The Annals of Statistics
1981, Vol. 9, No 1, 225-228

NOTE ON THE CONSISTENCY OF THE MAXIMUM LIKELIHOOD
ESTIMATE FOR NONIDENTIFIABLE DISTRIBUTIONS

By RicHARD REDNER!

NASA, Johnson Space Center

The results of Wald on the consistency of the maximum likelihood estimate
are extended. Applications are made to mixture distributions and to clustering
when the number of clusters is not known.

1. Introduction. The question of consistency of the maximum likelihood estimate has
been investigated by several authors (see, for example, Chanda [1], Cramér [2], Wald [4] and
Wolfowitz [5]). In this note we observe that Wald’s result can be extended to cover parame-
terizations for which the true distribution is represented by more than one parameter. This
includes families of distributions for which the distributions are not identifiable and the case
where the nonuniqueness is caused by the particular parameterization. In this note we use this
fact to establish the consistency of the maximum likelihood estimate for mixture distributions
with compact parameter space. An application is given in the area of cluster analysis.

Let X1, Xa, - - - be a sequence of independent identically distributed n-dimensional random
variables. We will assume that the distribution of X; is known except for some parameter 6.
The set of all parameter points § is called the parameter space and 6, will denote the true
parameter. It will also be assumed that there is a o-finite measure p such that for each § € Q
the probability measure uq is absolutely continuous with respect to u. We let f(x, §) denote any
representative of the density of s with respect to u.

The following are the general assumptions made by Wald.

AssUMPTION 1. The parameter space 2 is a metric space with metric (-, -) and has the
property that every closed and bounded subset of { is compact.

Before stating the next assumption we need to define two functions. Let N,(6) denote the
closed ball of radius » about 8. For § € £ and any positive real numbers r and s let

f(x, 0, r) = supgen,o f(X, d), f*(x, 6, r) =max(l, f(x, 8, r))
h(x, 5) = supy¢n, 0, f(x, D), h*(x, s) = max(l, h(x, )).

AssuMPTION 2. For each # and for sufficiently small r and sufficiently large s, f(-, 6, r) is
measurable and

(2) J log f*(x, 0, r) dug,
and

(b) f log h*(x, 5) dug,
are finite.

AssUMPTION 3. If §(6, 6,) — +oo then f(x, 6;) — 0 except on a set 4 which does not
depend on 6, and has g, measure zero.
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ASSUMPTION 4.
f [log f(x, 6b) | dug, < .

AssuMPTION 5. If 6; — 6 then f(x, 6,) — f(x, 6) except on a set A which does not depend
on the sequence 6, and has g, measure zero.

ASSUMPTION 6. If 6 5 6, then pg # pq,.

The following two theorems have been proven by Wald.

THEOREM 1. (Wald). Suppose that Assumptions 1-6 are satisfied and let S be any closed
subset of the parameter space which does not contain the true parameter point 6o. Then

Hf\ilf(xh 0) } _

P{limy_, e ———=0
{ 1my. SUpges zlilf(x” 00)

THeOREM 2. (Wald). If Assumptions 1-6 are satisfied and Oy (x1, . . ., xn) is any function of
the observations x1, . .., xy such that

H,’L%z ¢>0 forall N

then P {(limy_ Oy = 60} = 1.
The maximum likelihood estimate is an obvious example of such a function.

2. An extension of Wald’s theorems. We now want to consider the case where C = {§ €
Q| we = g, } is not a singleton set. Under the Assumptions 1-5 of Wald, Cis a compact set and
the following theorem is immediate from Wald’s proof of Theorem 1.

THEOREM 3. Let Assumptions 1-5 be satisfied and C = {6 € Q| pg = g, }. If S is any closed
subset of §) not intersecting C then

Hfilf(xl’ 0) } -1

P J{limy_. =—F——=0
{ 1mpy. SUpges f\i ) f(xz, 00)

Hence if Nc is any open neighborhood containing C then the probability that 8y is cofinally
in Nc is one. Letting & be the quotient topological space obtained from & by identifying C to
a point denoted #, we have the following.

THEOREM 4.  If Assumptions 1-5 are satisfied then P{Qy — 6,} = 1.

It should also be noted that if { is the quotient topological space obtained from € by
identifying those parameters whose related densities are equal almost everywhere, then it
follows from the theory of quotient spaces that the maximum likelihood estimate also
converges to the true parameter in this topological space. We also observe that since C is
compact, it follows from Theorem 4 and Assumption 5 that f(x, fx) — f(x, f) in measure.
With some further assumptions about the exceptional sets, one gets stronger convergence
results.

3. Applications to mixture families. Let {us)sco be a dominated family of probability
measures on R™. Let J = {(a1, ...,0n) | Y21 aa=1,0;=0,i=1,...,m},and let ' = J X
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Q™. The set of all measures y of the form y = Y1 a,ug, where (ay, ..., an) € J and (61,

.+» 0m) € Q7 is the set of all mixtures of order m from {ps}seq and we will let g(x, y) denote
this mixture density. We observe that I is a natural and convenient parameterization of this
mixture family and has a natural topology; however, elements of I are not identifiable. The
only natural topological spaces which identifiably parameterize this mixture family are
quotient spaces related to I" and we will show that for compact I, the maximum likelihood
estimate is strongly consistent in the topological space I'. First we will need to modify one of
the assumptions put forward in Section 1.

AssuMPTION 4. For (0, ¢) €2 X Q, [ |log f(x, 8)| du, < o.

THEOREM 5. If Assumptions 1, 2a, 4, and 5 are satisfied for  and if "' is a compact subset
of T containing yo, then the maximum likelihood estimate of yo in I" is strongly consistent in the
topological space T

RroOF. The theorem will be established by showing that conditions 1-5 are satisfied for
I
The following inequalities show that [ log g*(x, v, ) du,, < .

f log g*(x, v, r) duy,, = f log max[1, supyen,y D=1 af(x, 6.)] du,,
= J log max[1, supyen, f(x, h), ..., supyen,m f(x, Om)] duy,

=21 | log max[l, sup,en.m f(x, 6.)] du,,.

We now show that [ |log g(x, yo) |du,, < .
Let ¢ = min(ay, ..., an), 41 = {x € R" | X1 a, f(x, 6,) = 1} and 4> = R"\ A;. Then we
have that

J [log Y121 a,f(x, 6.) | du,, < f | log max, f(x, 6:) | du,, +J’ |log ¢ Y1 f(x, 6,)| du,,
A, A

2

= {Ef":IJ' |log f(x, 6.) | dum} + X {J |log f(x, 6.) | dum} +c
A A

1 2

=yr, J' |log f(x, 6.)| du,, + c'.

This establishes Assumption 4. All of the other assumptions are obviously satisfied and this
concludes our proof.

In the particular the above assumptions hold if {us}scq is a subset of the family of
multivariate normal distributions with the property that € is compact. This last result should
be compared to the results of Peters and Walker [3] on the strong consistency of the solution
to the likelihood equations for mixtures of normals.

The problem which we now address is one in cluster analysis. The problem of cluster
analysis is to take a set of observations and to form groups of data points which are known as
clusters. The hope is that these clusters will represent some natural partitioning of the
observations. In other words it is hoped that each cluster reflects some property of the objects
which are being observed. It is therefore natural to assume that the observations come from a
mixture of distributions. The goal then becomes not only to estimate the parameters for these
individual distributions but to determine the number of mixing distributions. The problem of
determining the number of mixing distributions or classes has received some attention but
with little result. The next theorem offers one solution to this problem.
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Let 8:§2 X £ — R be a continuous function satisfying 8(6, ¢) = 0if fy = f; {1} .

THEOREM 6. Let Q satisfy Assumptions 1, 2a, 4 and 5 and let each of & and &, be positive
numbers. Suppose that { ue} ocq is an identifiable set of distributions. Let " be a subset of T which
satisfies the following conditions.

(a) I' is compact.

®)IfyET thena;=00ra; E[e1, 1],i=1,...,m.

©)IfyET then (0., 0) = ¢, i #J, 6., 6, € v.

@y el )

It follows that yn is strongly consistent in 1" and furthermore the number of nonzero prior
probabilities for Yy is the correct number of classes with probability one as N — o,

ProoF.” From Theorem 3 it follows that yx is consistent. Conditions (b) and (c) guarantee
that every representative of f(x, yo) has the same number of nonzero prior probabilities and
in fact the continuity of B implies that there is an open neighborhood Nj of 7o in I such that
if y € No then the number of nonzero prior probabilities for vy is the same as the number of
nonzero prior probabilities for y. Since yw is eventually in this neighborhood it follows that
the number of classes is eventually determined. This concludes our proof.

Again this theorem applies to the case that {us} seq is a subset of the family of multivariate
normal distributions with & a compact set. Although the function in Theorem 4 need only
satisfy certain conditions, one obvious choice of 8 is the Bhattacharya coefficient. This would
be a good choice because of its relation to the probability of misclassification.
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