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UNIQUENESS AND EVENTUAL UNIQUENESS OF OPTIMAL
DESIGNS IN SOME TIME SERIES MODELS

By R. L. EuBank, PaTricia L. SMiTH AND PHILIP W. SMITH!

Southern Methodist University and Old Dominion University

Using the results of Barrow, et al., and Chow on the optimal placement
of knots in the approximation of functions by piecewise polynomials, we show
the uniqueness or “eventual uniqueness” of optimal designs for certain time
series models considered by Sacks and Ylvisaker, and Wahba. In addition, the
limiting behavior (as the sample size increases) of the variance of the BLUE
of the regression coefficient is characterized in terms of the density defining
the design, and the density for the asymptotically optimal design is given.

.

1. Introduction. Consider the stochastic process
(1.1) Y () = Bf(¢) + X(¢), te(o,1]

where B is an unknown parameter, f is a known regression function, and X(-) is a zero
mean process with known covariance kernel R(s, t). When an infinite observation set is
observed from (1.1) an estimator for 8, 8, may be constructed using the reproducing kernel
Hilbert space (RKHS) techniques developed by Parzen (1961a, 1961b). For finite sampling
schemes the regression design problem has been addressed by Sacks and Ylvisaker (1966,
1970) and by Wahba (1971, 1974). They consider the problem of selecting a set of n distinct
design points, T,, = {t1, - - -, ¢} in the interval [0, 1] so that fr,, the best linear unbiased
estimator (BLUE) of B obtained by taking observations according to 7., would have
minimum variance.

For certain functions f and covariance kernels R, they show the existence of optimal
and/or asymptotically optimal designs. The difficulties they encountered constructing
optimal designs however, led to the construction of design sequences, {T,}{, that are
asymptotically optimal in the sense that

. Var(Bz,) — Var(B)

(1.2) e e, Var (Br) = Var(B)

where D, is the set of all n-point designs.

In this paper the uniqueness or eventual uniqueness of regression designs is considered
for the model (1.1) for a certain class of f’s. We also consider a class of covariance kernels
of which Brownian bridge is a special case. This process has received increasing attention
as a limiting distribution for a smoothed sample quantile process (Csorgé and Révész
(1975, 1978)). Parzen (1979) has shown that a model of the form (1.1) with X(.) a Brownian
bridge process arises in the estimation of location and scale parameters by sample quantiles.
We also discuss the Brownian motion process, the importance of which is well known in
the context of (1.1).

Our uniqueness results derive from the work of Barrow, et al. (1978) and extensions by
Chow (1978) who shows that the best L,[0, 1] approximation of a certain class of functions
by piecewise polynomials with variable knots is unique. That these results are applicable
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follows from Section 4 where it is shown that solving a certain approximation problem is
equivalent to finding an optimal design. In the particular case of Brownian motion for
example, where R(s, £) = min(s, t), an optimal n-point design is obtained by minimizing
(with respect to £, « -+, &,)

(1.3)

' P L t) “
where || - || denotes the L,[0, 1] norm. Since R(-, t) is a linear spline, we are approximating
f’ by a spline of order 1, i.e., by piecewise constants. The optimal design points ¢, -- -, .
correspond to the optimal knot locations. In addition to the theoretical work on unicity by
Barrow, et al., (1978) and Chow (1978), Chow (1978) has developed very efficient numerical
algorithms which can be used to compute optimal designs. The uniqueness of certain
optimal designs and their ease of computation obviate the need in such cases for the
consideration of asymptotlcally optimal designs.

We state our main results in Sections 2 and 5 with proofs in Sections 4 and 5. In Section
3, some recent results in piecewise polynomial approximation are stated from which we
derive our uniqueness results. Some examples are included in Section 6.

2. Results and notation. We consider the stochastic process (1.1). In a sequence of
papers Sacks and Ylvisaker (1966, 1968, 1970) study various aspects of estimating B
utilizing a finite number of observations. This problem of statistical design may be stated

as follows. Let D, := {T, := (t1, -+, :)|0 =<t < ... < ¢, =< 1} be the set of all possible
(noncoincident) designs and let
(2.1) Y1, :=span{YY(¢)|[tET, and j=0,1,-.-,k—1)

where the symbol := means “is defined as.” Then among all Z € Y, r, one can find a
unique Z* satisfying

(2.2) E(Z*) =8
Var(Z*) < inf{Var(Z)|E(Z) =8 and ZE€E Yr,}.
We will denote Z* by Bk,T,. to emphasize the dependence of Z* on both & and T,.. The
design problem is then to find T € D, so that
(2.3) Var(Br.r;) < inf {Var(Brrz,)| T» € Dn}.

This problem may be reformulated as a nonlinear (spline) approximation problem. For
any sufficiently smooth kernel R(s, t) we define

(2.4) RU“I(.,t) =g(-)
where
Y
(4,j)
g(s)=D"’R(s, t) = 6t/ R(s, t).
Let us set
(2.5) Skr, =span{R“(.,¢)|tET, and j=0,1,.--,k—1}.

Finally, let H(R) denote the RKHS of functions defined on [0, 1] generated by R with
norm for h € H(R) denoted by || A || r. Sacks and Ylvisaker (1966) have shown that if f €
H(R) then

(2.6) Var(Bir,) = | Zu.1.fIR
where 24,1, is the orthogonal projection onto Si,z,. Thus | Ze.r.fl% = | fI% — | f = Pe.7.f %
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and we conclude that minimizing the variance in (2.6) (the optimal design problem) is
equivalent to finding a T} € D, so that

2.7 I f = Po1:flr = k(|| f = Pr.1,fll&| Tn € Da}.

Recall the example of Brownian motion given in Section 1.

In general, (2.7) is a very difficult problem and very little is known about it. However,
if R(s, t) is the Brownian bridge kernel or a suitable generalization of it then recent results
in the theory of spline approximation yield results concerning the optimal design problem.
Let us now fix a positive integer & for the remainder of this section. Suppose that R (s, ¢)
is the covariance kernel for a k-fold multiple integral of Brownian motion pinned, with its
derivatives, at both endpoints, i.e., R(s, t) = (—1)*G(s, t) where G(s, t) is the Green’s
function for the boundary value problem:

(2.8) Dzkg =h .
0=g0)=-..=g%10)=g(1) =-.. =g* ().

Then we can state three theorems concerning the optimal design problem, the proofs of
which are given in Section 4.
The first theorem deals with uniqueness of optimal design.

THEOREM 2.1. Let k be a fixed positive integer and let f € H(R), f € C**[0, 1] with
2 > 00n [0, 1] and log f*® concave on (0, 1). Then for each positive integer n there is
a unique optimal n-point design for the problem (2.3).

That is, there is a unique T} € D, so that Var(8xr:) < Var(Br,) if T, € D, and
T, # Tx. The second theorem concerns a concept introduced by Barrow, et al., (1978),
called “eventual uniqueness.”

THEOREM 2.2. Considering the design problem (2.3), if we assume that f € H(R),
% >0 and f***® is continuous on [0, 1), then there is a positive integer no such that for
all n > n, the regression problem has a unique optimal n-point design.

Finally, we state a theorem that Sacks and Ylvisaker (1970) anticipated in an asymptotic
sense.

THEOREM 2.3. Ifk is even, f € H(R), f k) > 0, and T} is an optimal n-point design
as in (2.3), then Var(Brr:) = Var(Be-1,1:).

We remark that this last theorem shows one of the unexpected advantages of optimal
designs: namely, the use of fewer observations can yield equivalent resolution. For example,
the BLUE from the optimal n-point design with 2 = 1 has the same variance as the BLUE
from the optimal n-point design with £ = 2. This means that derivative information (in the
form of Y(¢)) is not useful in improving the precision of the best estimator. A special
case of Theorem 2.3 has been given by Wahba (1971).

3. Approximation by piecewise polynomials and splines. This section is de-
voted to the mathematical and approximation theoretic preliminaries which will be
necessary for later sections. Let D, be as in Section 2. The set of polynomials of order %
(degree less than k) will be denoted by P* and the set of piecewise polynomials of order &
with breakpoints at a particular 7' € D, will be represented by P*(T). Further, P% =
U rep, P*(T) will denote the set of all piecewise polynomials of order % with n breakpoints
in [0, 1]. Since most of our results involve approximation in the L, norm we will set | f|| :

= (J3|f(®)* dp)'.
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With this notation we can now present several recent theorems concerning approxi-
mation by splines and piecewise polynomials.

THEOREM 3.1. Let f€ C*[0, 1] with f*® > 0 on [0, 1]. Suppose that log f*' is concave
on (0, 1). Then for each positive integer n, f has a unique best L,[0, 1] approximation
from P%.

This theorem and the one following were originally proved by Barrow, et al., (1978), for
the case 2 = 2 and Chow (1978) proved the general result. If we instead ask whether one
eventually gets uniqueness as n goes to infinity then the following theorem is pertinent.

THEOREM 3.2. Let f € C**3[0, 1] with f'** > 0 on [0, 1). Then there is a particular
integer n, such that for every n > no, f has a unique best L[0, 1] approximation from Pr,.

It should be noted that this is not an asymptotic result in the usual sense because
unicity is obtained for some finite no + 1 and for every n thereafter. In addition to these
results, Barrow and Smith (1978) and Chow (1978) have also observed the following.

PROPOSITION. If s* € P% is a best L,[0, 1] approximate to f from P} and if f* >0
then

(3.1) (F= §%)(1=) = (CD*(f — s*)(r+)
for all € [0, 1].

Here, 7— and 7+ denote limits from the left and right respectively. For a simple proof
the reader is urged to differentiate the error functional with respect to the breakpoints of
s* which yields the equation | f — s* |(7—) = | f — s*|(7+). One then removes the absolute
value signs by recalling the oscillation of f with its best approximant from P*,

Instead of approximating by piecewise polynomials it is many times more natural to
approximate by a smooth subspace of P*(T), namely S*(T), which we define by S*(T)
:= P¥(T) n C*?[0, 1]. S* is called the subspace of splines or order k with knot sequence
T. We can define S% similarly to P% by setting S := Urep, S*(T). Sacks and Ylvisaker
(1968) call a sequence of knots {T, = (0 = T5, T%, ---, Ta*' = 1)} a regular sequence
provided there is a continuous density 4 so that [ ;z'“ h(x)dx=1/(n+1),i=0,1, -+,
n. This relationship is abbreviated: {7} is RS(A).

Two recent results in the theory of spline approximation proved by Barrow and Smith
(1978) will be used in Section 5. Here the notation dist(f, V) means inf{| f — v|/|v € V}.

THEOREM 3.3. Let f € C*[0, 1] and suppose that {T,} is RS(h). Then

1 (f“”(x))z 4 )1/2

(3.2) lim, ... n*dist(f, S¥(T»)) = Ck( ) x

0

where Cy = (| Bz | /(2k)!)? and Bay is the 2kth Bernoulli number.
Finally, the last theorem deals with choosing the best knot sequence in (3.2).

THEOREM 3.4. Let k be a positive integer and let y = (k + %)~ Suppose that h(x)
=|f®x) |/ [3 | f®()|" dr. Then if {T,} is RS(h) we have

limn_. n*dist(f, S*(T,)) = lim,_... n*dist(f, S})

1 1/y
= Ck<f |f(k)(x)|v dx)
0



490 R. L. EUBANK, PATRICIA L. SMITH AND PHILIP W. SMITH

where Cy, and f are as in Theorem 3.3.

4. Proofs of theorems and applications. In this section we discuss the application
of Theorems 3.1 and 3.2 of the preceeding section to the case of the Brownian bridge
covariance kernel and certain of its generalizations. In particular we will prove Theorems
2.1, 2.2 and 2.3.

Throughout this section & will be a fixed positive integer and R(s, t) will be the
covariance kernel derived from the Green’s function for the problem (2.8). (The Brownian
bridge covariance kernel corresponds to 2 = 1.) Thus it follows that g(s) = R(s, t) is a
spline of order 2% and continuity class C**~* with a knot at ¢. This means that S;. r, defined
in (2.5) is a linear subspace of splines of continuity class C*~! with knots at T,.

Let H denote the Hilbert space of functions which are k-fold integrals of L,[0, 1]
functions which additionally satisfy the homogeneous boundary conditions in (2.8). The
inner product on H is given by .

1
4.1) (h,g) = I h®(x)g®(x) dx.
()

It is easy to verify that H is a RKHS with reproducing kernel R (s, ¢). This means that H
= H(R), the RKHS mentioned in Section 2 when R is defined via the Green’s function for
(2.8). Let us now define S%,r = {s*'|s € Sy 7.} and the mapping 27, which will be the
L,[0, 1] orthogonal projector onto Si,Tn. Then we note that

(4.2) 1= Zerfle=1f* = (Per,HP N =F? = 20,f%|.

Recalling (2.7) one sees that finding an optimal design 7'} is equivalent to finding the best
knot locations for functions in S% 7, .

We could read off Theorems 2.1-2.3 directly from Theorems 3.1, 3.2, and the Proposition
except that the latter apply to approximation from P*(T,), not S%(7T,). That these two
spaces are not the same is proved in the following lemma which also provides the missing
link in applying the results of Section 3 to prove those of Section 2.

LEMMA. Iff€ H then 21 f™® is the best L.[0, 1] approximation to f® from P*(T,).

ProoF. First observe that S} r_is a subspace of P*(7,). In addition, dim S} r, = nk
(assuming ¢, and ¢, are not endpoints) while dim P*(7,) = (n + 1) k. Thus, S 7. is properly
contained in P*(T,). The orthogonal complement of S »_in P*(T,) is seen to be P* since
P* is also a subspace of P*(T,) and for any f € H and p € P*, we have

(4.3) j fPx)p(x) dx =0
(1]

as may be easily verified by repeated integration by parts and application of the boundary
conditions (2.8). Now f® — 27 f*® is the error from the orthogonal projection of f*’ onto
Sﬁ,Tn. It is thus orthogonal to Sﬁ,Tn. In addition, from (4.3) it is orthogonal to elements of
P*, Since

(4.4) PX(T,) = P*® S} 1,

we have [§ (f®(x) — 27 f*(x))g(x) dx = 0 for all g € P*(T,). That is, the L, error from
the projection of f*® onto S%,r_is orthogonal to P*(T,). This completes the proof.
Hence, Theorem 2.1 follows from Theorem 3.1 with the fin the latter theorem replaced
by f®. Similarly, Theorems 2.2 and 2.3 follow from Theorem 3.2 and the Proposition upon
noting that when % is even the Proposition implies that2 ;¥ € P% n C[0, 1].
Situations with boundary conditions other than those given in (2.8) can be treated
analogously. We illustrate this point by examining the case of Brownian motion whose
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covariance kernel is R(s, t) = min(s, ¢), 0 < s, ¢ < 1, with corresponding RKHS = { f| f(0)
= 0 and f’ € L,[0, 1]}. Following the notation in this section and in Section 2 we see that
k = 1, and the usual design problem reduces again to minimizing the norm in (4.2) over all
admissible designs. Unfortunately, (4.3) and thus (4.4) are no longer valid since we do not
have the boundary condition f(1) = 0. The situation is still amenable to analysis, however,
once we realize that Si r, in this case corresponds to the subspace of piecewise constants
which are constant on the subintervals (¢;, ¢;+1) and zero on (¢,, 1]. Thus we see that (3.1)
still must hold at all breakpoints which means here that

(4.5) |f' = 20,f'|(+4) = |f = 21,f'|(r-)

for all r € T (except of course for 7 = 1 if ¢, happens to be 1).

Thus, if f € C*[0, 1] and f” is positive with log f” concave we see by arguments similar
to those that led to Theorem 3.1 and the Proposition that (4.5) is a necessary condition for
a minimum to occur. For example, if f” and f’ are both positive on [0, 1] then the only way
(4.5) can occur is for £, = 1. Then we see that the approximation problem (4.2) is equivalent
to piecewise constant approximation with (n — 1) breakpoints on [0, 1]. Hence, theorems
similar to Theorems 2.1 and 2.2 may be obtained in this case as well.

5. Asymptotic properties of the BLUE. We have already seen how piecewise
polynomial approximation naturally arises from the expression for the variance of the
linear unbiased estimators of B from the observations Y r. In general, information
involving derivatives is difficult to obtain so that one would prefer to use the set Y; r
instead of Y}, for £ > 1. If we consider the covariance kernels R (s, t) occurring in Section
4 arising from the Green’s function for (2.8), we see that for a fixed positive integer % using
the observations Y, r_instead of Y, r, yields the approximation problem (see (4.2))

1= 25 fle =1 f* = (2o HPU=1FY = 202,
where 21,1, is the L,[0, 1] orthogonal projector onto S%r, = {s*)|s € Sy, }. Just as in
Section 4 one notices that S*(T,) = P* & S} r, which means that 2,7 f* is the best

L.[0, 1] approximation to f*® from S*(T,).
Thus, Theorems 3.3 and 3.4 are applicable to the design problem, whence we obtain

THEOREM 5.1. Let {T,} be RS{h} with f € H(R) and f € C**[0, 1] then

; YA C))
lim, . n**{Var(8.,r,) — Var(8)} = Ci(J de) Var?(8),
N 0
where Cy is the constant in Theorem 3.3.

Recall that 8, r_is the BLUE of B using the design T, and no derivative information.
This theorem characterizes the asymptotic behavior of the variance of the BLUE in terms
of the density defining a design. If one wants asymptotically optimal designs then the
following theorem is of interest.

THEOREM 5.2. Lety= (k + %), f € H(R), f € C*[0, 1], and suppose that h(x) =
| FER(x) Y/ [3 | f2®(7)|" d7. Then if {T,} is RS{h} we have

1 2/y
lim,_, n**{Var(f,,r,) — Var(8)} = Ci(J | FER(x) | dx) Var?(8).
0
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Furthermore, if U, is RS(p) with p # h we have for large n Var(fr,) < Var(Biv,).

The interest in the above theorems is two-fold. First, the fact that the limit exists was
not previously known although Sacks and Ylvisaker (1970) knew that
lim,_, n** {Var(fir,) — Var(B)} was bounded by two numbers. Second, it is of interest
that the constant C; in the limit involves the Bernoulli numbers.

6. Examples.
ExampPLE 1. The location and scale parameter model assumes that a random sample
X, +++, X, is taken from a distribution of the form

F(x) = F0<x - “)
. [}

where F, is a known distributional form and ¢ and o are respectively location and scale
parameters (either or both of which may be assumed to be unknown). F; is assumed to be
absolutely continuous with associated density f;. Let Qo(u) := F;'(u) and denote by foQo
the composition of f, and @, i.e., fo@o(u) = fo(Qo(x)). The sample quantile function is
defined by Q(u) := X, (j — 1)/n < u < j/n where X(;, is the jth order statistic from the
random sample X, ---, X,.

Parzen (1979) has shown that, for large samples, location and/or scale parameter
estimation can be considered as a problem in continuous parameter time series regression
by writing

(6.1) fo@o(w)Q(u) = pfoQo(u) + oQo(u) foQo(u) + osB(u)

where B(-) is a Brownian bridge process and oz = o/ Vn. Using this framework Eubank
(1979) has noted the equivalence of optimal design selection for the model (6.1) and the
selection of optimal spacings for the sample quantiles utilized in constructing (asymptoti-
cally) best linear unbiased estimators of u and o.

Since the error process for the model (6.1) is Brownian bridge, Theorem 2.1 can be
applied to the case of estimating u(o) when o(u) is known. By noting that

. foQo(u) = u(l —u)  for the logistic distribution
Qo(u) foQo(u) = B(1 — u) — B(1 — u)'*#  for the Pareto distribution

Qo (u) foQo(u) = m(1 — u)log T ! ” for the Weibull distribution

where B8 and m are both positive shape parameters, it is seen that Theorem 2.1 applies to
all three cases provided 8 < 1. Thus, Theorem 2.1 provides an independent proof of results
previously obtained by Gupta and Gnanadesikan (1966), Kulldorf and Vannman (1973)
and Ogawa (see Sarhan and Greenberg, 1962; pages 371-380) regarding the unicity of
optimal spacings for the logistic, Pareto, and exponential distributions respectively.

Since the classical approach to optimal spacing selection has dealt with finding spacings
that satisfy certain necessary conditions for maximum estimator efficiency (see Sarhan
and Greenberg, 1962), one of the principal problems has been that the number of solutions
is not known. Theorem 2.1, when applicable, alleviates such difficulty.

ExaMPLE 2. Consider the design problem connected with the Brownian bridge process
B(-) of the type Y(t) = B¢(t) + B(t),0 <t =< 1.1If ¢(¢) = t* with 2 = 2 then Theorem 2.1
guarantees unique optimal designs. If, on the other hand, ¢(¢) = e’’ then Theorem 2.1 no
longer applies since log(¢”) = t* + log(4¢% + 2) is.not concave. However, Theorem 2.2 is
applicable and we conclude that for some positive integer no, unique optimal designs exist
for all n > ny.
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