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ON TRIGONOMETRIC SERIES ESTIMATES OF DENSITIES

By PETER HALL

Australian National University

It is pointed out that several results due to Walter and Blum do not hold
strictly as they are stated. We find expansions for the mean square errors and
mean integrated square errors of trigonometric series estimates of densities,
and use them to compare the efficiencies of the estimates.

1. Introduction. In arecent paper in this journal, Walter and Blum (1979) examined
a large class of estimates of density functions which includes the classical Fourier series, or
Dirichlet kernel, estimates on (—, 7). They concluded that “the rate [of convergence of
the mean integrated square error] for the Dirichlet sequence estimator approaches O(n™?)
for sufficiently differentiable densities”. This remark ignores the influence of “edge effects”,
or the Gibbs phenomenon, on the bias of trigonometric series estimates of a density. The
bias converges to zero more quickly in the interior of (—, ) than towards the boundary,
and the mean integrated square error is dominated by the bias near +#. The net result is
that even if the unknown density f has an infinite number of bounded derivatives on
(—, 7) the fastest rate of convergence of the MISE may be as poor as O(n""/?). Technically
speaking, the error in Walter and Blum’s argument is that they did not declare their
Sobolev spaces to be periodic; see Wahba (1975, pages 24-25) for a discussion of the
difference between periodic and aperiodic spaces.

If we ask that the jth derivative of f, whenever it exists, satisfies fY(—7+) = fY(7—)
then Walter and Blum’s statement is correct. However, in the majority of applications the
values of f and its derivatives at +# will be unknown, and the assumption of periodicity
will be unrealistic.

We shall find the dominant terms in expansions of the MSE and MISE. Similar results
are provided for the cosine and sine series estimates and the Fejér estimate, introduced by
Kronmal and Tarter (1968). The results are reminiscent of expansions for kernel estimators,
and minimal values of the MISE may be obtained by using Lemma 4a of Parzen (1962).

2. Fourier series estimators. Suppose f has its support confined to (—=,7) and has
a convergent Fourier series expansion at x € (—m,7). An estimate of f(x) based on an
independent sample X, X,, - - -, X, is given by

ful; m) = 2m)7[1 + 2 X7 (4, cos jx + b;sin jx)] = n~' Y7 Dulx — X)),

where d; = n™' Y7 cos jX; and b; = n™! Y7 sin jX; are estimates of the Fourier coefficients
a, = [T, f(u) cos ju du an b; = [, f(u) sin j du, and Dn,(u) = sin [(2m + 1)u/2]/
27 sin (u/2) is the Dirichlet kernel. If f is bounded on (—, 7) and continuous at x then
Var f,(x; m) = mf(x)/nm + o(m/n). Two integrations by parts show that if f has two
derivatives on (—, 7) then

aj= (V)G f@=) = f(—nt)] =i, b= (D" fla=) — fl—nH)] -],

where a/ and b/ are the Fourier coefficients of f”. If f” is of bounded variation then
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laf | +|b}| = O(j™") (Whittaker and Watson (1927, page 172)), and so b(x; m) =
f(x) — E[ fulx; m)] = 77 gn(x) + O(m~?) uniformly in | x| < 7, where

&n(x) = [f'(7—=) = f/(=7+)] Trmer (=1)/j " cos jx _
= [f(m=) = f(=r+)] T+ (=1)’j 7 sin jx.

Using Abel’s transformation we see that g.(x) = O(m™") for each (fixed) x, and if we
choose m = Cn"? then E[ f.(x; m) — f(x)]* = O(n"*?). Generalizations may be obtained
under the conditions f(7—) = [ (—=+) for 0 < j = r — 1, say. However, if f(r—) #
f(—m+) this rate is not attained uniformly in x.

THEOREM 1. Suppose f has r + 1 = 1 absolutely integrable derivatives on (—m, ),
and f9 (=) = f9(—n+) for 0 =j=<r— 1. (If r = 0, this condition is null) Then

f E[f.(x; m) — f(x))? dx = m/nmw + [ (m—) — fO (—=7+) 1/ @r + Dam® ™!

+o(m/n+m™1"),

PRroOF. By Parseval’s equality, [7, b(x; m)® dx = #~' ¥ms1 (af + b]). Also, writing
i=v-1,

aj+ib; = j e’ f(u) du = (—1)’(ij)_’J’ e™f"(u) du

= (=)@ IO m=) = fO(=mH)] + 0T

by the Riemann-Lebesgue lemma. Therefore
j" bx; m)idx =[f"(r—) — f"’(—w+)]2/(2r + )mm®>*! + o(m~**Y),
and since
n J’W Var| f.(x; m)] dx =fr D.(u)? du + O(1) = m/7 + o(m),

the result follows.
If f has its support confined to (0, 7)m, two estimators of f(x) (0 < x < 7) are

fin;m) =7 [1+ 237 Gcosjx] and  faulx; m) =277 X7 b;sin jix.

If f” is of bounded variation then f,,(x; n'/°) has a MSE of O(n™*®), and if f* is of bounded
variation then f;,(x; n'/®) has a MSE of O(n"*°). However, these MSE are not attained
uniformly.

THEOREM 2. Suppose f has 2r + 2 = 2 absolutely integrable derivatives on (0, 7), and
F (=) = f#D(0+) = 0 for 0 < j <r — 1. (If r = 0 this condition is null.) Then

j E[ fin(x; m) — f(x)]? dx = m/nm + 2[f*+" (7—)" + fo+(0+)%]/(4r + 3)mm*™*?
0

+o(m/n +m™3%),

If f has 2r + 1 absolutely integrable derivatives, and f*(r—) = f*(0+) = 0 for
0<j=<r-—1,then
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J E[ fan(x; m) — f(x)]* dx = m/n7 + 2_[f‘2”(1r—)2 + f@(0+)%]/ (4r + Vymm* !
0

+o(m/n+m™"1),

3. Cesaro means of Fourier estimators. Analogues of theorems 1 and 2 may be
obtained for the first Cesaro means of the Fourier, cosine or sine series estimators. We
consider only the first two, given byft (x;m) = (m + iy r fulz; J) = n7'Yt Fulx — X)),
and ft, = (m + 1)7' ¥7 fi.(x; /), respectively, where Fn(u) = {sin[(m + 1)u/2]/
sin (u/2))}2/27(m + 1) is the Fejér kernel. Both these estimators are guaranteed to be
nonnegative.

THEOREM 3. Suppose f has its support confined to (—17, m) and has an absolutely
integrable derivative on (—m, ). Then

f E[f(x; m) — f(x)] dx = m/3nw + 2[f(7—) — f(—=n+)]*/mm + o(m/n + 1/m)

-

asm and n — «. If f(7—) = f(—7=+), and if f is square integrable and satisfies a uniform
Lipshitz condition on (—m, m) of order a > %, then

f E[f*(x; m) — f(x)]* dx = m/3n7 + m'zf | F/(x) | dx + o(m/n + m™?).

TH}BOREM 4. Suppose f has its support confined to (0, ), |f”| is integrable on (0, =),
and ' is continuous and of bounded variation on each interval [e, m — €], e > 0. If
0<x<wthen

E[ft.(x; m) — f(x)]* = mf (x)/3n7 + m~?|f'(x) |* + o(m/n + m™2)

as m and n — o, Furthermore,
J' E[ft.(x;m) — f(x)]* dx = m/3n7 + m™? f [f'(x)|*dx + o(m/n + m™?).
0 0

Here f(x) = 2m)™" [3[f(x — u)—f(x + u)]cot (u/2)du is the Hilbert transform of f,
which is defined by f(u) = f(— u) on (—=, 0) and extended from (—m, 7] to (—o, ) by
periodicity. Note that [§ | f'(x)|? dx= [3 | f'(x) |? dx.
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