=(k—1)/kand k= 3. Then
(k= 2)t, + Y525 (kB — j)t; = 2¢(y) = H(t) = ky.

Proor. It is enough to show that Es(yf + y§) = 1. Let ¢ = c(y). Now,
E¢(yf) = G(—c — t1) =1 - G(c + t), and E,(y3) = Glc + t1). O
It remains to consider H(t) for t € A(y), where
A(y) = {t: (k= 2t + Y25 (B — )t < 2¢(y)}.

LEMMA 53. Let k=3 and let t° = (t!, ---, t{-1) € A(y). Then H(t{, -+, tn_1, tm, 0,
.+, 0) is nonincreasing in t, for tn <tsforl=m=<k — 1.
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Proor. Letm=1,andletv = (1, -+-, Um, 0, «+-,0) = (¢, +-«, to_1, tm, 0, -+, 0), tn
< ty. Then v € A(y). Let A(v,) = H(v). We shall show that the derivative 4'(v.) < 0O for
U = lm.

It is easily seen that

(5.11) W) =0 m=3Y2 rv),
where
ri(v) = glc + X520 ju — Ximi (k = Puy)/gle + X juy).
Leta=c+ Y- juyand y; = Y- ju; + Y7 (B — j)v;. Then ri(v) = gla — y:)/g(a), and

¥i < 2a, for all i. From Lemma 5.1 it follows that ;= 1fori =1, - .., m, and (5.11) follows.
0

ProoF oF THEOREM 5.3. As shown by Berger (1977), the “only if” part follows by
letting ¢, — o in (5.10). Now assume y = (k¢ — 1)/k. Consider first the case £ = 2. It is
readily seen that H'(t;) < 0 since c(y) = 0. Let now £ = 3. From Lemma 5.3 we get that
t € A(y) = H(t) = H(0) = ky. Together with Lemma 5.2 this completes the proof.

For later use we will also consider the case where y* € Z'(y, A). It is seen from Lemma
2.1 that for any just and translation-invariant procedure v, infgeqs) Ps(CS | ¥) occurs at ),
= ... = fp-11 = O — A. Hence J” satisfies (1.4) with equality if in (1.8) ¢ = c(y) — A. In the
same way as we proved Theorem 5.3, the following result can be proved.

THEOREM 5.4. Let c = c(y) — A such that y* € Z'(y, A). Then

supgen S(8, ¥*) = S(0,¥%)  ifand onlyif A< cly) - C<k ; 1) .

6. Optimal subset selection procedures for normal populations. Let X;; (i = 1,
-«+,k; j=1, ---, n) be independent and normally distributed. X,; is .#1(6;, 6*) where o” is
known. A sufficient statistic is X = (X, ---, Xx) where X; = (n7') Y, X;;. Let Ay =
VnA/o, so that T1, is a good population if §; > 6 — Aoa/ Vn, Ao > 0. In this general case
y* is given by

\[/f = 1iff CeAm/ﬁX./o > Zj#i eA“\";X,/a’
C is determined such that (1.4) holds with equality. Hence
(61) y= P(CeA.Y4+Aé > Zf;ll eA‘.Y,)

where Y, ---, Y, are independent, .40, 1) random variables. The critical constant C is
tabulated in Table 1, for £ < 10. For y* we are really only interested in satisfying (1.4) or
(1.3). However, we see from (6.1) that y* satisfies (1.2) if we instead of C use e*C as the
critical constant.

Since ¢ is known, we may just as well assume o/ Vn =1, and denote A, by A. Hence we

assume that X, - - -, X, are independent, and X; is #16;, 1). Let 83 = (0,0, A, ---, A) and
let

v/9 if k=4
(6.2) buly) =1 v/7 if k=5

(11/75)y  if k=6.

Note that we always select at least one population with ¢, if and only if C = & — 1.
The main minimax properties of Y are given in the following theorem (proved in
Section 7).

THEOREM 6.1. Assume C=k — 1. If k = 4 and A is such that Eg: (Y1) = by(y) or k =
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3 then * € 9(y, A) and minimizes for all Y € 2(y, A),
Supeeq, B(6, V) and supgeq,n S'(8, ¥).

REMARKS. (1) Let A, be defined by
(6.3) Eg, (1) = br(y).

Calculations have shown that Eg (y5) seems to be decreasing in A. If so, A < A, implies ¢/
€ %(y, A). Table 2 gives approximate values of A, for £ = 4, 10 and the limiting value
(k — ) (see (6.6) below). A, does not seem to vary much for different values of k. For
general o/ vVn we require Ag < A,.

(2) Studden (1967) considered the identification problem, i.e., the case where 63, - - -,
O are known. It was shown that ¢° is the best permutation-invariant procedure in
9’(7, A) for the risk S(0, \P), when 0[1] = e = 0[;;._1] = 0[):] - A

(3) By applying the geometric-arithmetic mean inequality, we find

/ k
(6.4) A= P

(4) It can be shown that J° has similar minimax properties also for normal models like
the two-way layout without interaction.

e

z(yy=>C=Fk—1.

TABLE 1
The critical constant C for procedure {*, given by (6.1).
5 bl 10 25 50 1.0 15 2.0 3.0
y=.95
3 2.44 3.20 4.69 7.37 7.51 4.87 46
4 3.63 4.72 6.83 10.83 12.11 8.45 1.05
5 4.80 6.17 8.82 14.13 15.83 11.39 1.50
6 5.98 7.66 11.00 17.67 20.57 15.26 2.22
7 7.14 9.07 12.83 20.76 23.18 17.83 2.67
8 8.33 10.59 14.94 23.56 26.75 20.81 3.31
9 9.50 12.03 16.80 27.07 30.56 23.12 3.76
10 10.67 13.50 18.83 30.12 34.02 25.88 4.29
y=.99
3 2.64 3.90 6.93 16.55 25.19 24.66 5.96
4 3.93 5.74 10.10 25.76 43.62 46.78 13.71
5 5.19 7.51 12.98 33.29 59.04 69.01 21.93
6 6.46 9.25 15.98 38.65 71.15 87.79 31.11
7 7.71 11.02 19.06 45.29 81.13 95.94 34.82
8 8.99 12.77 21.63 50.93 87.22 109.38 40.11
9 10.26 14.60 24.54 55.25 96.25 115.48 45.54
10 11.48 16.22 27.13 59.52 101.30 126.29 52.35

For k=2, Cis given by C = exp{v2nAz(y)/s — nA?/c?}.

TABLE 2
Values of A,, given by (6.3)
and (6.6).

4 10 o

.95 2.0 15 1.37
99 2.4 19 1.69
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We shall next consider the procedure ® = {%(c), defined by (1.8). Let

k . 1 1 (k-1 k-1
s = gm0+ o(457) | [0 - (15) ]}

and let A\(B) = Vk/(k — 1) {z(B/k) + z((k — 1)/k)}. Here 2(y) is defined by ®{z(y)} = v,
where @ is the .40, 1) distribution function. y* has the following minimax properties.
(Proof is given in Section 8.)

THEOREM 6.2. (a) Let ¢ = vk/(k — 1) z(y). Then ¥* € 2'(y) and minimizes supeeq
S’(0, ) (supsea S8, ¥)) for all Y € Z'(y) if and only if y = (k — 2)/(k — 1)((k—1)/k).

(b) Let B=k — 1 and ¢ = Vk/(k — 1) z(B/k). Then y* € 2:(B). Assume further that
k=4 and A < A(B) or k < 3. Then y* maximizes infeeq R(8, Y) for all Y € Z1(B).

(c) Assume A =< Au(y), and let ¢ = Vk/(k — 1) z(y) — A. Then y* € %(y, A), and
minimizes supsen S(0, ¥) for all y € 2(y, A).

REMARK. Au(y) = Vk/(k — 1) {2(y) — 2((k — 1)/k)} if and only if 2(y) < 32((k—1)/k).

Let now £ — «, and let C, = C be determined by (6.1). Then from the strong law of
large numbers it is easily seen that Cy = lim,_,..(Cr/k — 1) exists and is given by
(6.5) log Co = Az(y) — A%

This can be used to find approximate values of C, for large and moderate k. From Table
1 we see that the asymptotic value C, is a good approximation to C./k — 1 already for %
= 10 in case of smaller A values. Also, from (6.5), we have as a supplement to (6.4) that
limg,(Cr/k — 1) = 1 iff A < 22(y).

Consider next the upper bound A, (k) = A,, given by (6.3), that ensures y° € %(y, A). For
given A > 0 we have

Egp (Y1) — O(2(y) — 24) as k— o,
Hence, from (6.2) and (6.3)

. 1 11
(6.6) limy_.. A,(k) = 5 {z(y) + 2<1 - Y)} )

7. Proof of Theorem 6.1. The proof consists of two theorems. The first proves the
result for the class 2'(y, A), and the second shows that ¢* € 9(y, A).

THEOREM 7.1. {° minimizes, for all y € Z'(y, 4),
supeeq, B(6, ¥) and supeea,a) S'(0, ¥).
Proor. From Theorem 5.1, the optimal procedure y° is given by (5.1). We find that
Ti =30 2550,

Hence the minimax procedure is y°. 0
The following result completes the proof of Theorem 6.1.

THEOREM 7.2. (i) Letk=2,3and C=k — 1. Then
(7.1) infoenw) Po(CS|Y°) = y = infoca R(0, §*) = v.
(i) Letk=4and C=k — 1. Then (7.1) holds if
Eg (§7) = bily)
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where 85 = (0,0, A, -+, A) and bi(y) is given in (6.2).
To prove Theorem 7.2 we need the following two lemmas.

LEMMA 7.1. Leti<j.  Assume C=k — 1 and 0[” - 0[,'] =< A. Then Eo(y5)) + Eo(y(j))
is nondecreasing in 6.

ProoF. We can without loss of generality assume 6, < --. < 6, and consider r(8) =
Eo(i + {;). Now,

Ey(y7) = j <9 - log[éZ ettt %z;:il e“”””*"}) 2 o(y) drly).

) 1 1
6,_; = J' {qb(éb -3 log[a iy e"”} )qb(yi =6)
1 1 Ay;
— ¢<0j — -A— IOgI:E 25:11 eA)'1:| )‘;b(yi - 01) ° <§lr§11_efl7l>}

2oy — 0) T14k o (ye — ) T15) (i — 0i1) do(y).
From this expression we find that ar/a6; = 0 if

(7.2) (14 B e77] - exp{("f' - 0")<yi 1°g[ Z= Aﬂ] >} =k

We get:

Let Ymax = max(yi, -+, Y&-1). Then, since A = 6, — 6;,
[1 + EH eAtyl—y.)]eW,—ﬂ.m > o0 =00max

and (7.2) follows. O

REMARK. If C <k —1,then Lemma 7.1 is not necessarily true as seen by the following
example. Let £ = 2. Then C < 1 iff A > \/éz(y) If Lemma 7.1 holds then R((6, ), y°) =
Ey a5 + 45) = v. Now, R((6, 8), ') = 2((log C)/(AV2)). Let A >v2 (2(y) — 2(y/2)}.
Then C < 1 and R((4, 8), ) <.

LEmMMA 72. Let C= k — 1 and let p be such that 1 < p < k — 1. Assume 6.1} >
0[k] —A= 0[,,]. Ifinfoemm Pa(CS | \Pe) =y then

k=1-p
(7.3) RO, 4) = 5 lf, y+ (k- p){l - (%) }EW»(%).

Here 8'"*" is given by

gty — Oy — A for i=p+1
t B[k] fOf' lZp + 2.

PrOOF. Let ¢ = y°. We may assume 6; < --. < 6,. Then R(#, ¥) = Y% ,.1 Eo(f:). (7.3)
is true for p = & — 1 since the right-hand side is y and R(0, V) = Po(CS|y) = y. We now
prove (7.3) for general p, 1 < p < k — 2 by assuming (7.3) is true for p + 1 and proving it
for p. Each Eg(y;), i = p + 1, is nonincreasing in each 01, v+, 0,,sowecanletd, = ... =
8, = 6, — A. Define 87 by:

97 = 0 — A for i=gq
! 0; for i=qg+ 1.

E4(Y;) is nondecreasing in i, hence for i = p + 2:

-p-2

_ k—p .
Eys(yy) ZmEa(\lﬁ) + 2k = 1 E¢(Yp+1).
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This implies that

R(0,4) = Y pi1 Egi) = ) kk —p SE oz Eo(Wpir + i)

(7.4) (k—p—-1)
___k-p
T2k-p-1)

the second inequality being a result of Lemma 7.1. Now Eg+i(Yp+1) = Egre (Y1) = Ego-v(¢n).
By the induction hypothesis, R(°*", y) = Y% .2 Eg~(J;) can be bounded by the right side
of (7.3) (substituting p + 1 for p). Making these two substitutions and Eg»+ (1) = Egr- (1)

in (7.4) yields
k- 1 1\
Eotp*n(ll}l) + — —p [2k—p 5 Y + {1 - (E) }Eol"”’(lpl)j}

k- 1\
= o f, y+ (k- p){l - <§> }E,,‘,,m(\pl). .

ProoF oF THEOREM 7.2. The result for £ = 2 follows directly since for € Q°(A),
R(6, ) = Eo(yi + Y5) = 1. For k = 3, we have from Lemma 7.2 that (7.1) holds if

?=p+2 E0’”'(¢p+l + lpi),

R(0, y) 2

Eg () = v - maxoem=k—1 &(m).

where
1 — m()™!
= e—— < m<<p—
g(m) T 2=m=k—1.
It is readily seen that
) (m) = 0 if k=3
Y MAXe=mekt 8 =0 4 (0) i k=4, 0

REMARK. Let £ = 2. From remark after Lemma 7.1 we see that (7.1) is not necessarily
true if A gets too large.

8. Proof of Theorem 6.2. Part (a) follows directly from Corollary 5.1. We next show
that ¢ is the solutioin to the problems (5.3) and (5.4) for the normal case.

THEOREM 8.1. (i) LetB=k — 1 and c=vk/(k — 1) z(B/k). Then y* € Z(B), and J*
maximizes info), Pe(CS | {), for all y € 2:(B).
(ii) Let ¢ = vk/(k — 1) z(y) — A such that y* € Z'(y, A). Assume A = Vk/(k—1) -
{z(y) — z((k — 1)/k)}. Then y* minimizes supg S(4, y) for all Y € Z'(y, A).
Proor. We shall apply Theorem 5.2. The density g in (5.5) is the .4;-,(0, Z)-density,
where £ = (0;;) and o, = 2; 0;; = 1 for i # j. This implies that
- A k=1 k-1,
gly +4)/gly) = exp{ 7 L yi— == AT

It follows from Theorem 5.2 that the optimal procedure y* is given by
\l/-—llff Z,,e,(X X)=<ec.

ie., ¢* = ¢°. From Theorem 5.3 and Theorem 5.4 we see that the conditions in (i), (i)
ensure that (5.6) holds. The results now follow from Theorem 5.2.

Let ¢; = Vk/(k — 1) z(B/k). Part (b) of Theorem 6.2 now follows from the fact that
Y7(c1) satisfies (5.9) if & = 4 and A < A;(B) or k < 3. This can be seen as follows. If §,; >
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Oim— A, Op—1] = 6] — A for some 2 < p < k + 1, then R(0, Y(c1)) = (k — p)P{2(B/k) —
(B — p)A/VE(E — 1)} + ®{2(B/k) + (p — 1)A/Vk(k — 1)}. If A = Ai(B), then this lower
bound on R is greater than or equal to one. For 2 = 3 this bound is at least
infa) Pe(CS | (c1)) = ®{2(B/3) + 2A/v6). Let now ¢’ =vVk/(k—1) z(y) — A. If A <
A.(y), then y > (k — 1)/k and ¢°(c’) satisfies (1.3) with equality, and hence ¢“(¢’) € %(y,
A). This is seen by observing that if there are (p — 1) bad populations, then

ag 2k—p—1 } { (k—p)A}
R(0, ) = (k — p)® —_—— A} + D _——
4, y“(c’)) D) {Z(Y) TP, 2(y) TP

A = A,(y) implies that the first term on the right side of the inequality is at least (¢ — p)/
k and the second term is bounded below by (2 — 1)/k. Hence R(6, 4°(c')) = 1if A < A.(y).
This, together with Theorem 8.1 (ii), proves part (c) of Theorem 6.2.
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