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LARGE SAMPLE ESTIMATES AND UNIFORM CONFIDENCE
BOUNDS FOR THE FAILURE RATE FUNCTION BASED ON A NAIVE
ESTIMATOR

By J. SETHURAMAN' AND NOZER D. SINGPURWALLA>

Florida State University and George Washington University

In this paper we consider a naive estimator of the failure rate function
and smooth it using any band-limited window. We show that this smoothed
estimate is equivalent to estimates obtainable from the sample hazard func-
tion, as in Rice and Rosenblatt (1976). We obtain the asymptotic distribution
of the global deviation of the smoothed estimate from the failure rate function,
which can then be used to construct uniform confidence bands.

1. Introduction and summary. Let X;, ..., X, be independent and identically
distributed random variables with a common distribution function F(x) which has a
density function f(x). Assume that F(0) = 0, and for x with F(x) = 1 — F(x) > 0, the hazard
function H(x) is defined to be —log F(x) and the failure rate function r(x) is defined to be
f(x)/F(x), which is also equal to (d/dx)H(x). Let F, be the empirical df of Xi, ---, X,
F.x) = 1 — Fu(x), and H,(x) = —log F.(x), for x < X, where 0 = X =
Xqy = -+ = X are the order statistics of Xj, ..., X,. The purpose of this paper is to
provide estimates of r(x) and to obtain the asymptotic distribution of the global deviation
of these estimates.

We shall consider here a naive estimate of r(x), originally proposed by Grenander
(1956), and also considered by Marshall and Proschan (1965), and by Barlow, Bartholomew,
Bremner, and Brunk (1972, Section 5.3). For Xy = x < Xy, i =1, 2, -- -, n, the naive
estimate rn(x) of r(x) is defined as r,(x) = [(n — i + 1) (X¢y) — X¢-1))]™5 re(x) = 0, for x =
X

Let G(a; A) denote a gamma random variable with density a*e™*x*"'/T'(A), x = 0, and
let G™'(a; A) = 1/G(a; A) be the inverse gamma random variable. Then (as pointed out by
a referee), part (i) of the following theorem follows from the fact that (r.(x))™ —
G(r(x), 2) in law, whereas part (ii) of the theorem follows from Watson and Leadbetter
(1964, page 110). A detailed proof is given in Sethuraman and Singpurwalla (1978).

THEOREM 1.1
(i) ra(x) » G H(r(x), 2) in law.
(ii) Let x1, - - - , xz be distinct. Then {rn(x1), - - - , rx(xx)} are asymptotically independent.

Thus, r.(x) is not a consistent estimate of r(x); indeed, r,(x) has a limiting nonde-
generate distribution. While the asymptotic mean of r.(x) is r(x), the fact that
E(rn(x))' = 2(r(x)) " is surprising, and is reminiscent of the interarrival paradox discussed
in Feller (1966, Volume 2, page 11). Since (r.(x1), - - - , ra(xz)) are asymptotically indepen-
dent, the graph of {r.(x), x = 0} will exhibit wild fluctuations, and therefore deter us from
using r,(x).

Received March, 1980; revised April, 1980.
! Supported by the U.S. Army Research Office, Grant DAAG 29-76-G0238.
2 Supported by the Office of Naval Research, Contract N00014-77-C0263, Project NR 042 372.
AMS 1970 subject classifications. 60F05, 60G15, 62G05, 62N05.
Key words and phrases. Failure rate function, consistent estimate, asymptotic uniform confidence
bands, maxima of stationary processes.
628

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to 2
The Annals of Statistics. RIKGJ:Y

WWWw.jstor.org



FAILURE RATE ESTIMATOR 629

In Section 2, we propose a smoothed estimate of 7, obtained by averaging the naive
estimate r, using a band-limited window. We show that 7, can be approximated by an
appropriate Gaussian process (Theorem 2.2), and thus obtain the asymptotic distribution
of the global deviation on any finite interval. This result can be used to construct confidence
bands for the failure rate function.

Rice and Rosenblatt (1976) have proposed three estimates, 2%, A{?, and A', of the
failure rate function which are nonparametric in nature. They have applied the results of
Bickel and Rosenblatt (1973), strengthened by Rosenblatt (1976), for the sample density
function to obtain the asymptotic global results for 4.". They have also shown that 4 is
asymptotically close to 2. By approximating the normalized and centered sample hazard
functions H, by a Wiener process under a monotone transform of time, we obtain, in much
the same way as Bickel and Rosenblatt, the asymptotic global results for our smoothed
estimate 7, and the Rice and Rosenblatt estimator 4%>. In the course of this proof, we also
show that 2% and A are uniformly equivalent to our smoothed estimator 7, on each
finite interval. Other nonparametric estimates of the failure rate function have been
studied by Ahmed (1976), Ahmed and Lin (1977), Shaked (1978), and Miller and Singpur-
walla (1980).

2. Smoothing of the naive estimate. The behavior of the naive estimate is analo-
gous to that of the periodogram which is used to estimate the spectrum of a stationary
time series. We shall therefore use the standard technique of “smoothing” the naive
estimate with a “window” w(u), which is a bounded (0 = w(u) = ¢ < »), band-limited
(w(u) = 0, for |u| = A), symmetric function of integral one to obtain a consistent and
asymptotically normal estimate of the failure rate. The smoothed estimator depends on
w(u) and a sequence {b,}, where b, | 0 and nb, 1 », as n — . Without loss of generality,
we may assume that 0 < b, = 1.

We define a smoothed estimator r,(x) obtained by smoothing r, with window w and
bandwidth 2b, A as:

1 —_
(2.1) Fa(x) = F,f w<f-;-f)rn(s)ds =f w(s)ra(x — b,s) ds.
Whenever w is a band-limited window, 7,,(x) will be used as an estimate of r(x) only for x
= b, A.

For x < X,), we may rewrite 7,(x) as

rn(x)—— f ( )an(S), where R,(x) = f ra(y) dy.
0

Using the elementary inequality | x + log (1 — x) | = x%/2(1 — x) for 0 = x = 1, we can,
using some straightforward steps (see Sethuraman and Singpurwalla, 1978), show that
R, (x) and H,(x) are uniformly close to each other in bounded intervals. That is, for some
K<X (n)s

(2:2) Suposr=xk | Ru(x) — Ha(x) | = 2/3nF.(K), w.p.l
The three estimates of the failure rate introduced by Rice and Rosenblatt (1976) are.

hAP(x) = fu(x)/Fn(x), where f[.(x) =51—f w<f.§.f) dF,(s)

1 x — s\ dF,(s)
AP (x) = — — ;
@ b,,J w( br ) Fo(s)

and AP (x) = — f < )dH (s). Under the additional assumption that
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(W1) j |w'(x) | dx = ¢ < oo,

where w' is the derivative of w, we can, using (2.2), show that A!¥ (x) is uniformly close to
7»(x) in bounded intervals. That is, whenever K + A < X(»),

(2.3) SUpo=r=k | Fn(x) — A (x)| = 9C/2nb.F. (K + A), w.p.l
Let B(x) = F(x)/F(x), B'(x) the derivative of B(x), and
£n(x) = T«/—n——znc; (B (x) — r¥ (x)), b A=Sx=k,
wpy _ 1 x—s
where 7 (x) = B f w< b ) dH(x).

In Theorem 2.2, we show that the process (¢:(x); b, A = x = K) is uniformly close to a
stationary Gaussian process. Because of (2.3), this result also holds for the process (&.(x);
b.A = x = K}, where £,(x) is £(x) with A (x) replaced by 7.(x). In Theorem 2.3 we
obtain the asymptotic distributions of M, = max, a==x | é:(x) | and M.(x) = max, a=.=x
| £.(x) | . In order to use this result for obtaining confidence bounds for r(x), b,.4 = x = K,
we replace ri(x) by r(x), and also replace any unknown quantities that enter in the
asymptotic theory by their estimates. This is done in Theorem 2.4. Define Z.(x) =

n (Hn(x) — H(x)).

THEOREM 2.1. There exists a Gaussian process {Z(x); 0 = x = K + A} with mean
function zero and E(Z(x)Z(y)) = B(x) for x =y, and such that

D log n)
JZ ’

whenever X, > K + A, where D is a random variable with P(D < ) = 1.

SUPo=x=k+a | Zn(x) — Z(x) | = 0< w.p.1,

Proor. We use the generic name D for any random variable with P(D < «) = 1. From
Komlés, Major, and Tusnady (1975), there exists a Gaussian process {Y(x); 0 = x} with
mean function zero and EY(x) Y(y) = F(x)(1 — F(y)) for 0 = x = y, and such that

D log n)
\/; 5
The theorem follows from the above, if we note that for 0 = x = K + A, Z.(x) =

— Vn log(F,,(x)/F(x)) can be written as Z.(x) = Z(x) + D log nAn, where Z(x) = Y(x)/
F(x) is Gaussian with mean 0 and E(Z(x)Z(y)) = B(x) forx=y. O

Supo=sx | V1 (Fa(x) — F(x)) — Y(x) | = 0( w.p.l.

Let { W(s), —» < s < o} denote a Wiener process, and define {(0) = [ w(f — t) dW(?),
0 =60 < . Then {{(d); 0 = 0 < o} is a stationary Gaussian process with mean 0 and
E(@ + 8)¢£(0)) = [ w(8 + t)w(t) dt = p(8), say. To prove Theorem 2.2 below, we need
the following two restrictions on F:

(F1) B”(x) is bounded on 0 = x = K
(F2) info<y<k+a B'(x) > 0.

THEOREM 2.2. Let (W1), (F1), and (F2) hold. Then there exists a stationary Gaussian
process {$.(8); A = 6 K/b,} which is a restriction of {{(8)} for A = 0 = K/b, such that

logn
SUPs, azezk | £n(x) — Ealbpx) | = O[D(—_———————+ bi/2>], w.pl,
sk | | Jnb, FA(K + A) P
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whenever X, > K + A. The above statement is also true when &,(x) is replaced by £,(x).

Proor. Follows from the steps which are analogous to those of Bickel and Rosenblatt
for their Propositions 2.1 and 2.2, and our Theorem 2.1 and Equation (2.3). 0O

To obtain the asymptotic distributions of M, and M,, let A (w) = [ w?(t)dt and K (w)
= (w?(A) + wi(—A))/2A(w). If Ki(w) = 0, we set Ko(w) = [ (w'(¢))%dt/2\(w) and require
that

(W2) f (W'(t))? dt < oo;

notice that (W2) = (W1). Let C., (2 log (K/b,))"/? and 8, = C,/(A(w))/2. When w satisfies
(W1) and K;(w) > 0, define a, = (A\(w))’[C,, + log (CoK1(w)/v27)] /C,. When w satisfies
(W2) and Ki(w) = 0, define a, = (A\(w))*[C% + log (Kz(w)/m)]/Chn.

THEOREM 2.3. Let (W1) hold with Ki(w) > 0, or (W2) hold with Ki(w) = 0. Let (F1)
and (F2) also hold. Then for 0 < x < oo,
PBu(M, — ay) = 2} —» 72,

The above statement is also true when M, is replaced by M,.

Proor. Follows from Theorem 2.2 and the results on the extreme of a stationary
Gaussian process with an autocorrelation function p(6) given in Appendix A of Bickel and
Rosenblatt. O

In order to replace r}(x) in £.(x) and £,(x) by r(x), we impose an additional restriction
on F:
(F3) r(x) is twice continuously differentiable.

Let (F3) hold; then by the uniform continuity of 7”(x) on [0, K + A],

SUpy, as:=k | Fh (x) — r(x) | = LbZ,

where L is some finite number.
Let the constants b, satisfy the additional condition

(B1) nb? log b, — 0.

THEOREM 2.4. Under the additional assumption that (B1) holds, we may replace
ri(x) by r(x) in the definitions of &.(x), &.(x), M., and M,, and Theorem 2.3 continues to
hold for the new M, and M,

Proor. Note that

nb, 1*
,8,{——"—] (P (x) — r(x))

B'(x)
nb, 1 @ " nb, 1" .
= ,Bn[ 7 (x)} (hr'(x) — r¥(x)) + BH[E,(T):I (r (x) — r(x))

= Buln(x) + O((nb}, log (K/b,))"%) = Bad(x) + o(1)
uniformly for b, A = x = K. Thus,

1/2
BnI:S“pbnASxéK <—n,‘i_);—)) (hf)(x) —r(x) — an:l = :Bn[Mn - an] + 0(1).
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This proves the theorem. [

The denolninator B'(x) = r(x)/F(x) in the definitions of &,(x) and &(x) is unknown.
Since 7,(x)/F.(x) is a uniformly consistent estimate of B’(x), we may now obtain 100a%
uniform confidence bands for r(x), b,A = x = K, as

)\ 2
"o+ (i) (50

where z = —log(—(%) log a).
In a similar manner we can also obtain uniform confidence bounds for r(x) using

AP (x).
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