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MAXIMIZING THE VARIANCE OF M-ESTIMATORS USING THE
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The problem considered is that of optimizing a function of a finite number
of linear functionals over an infinite dimensional convex set S. It is shown
that under some reasonably general conditions the method of moment spaces
can be used to reduce the problem to one of optimizing over a simple finite
dimensional set (generally a set of convex combinations of extreme points of
S). The results are applied to finding the maximum asymptotic variance of
M-estimators over classes of distributions arising in the theory of robust
estimation. )

1. Introduction. The method of moment spaces has been used in a wide variety of
situations to characterize solutions of variational problems. One problem to which the
method is often applicable is that of optimizing a function depending on a finite number
of linear functionals over an infinite dimensional convex set, S. In such cases the method
of moment spaces will often reduce the problem to one of optimizing over a simple finite
dimensional set (generally a set of convex combinations of extreme points of S). Three
results which are formal statements of this principle are presented in Section 2. They are
simple, but appear to be unpublished. In Section 3 the results are directly applied to
finding the maximum asymptotic variance of M-estimators over classes of symmetric
distributions arising in the theory of robust estimation. The results extend those of Collins
[2], and show that the maximum asymptotic variance can be found by examining contam-
inating distributions which are convex combinations of at most two pairs of symmetric
point masses. Naive intuition might suggest that a single pair of symmetric point masses
may be sufficient (e.g., see the conjecture on page 33 of [6]). However, a simple example is
presented here showing that consideration of two pair of point masses is necessary.

Section 4 extends the results of Section 2 to some special cases where the maximizing
convex combination can be easily identified, and includes an application to a recent result
of Efron and Olshen [3].

2. The general results.

THEOREM 1. Let S be a convex compact subset of a locally convex linear topological
Hausdorff space, let A:S — R" be affine and continuous, and let T:R"™ — R be a function
which attains its maximum over A(S) on the boundary of A(S). Then there is a convex
combination of at most n extreme points of S at which T o A is maximized over S.

Proor. By the hypotheses on S and A, A(S) is a compact, convex subset of R"; and
so by Carathéodory’s Theorem (see [7], page 155 ff) each boundary point of A(S) is a
convex combination of at most n extreme points of A(S). The theorem follows since each
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extreme point of A(S) is the image of an extreme point of S ([5], page 132, problem
C).0

REMARK 1. If the condition in the hypothesis that T attains its maximum on the
boundary of A(S) is replaced by the weaker condition that T attains its maximum at some
point in A(S), then the conclusion of the theorem is true with “n” replaced by “n + 1.”
Also the theorem is true with “maximized” replaced by “minimized.”

REMARK 2. Theorem 1 is a satisfactory result for the particular applications treated in
Sections 3 and 4. We present two more versions of the result which may have useful
applications to cases where the strong assumption that the functional A is continuous does
not hold. In Theorems 2 and 3, the condition that A is continuous is weakened and replaced
by other topological conditions that can be checked in R”. The proofs are relatively
straightforward and will be deleted. .

Notation. E° denotes the convex hull of E, and E denotes the closure of E.

THEOREM 2. Let S be a convex subset of a locally convex linear topological Hausdorff
space, and let E be any subset of S such that S CE°. Let A:S — R" be affine and
let T:R™ — R attain its maximum over [A(E)]° on the boundary of [A(E)]. Suppose
that A(E) is compact and that A(S) C[A(E)]‘. Then there is a convex combination of at
most n points of E at which T ° A is maximized over S.

THEOREM 3. Theorem 2 remains valid if the hypothesis that A(S) C [A(E)]° is
replaced by the hypothesis that T o A is lower semicontinuous onE°.

REMARK 3. Clearly Theorems 2 and 3 remain valid if the word “maximized” is replaced
by “minimized,” and in Theorem 3 the words “lower semicontinuous” are replaced by
“upper semicontinuous.”

REMARK 4. If S is compact and E is the set of extreme points of S, then S = E° (by
the Krein-Milman Theorem, page 131 of [5]). If A is continuous and E is closed, then
Theorem 1 follows from Theorem 2. However, Theorem 1 is not a special case of Theorem
2, since Theorem 1 is true even when E is not closed and A(E) is not compact.

3. An application: Maximizing the asymptotic variance of M-estimators.
Consider the robust estimation model of Huber [4]. Let X;, --., X, be iid. random
variables with distribution function F(x — @), where @ is unknown and F is an unknown
member of a specified class of distributions & An M-estimator of @ is defined as a solution
8. of an equation of the form

(3.1 (X — 6,) =0.

Under regularity conditions on ¥ and F, (8.} is a consistent sequence of estimators of §
and n'/? (6, — 6) converges in distribution to the normal distribution with mean 0 and
variance V(y, F'), where

(3.2) Vi, F) =f¢2 dF/ [ f\l/ dF] .

One then considers sup{V(y, F): F € #} to be a measure of the robustness of the M-

estimator based on 4.
Collins [2] studied the case of M-estimators for y’s which vanish off a compact set

[— ¢, ¢]. Consider now the problem of finding sup{ V(¢, F): F € &} for such {’s. In many
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interesting examples, such as Andrew’s [1] /(x) = sin(7x/c¢) for | x| < ¢ and = 0 elsewhere,
Y/ is continuous everywhere except at *+c. In such cases V(y, F') is not a continuous
functional, so that Theorem 1 does not apply. One may either: (i) apply Theorem 3; or (ii)
by restricting the domain of both ¢ and F to [—c¢, c], define an equivalent problem to
which Theorem 1 applies. The latter approach is taken below.

Let ¢ > 0 be fixed, and let % be a specified class of (possibly substochastic) distributions
F which are symmetric about 0 and have support [—c, ¢]. Assume further that & is convex
and compact when endowed with the vague topology (i.e., the weakest topology for which
the mapping F — [. g dF is continuous for all continuous g:[—c, c] = R). Let ¥. denote
the class of functions y:[—¢, ¢] — R satisfying (i) ¥ is continuous; (ii) ¥(x) = —y(—x) for all
x € [—c, c]; (iii) ¢(x) > 0 when 0 < x < ¢; (iv) Y(c) = 0; and (v) the derivative ¢':[~c, c]
— R is continuous.

Assume that ¢ and % satisfy

(3.3) inf{ f Y dF:F € %}>O.

The problem is to find sup { V.(y, F): F € %} for a given Y € ¥, where the functional
Ve(y, F) is defined by:

(3.4) Ve, F) =f PP dF/ [f Y’ dF] .

Define A: % — R? by
A(F) = [f Vg dF,f Y2 dF:I,

and note that A is continuous and affine. Define T:R?— R by T'(x, y) = y/x>. Since A( %)
is a compact subset of {(x, ¥):x > 0} C R% T must attain its maximum value (call it mo)
over A(%) at some point (xo, yo) € A(Z). Since {(x, y):T(x, y) = mo} is a connected set
with at least one point in A(%) and also points in the complement of A(%) (in a
neighborhood of (0, 0)), T must attain m, on the boundary of A(%). By Theorem 1,
T o A(F)[= V.({y, F)] attains its maximum over % at a convex combination of at most two
extreme points of %.

ExaMmpLE 1. (The gross errors model). Let ¢ be fixed, 0 < e < 1, let ¢ > 0 be fixed and
let ® denote the standard normal distribution function. Let % . denote the class of
distributions of the form F = (1 — ¢) ® + ¢ G for some symmetric G, with domain restricted
to the set [—c, c]. The extreme points of %, are the d.f.’s of the form

(1—¢e)® + €b.s,

where 8., is the d.f. that puts mass % at x and mass % at —x. So if € ¥, and ¢ and %,
satisfy (3.3), then sup{V.(y, F): F € F,.} is attained at a convex combination of at most
two extreme distributions. The problem of computing the supremum is reduced to the
problem of finding the triple (x1, x2, @) € [0, ¢]* X [0, 1] which maximizes

{Ao + & [a?(x1) + (1 — ) Y*(x2)]} /{Bo + & [/ (x1) + (1 — Q)¢ (x2)]}’,
where A= (1 —¢) [<.y*d®and Bo= (1 —¢) [S. ' d ®.
ExampLE 2. (The Kolmogorov model). Let ¢ be fixed, 0 < ¢ < 1, and define %, to be
the class of restrictions to [— ¢, c] of distributions F which are symmetric and which satisfy

sup; | F(x) — @ (x) | <e. The extreme points of %, are those symmetric distributions which
have restrictions to [0, c¢] of the form
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F(y) = F,(y) O<y<x
=F*(y) y=z«x

for some x = 0, where F,(y) = max{%, ®(y) — ¢} and F*(y) = min{®(y) + ¢ 1}. If y €
V., and ¢ and e are such that (3.3) holds, then sup{V.(y, F): F € %} is attained at a
convex combination of at most two such extreme distributions.

Examples 1 and 2 greatly improve the results of [2], Sections 4 and 5, respectively. In
[2], the problem of finding sup {V.(y, F): F € ¥} was approached by obtaining a charac-
terization of the convex set of F’s in % at which the supremum is attained (Theorem 3.1
of [2]). It was shown in [2] that under some quite special conditions on y, there is an
extreme distribution maximizing V.(y, F). But the general question of the “simplest”
possible form of F required to attain sup V.(y, F') was left unanswered in [2].

For all the special {’s in ¥, that have previously been tonsidered in the literature,
sup{V.(y, F): F € %4} is attained at an extreme point of % .. We now give an example of
a ¢ for which the simplest F maximizing V(y, F) is a proper convex combination

(1= ¢P + e[ plex, + (1 — p)Bss,],

where 0 <p <1and 0 < x; < x».
Let 0 <d < a,let M > 1, and define

Yo(x) = x 0sx=a
=2a—x asx=<2a-d
=d+MQ2a—-d—-=x) 2a—d=x=<c
=0 x=c

= _‘PO(_ x) x=0,

where ¢ =2a — d I—A—IJ). Note that Yo(x) = 1for 0 < x < a, Y5(x) = =1 for a < x < 2a

— d, Yo(x) = —M for 2a — d < x < c. Consider a choice of a, d, M and ¢ for which y,
satisfies (3.3). Note that no F in & maximizes

c

j ¢ dF, but that j YidF,—sup | Y§dFasn— o,
where F, = (1 — &)® + ¢ 8+, where {x,} is any sequence such that x, | a. We express this
figuratively as:

(1 — &P + £b+(a+0 “maximizes” Y3 dF.

-c

Similarly

1—-98®+ Ssi(za_d-'.o) “minimizes” \{/f) dF.
Finally one can see directly that a “distribution” of form
(3.5) (1—&)®+ e[pdi@+oy + (1 — P)+a-d+0)]

“maximizes” V.(yo, F), for some p, 0 = p < 1. For if F* is any other distribution in #.,
one can strictly increase V.(yo, F'*) by moving the mass on (a, 2a — d) under F* to a +
0, and the mass on (2a — d, ¢] to 2a — d + 0.

For example, let ¢ = 0.1, @ = 10, d = 107 and M = 6. Then (3.3) is satisfied:
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inf [ ' dF =0.3>0.

—c

Using the notation V(p) to stand for V evaluated at ¥, and the convex combination (3.5),
one calculates that V(0) = 10, V(1) = 17.031 and that V(p) attains a maximum value =
19.608 when p = 0.42.

Now let ¢ be a function in ¥, which is obtained by smoothing Yo in very small
neighborhoods of its discontinuities at +a and +(2a — d). Then sup V.(y, F) is attained
at some F in % .; and by a continuity argument there is an F maximizing V.(y, F') which
is a proper convex combination “very close” to the F which “maximizes” V.(yo, F).

In Figure 1, [, ¢’ dF is plotted against [<. ¢* dF for the y of the previous paragraph
(but the plot is not to scale). The solid line in Figure 1 is A(E), the image of the extreme
points E = {(1 — &) ® + d..:x € [0, c]} under A(F) = (J°. ¢’ dF, [°. y* dF). The shaded
area is A(#,.), which in this case is the convex hull of A(E). For the choice of parameters
in the example, T'(x, y) = y/x” is maximized over A(%.) at a unique point in the interior
of the dotted line in the figure (necessarily the image under A of a proper convex
combination of two extreme points).

The general method used for finding sup V.(y, F') (including the idea of plotting A(F)
in R?) is outlined in a discussion on pages 32 and 33 of Portnoy [6]. The only basic idea
overlooked there was that boundary points of A (%), which correspond to extreme points
of & in the special example of the sine-wave i, may sometimes correspond to proper
convex combinations of two extreme points.
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FiG. 1. Graph of [,y dF vs. [°. y* dF for the { of the example.
Notation: Ao = (1—¢) [<cy* d® and Bo = (1 — ¢) [, ¢ d®.
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We conclude this section with another application of Theorem 1. Let ¢ be in ¥, and
suppose that inf{[<. ¢’ dF: F € #.,.} > 0. For a special model of dependence described in
Section 1 of [6], an approximate expression for the asymptotic variance of the M-estimator
based on ¢ is ([6], formula (2.11)):

f V(x) dF f x(x) dF

c 2 + 4P
([

Then (3.6) is maximized over 4 . at a convex combination of at most three extreme points
of % .. To see this, apply Theorem 1 with A: % . — R? defined by

A(F) = (J V(%) dF,f VA(x) dF,J x(x) dF)

(36) : :
J V(%) dF

and T:R® — R defined by T'(x, y, 2) = (y/x?) + 4pz/x.

4. Identifying the maximizing convex combination. The results of Section 2
reduce an infinite-dimensional problem to the problem of finding the maximizing (or
minimizing) convex combination of n extreme points. In application to some special cases
when n = 2 [n = 3], this problem may further be reduced to a simple one-dimensional
[two-dimensional] problem. Some examples are given below.

Returning to Example 1 of Section 3, we consider the problem of finding sufficient
conditions for the asymptotic variance to be maximized at a single extreme point. For ¢
€ V., the set A(E) in R? is the curve {(x(¢), ¥(¢)): t € [0, c]}, where x(t) = (1 — ¢)
[ ¥/ (1) du + ey/(t) and y(t) = (1 — &) [, Y*(w) du + ey*(t). A sufficient condition for
T(x, y) = y/x* to attain its maximum over A(.%,) at a point on A(E) is clearly that, on
A(E), ¢y be twice differentiable and dy/dx = y'(¢)/x'(t) = 2y(¢)y’(¢t)/¢" (t) be monotone
nondecreasing, so that the boundary of A (%) is the union of the concave curve A (E) and
the line segment connecting (x(0), ¥(0)) to (x(c), ¥(c)). This is condition (4.4) of Collins
[2], which is satisfied by Andrew’s sine-wave . A plot of A(4,) in R? for the sine-wave
Y is given in Figure 1 of Portnoy [6].

For ¢’s in ¥, for which 2y4//¢” is not monotone nondecreasing, one can sometimes
deduce the maximizing convex combination from the behavior of 2y4//{”. For example,
suppose that ¢ € ¥, is defined by y(¢) = ct — t* for 0 < ¢t < ¢, and Y(t) = —y(—t) for
—c=<t=0.Then2¢(t)y/'(¢)/y"(t) = — t(c — t)(c — 2t), which is not monotone nondecreasing
on [0, c]. In fact (d/dt)[2¢(t)¥ (t)/¥"(¢)] = 6t(c — t) — c?, which is = 0 in the interval
(¢/2) £ (V/3/6)c and is < 0 elsewhere in [0, ¢]. From this one easily sees that the line
segments connecting [x(0), y(0)] to [x(c/3), y(c/3)] and [x(2¢/3), y(2¢/3)] to [x(c), y(c)] are
on the boundary of the convex hull of {(x(¢), y(¢)): ¢t € [0, c]}. Thus for ¢ and c¢ satisfying
(3.3), the distribution on [—c¢, ¢] maximizing V.(y, F) over % . has (depending on the values
of ¢ and ¢) either the form (i) (1 — &)® + &8., for some x € [¢/2, 2¢/3], or (ii) (1 — &)® +
Debzacss + (1 — p)eds. for some p € [0, 1]. In either case one has a simple one-dimensional
problem. A graph of A(%,) in R? is presented for this example in Figure 2.

We conclude by investigating a special case motivated by results of Efron and Olshen
[3]. In the context of Section 2, if n = 3, T is linear, and E is one-dimensional, then there
are some simple sufficient conditions under which the boundary point in A(S) can be
identified. In particular, the following theorem often provides the answer:

THEOREM 4. Let {(x, f(x), g(x)): x < x < X} be a curve in R® with f and g twice
differentiable and f strictly monotonic and either concave or convex. Define for x = u <
xandx=v=x,
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FiG. 2. Graph of [¢.y’ dF vs. [°.y* dF
when Y(x) =cx—x’0=<x=<¢
=cx+xt-c=x=<0.
(4.1) Viu, v) = f"(v) g"(w) — f"(w)g” (v),

and assume that V(u, v) has the same sign for all v = u. Let (xo, yo) be in the convex hull
of {(x, f(x)):x = x < %} in R%, and make the following definitions (see Figure 3): let a =
(xo — x)/(X — x) and (since f is monotonic) define X, and X, uniquely so that

(4.2) f(X2) = (yo— (1 — a)f(x))/a
f(X1) = (o — af(x))/(1 — a).
Define
(4.3) Z = ag(%) + (1 - ¥g(Xy)
Z=ag(Xz) + (1 — a)g(x).

Let S be the convex hull of {(x, f(x),g(x)):x = x < X} in R® and let S(xo, y0) = {z:(x0, Yo,
2) € S}. Then if V(u, v) (for v = u) has the same sign as f”(x) (which is either always
nonpositive or always nonnegative) then

(4.4) Z = inf S(xo, yo) and Z = sup S(x, yo).
If the signs are opposite thenZ and Z are reversed in (4.4).
Proor. For each a € (x, %) there is a unique point b € (x, %) such that (xo, yo) lies on

the line from (a, f(a)) to (b, f(b)) in R% (Note that b = b(a) is a differentiable function of
a.) That is, f(b) satisfies
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Y
(XO:}’O)
T T T T X
X X, X, X
F16. 3. y = f(x)

(4.5) Yo =p(a)f(b) + (1 — p(a))fla)
where
(4.6) p(a) = (x—a)/(b— a).

Let z(a) be the z coordinate of the point in R® vertically above (or below) (xo, yo) on the
line from (a, f(a), g(a)) to (b, f(b), g(b)):

4.7) z(a) = p(a)g(b) + (1 — p(a))g(a).

We want to show first that z(a) is a monotonic function of a; so differentiating (4.7) yields
(4.8) Z'(a) = p'(a)(g(b) — g(a)) + p(a)b'(a) g’(b) + (1 — p(a)) g'(a).
Differentiating (4.5) and (4.6) yields (with some calculation)

4.9 0 =p'(@)(f(b) — fla)) + p(a) b’ (@) f (b) + (1 — p(a))f(a)

(4.10) p'(a) = _b_iE (1 —p(a) + p(a)b'(a)).

From (4.9) and (4.10)

(4.11) =—(1-p(a)A +pla)b'(a)Borp(a)b’(a) =(1—pl(a))A/B
where

_f®) —fla) _ oy [(B) — fla)
(4.12) A =4 f'(a), B =f(b) 5 —a

Note that since fis concave or convex, B is always of the same sign (for x = a < ¥). From
(4.11) and (4.10)
_ 1—pa) A+ B

PO s



GENERALIZED METHOD OF MOMENT SPACES 575

and, hence, from (4.8) and (4.11)

! b) — A+B
Ma) =~ — play EH _ED 22

A
+(1=-p() g'®) 5+ (1 -pla)ga)

B

_1-p@f, o 8d) —gla)
(4.13) -—5— {Ag (b) + Bg'(a) —=———— (A + B)}

_1-pla) _

=—5 (BD - AC)
where

_ ipy _ 8B) —gla) _8((b) —gla)
C=g'(b) . D———b_a g'(a).

Writing function differences as integrals,
b rb
(b—a)*(BD — AC) = f j [(F(®) — F(s)(g' ) —&g@) — (f(r) —f(a))
(g'(b) —g'(s))] dr ds

b rb rr b
[ [ resw - rusowaa

b b pr b
=J' JJI V(u, v) dv du dr ds.

The inner two integrals are over a lower-right-hand rectangular corner of the rectangle
with vertices (a, @) and (b, b) in the (n—u) plane. Since V(u, v) = —V(v, u), the integral of
the part of this domain (if any) above the line « = v cancels with a congruent part below
the line, leaving an integral over a set with v = u where V(«, v) always has the same sign.
Since the sign of B is the same as the sign of f”(x) (4.12) and since the sign of 2’(a) is the
product of the sign of (—B) and the sign of V(u, v) (for v = u; see (4.13)), z(a) will be
decreasing if and only if f7(x) and V(u, v) (for v = u) have opposite signs. Thus, among
points in S(xo, o) which are convex combinations of at most two points along the curve,
the desired result follows.

To complete the proof note that by the argument of Theorem 1, every boundary point
of S is a convex combination of at most 3 points along the curve. So let U be a convex
combination of points P;, P, and P; on the curve (with x-coordinates x; < x2 < x3
respectively—see Figure 4 for the projection into the (x—y) plane). Let V be the intersection
of P.U with P:P;s and let @ be the point at which the curve meets the vertical plane
through P, and U. From the preceding argument (with (xo, yo) the (x — y) projection of V)
there is a point of P;@ vertically below V, if z'(a) is positive (and vertically above V if
2'(a) is negative). Thus, since lines P;1@ and P,V are in the same plane, P lies entirely
below P,V if 2’(a) is positive (and entirely above if 2’'(a) is negative). Thus, if 2’'(a) is
positive, the z-coordinate of U lies above the z-coordinate of the corresponding convex
combination of P; and @; and, hence, the z-coordinate along the vertical line through U
is minimized by ¢hoosing P; to have smallest x-coordinate (x). If 2’(a) is negative, the z-
coordinate is maximized by choosing @ to have largest possible x-coordinate (). A similar
graphical argument (introducing the line P; U) completes the proof of the theorem.

CoROLLARY. Let {(x(2),y(¢), 2(t):t < t <t} be a curve in R3 with x, y, and z strictly
monotonic and twice differentiable. For r, s, and t in (¢, t), let

F@r)=x')y" () —x"(r)y'(r)
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P3

F1G. 4. Three points along the curve.

(4.14) G(r)=x'(nNz"(r) — x"(r)2'(r)
Wi(s, t) = F(t) G(s) — F(s)G(¢).

Suppose F(r) has the same sign for all r € (t, t). Then for any (xo, yo) in the convex hull
of {(x(t), y(®)):t = t = t} in R? there are unique points pi, p; in [0, 1] and ¢, ts in
t, t) satisfying

p1x(t) + (1 — p1)x(t) = xo p2x(ts) + (1 — p2)x(£) = xo

(4.15) -
piy@®) + (1 —p)y(t)) =y0  p2y(ts) + (1 — p2)y(t) = yo.

Let

(4.16) Z=p12(t) + 1 —p1z(t)  Z=paz(t:) + (1 — pa)2(?).

Then if W (s, t) has the same sign for all t = s, the conclusion of Theorem 4 holds with
Wi(s, t) replacing V(u, v) and F(r) replacing f” (x).

Proor. By monotonicity, f and g can be defined so that y = f(x) and z = g(x). Calculus
yields

f(x(®) = (x'@)y" (&) — x" (@)Y (©)/(x'())?

(and similarly for g”(x(¢)). Thus, W (s, ¢) has the same sign as V(x(s), x(t)) and F(¢)/x’(¢)
has the same sign as f”(x(¢f)). Thus, whether x’(¢) is positive or negative the corollary
immediately follows from Theorem 4.0

REMARK 1. Note that the values X; and X, in the theorem (or p; and ¢ ({ = 1, 2) in the
corollary) depend only on f(x)(or x(¢) and y(¢)). Thus, the z-coordinate is maximized or
minimized at the same convex combination of two points of the curve for all functions g(x)
(or z(¢)) satisfying the hypotheses of the theorem (or the corollary).

REMARK 2. The corollary immediately yields a recent result proved quite differently

by Efron and Olshen [3]. Let u be a probability measure on [0, «) and let ® denote the
standard normal cdf. For x > 0 define

H(x) =J’ ®(hx) du(h).
0
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Consider the problem of maximizing or minimizing H (xs) subject to fixed values for H (x1)
and H (x,) over all probability measures, p (on [0, )). By Theorem 1, since the. extreme
measures are point masses, this is equivalent to maximizing or minimizing z(¢) = D (x2t)
subject to x(¢) = ®(x:t) = xo and y(¢) = ®(x2t) = yo. Thus, the corollary applies, and
directly computing (4.14) yields

F(r) = —cx1x2(x3 — x3)r exp {(—%(x? + x3)r?}
G(r) = —cx1x3(x3 — x3)r exp {—Y(x? + x3)r’}
Wis, £) = c*x3xaxs(x3 — x3) (63 — x?) st exp (—ai(s* + 7))
. {exp[—%(x}e® + x}5®)] — exp[—%(x3£ + x357)]}.

Thus, F(r) has constant sign; and W(s, ) has constant sign for ¢ = s. Thus, z(¢) is
maximized or minimized at one of two fixed convex combinations of values of z(¢), as
described in the proof of the theorem on page 1160 of [3]. (It should be noted that the
statement of the theorem incorrectly reverses the inclusion symbols € and & in (1.3) and
(1.4), though the proof derives them correctly.)

It is important to note that the theorem (or corollary) provides simple conditions to
check when similar results hold for other related mixtures of distributions. For example,
to minimize and maximize the Laplace transform Ee™** for s; < s =< s subject to Ee ¥
= xo and Ee™>* = y, (over all distributions for X), let x(t) = ™", y(t) = e”*, and 2(¢) =
e~ . Then f(x) = x*/* and g(x) = x*/*; and the conditions for Theorem 4 can be directly
checked. Thus, Theorems 1 and 4 immediately yield minimum and maximum values for
Ee**. In particular, for s; = 1, s; = 2, xo = % and yo = % (values for the Laplace transform
of a negative exponential density), direct computations show that Ee*¥ is maximized at
p18(0) + (1 — p1)g(b1) where p; = % and b; = %; and it is minimized at p:g(b2) + (1 —
p2)&(1) where p, = % and b, = %. Therefore, for 1 = s =2

% (%)° + Y4 < Ee™* < % (%)°

if X satisfies Ee X = %, Ee X = %. Reverse inequalities hold if 0 = s <1 ors> 2.
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