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SIMULTANEOUS CONFIDENCE BOUNDS FOR THE TAIL OF AN
INVERSE DISTRIBUTION FUNCTION*

By CHARLES H. ALEXANDER

State University of New York at Binghamton

Confidence bounds are derived for the upper 100p percentile of an inverse
distribution function. These bounds are considerably less conservative than
similar bounds which apply to the entire function.

1. Introduction. If Fis a cumulative distribution function (cdf), then define F~' by F7'( »)
= inf{x: F(x) = y}, for 0 = y < L. If F, is the empirical distribution function of a random
sample of size n with common continuous cdf F, then F;' may be used to estimate F~'. The
random function G,(x) = Fn.(x) — n™"%¢;(a) will be called a 1 — « lower confidence bound
for F if

0)) Pr{G.(x) =< F(x); o <x <o} =1-—a.

If G, is a 1 — a lower confidence bound for F, then the random function G,' defined by

Gx'(») = Fa'(y = n7a(e)); y = n™er(e)

= 0 sy <nVe(a)

gives a 1 — a upper confidence bound for F~' in the sense that
) Pr{G.'()=F'(y;0=y=1}=1-a

The tables in Smirnov (1948) give constants ci(a) such that (1), and consequently (2), hold
approximately for large n. The constant ci(«) is the 1 — a quantile of the asymptotic
distribution of SUP—w<z<wn /2(Fu(x) — F(x)).

Upper confidence bounds for F~' are needed when F is the null distribution of a test
statistic and the critical points for statistical tests at many significance levels are to be estimated
by Monte Carlo methods. If one wishes to guarantee with high confidence that all the critical
points so determined are conservative, the critical points should be those of a simultaneous
upper confidence bound for F~'. However, often only the upper tail of F~ is of interest and
it is only necessary to bound F~'(y) for 1 — y < y = 1, say for y = 0.1 or y = 0.2. What is then
required is a constant c,(«) such that

3) Pr{Fu(x) —n e a) <= F(x); F'(l-y)=x<w}=1-a
or in other words such that

) Pr{F;'(y —nc (@)= F'(y),l—-ysy=s1}=1-a
The constant ¢,(a) is the 1 — a quantile of the asymptotic distribution of

) SUPF-1(1-p=x<tt /2(Fn(x) = F(x)).

In this paper the asymptotic distribution of (5) is derived by modifying the method of Doob
(1949) for finding c;(a). Tables of ¢,(«) for selected values of y and « are given below. For y
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= 0.1, ¢,(a) is about one-third as large as c¢;(«). Using coi(a) in place of c;(a) therefore
narrows the confidence bound on the tail of F~! about as much as a ninefold increase in the
sample size.

2. Derivation of confidence bounds. Let y be fixed The distribution of
SUPP-1(1-y)=x<wt /2(Fn(x) — F(x)) is the same for all continuous F. Therefore assume that F
is the uniform distribution function, i.e.,

F(x)=0; x=<0;
=x;0<x<1;
=1 x=1.

Let Z, be the stochastic process defined by Z,(x) = n"/*(F.(x) — x),0 = x = 1. Let W° be the
zero-mean Gaussian process with covariance function E(W(s)W°(1)) =s(1 — ),0<s =1t
= 1. Z, converges weakly to W?° on the metric space D[0, 1] of all functions on [0, 1] which
are right-continuous and have left-hand limits, under the Skorohod topology: It follows that
SUPF-11—y)=x<w Zn(X) converges in distribution to supp-11—y=x<e Wo(x). (I general, f(Z,)
converges in distribution to f( W?), provided that for any sequence of functions g, in D[0, 1]
which converge uniformly to a continuous function g, f( g») converges to f( g)—see Billingsley
(1968), page 34 for details.)

The following finds the distribution of supp-1(1—yj=x<» W(x). The final answer is equation

).

Proposition 1. Let Y be a 0-mean Gaussian process with covariance function ¢*s(1 = t), 0
<s=<t=<1. Then

(a) for A =0and B = —A,

Pr{Y(s) = A4 + Bs, for some s € [0, 1]} = exp{—24(4 + B)/o?}
(b) Pr{Y(s) = A + Bs, for some s € [0, 1]} = 1, for —A > B.
Proor.

(@) Pr{Y(s)= A4 + Bs, forsome s € [0, 1]} = Pr{ Y<_t_ﬁ) =A+ B(H-;l); for some ¢

e o, oo)} = Pr{(t + )Y H;l = A + (A + B)t; for some ¢ € [0, oo)}. In Doob (1949) it

is shown that this probability is exp{—24(4 + B)/c?}.
() If B< —A, thenas. Y(1)=0> A + B-1.

Proposition 2. The process Y(s) = W(ys) — sW°(y), 0 < s < 1 is a zero-mean Gaussian
process with covariance function ys(1 — t), 0 < s < t < | and is independent of W'(r), y<r =<
1.

PrROOF. (a) Y(s) is normal and EY(s) = EW°(ys) — sSEW°(y) = 0.

(b) E(Y()Y()) = E(W°(ys) = sW ()W (yt) — tW°(y)) = ys(1 — yt) — tys(1 —y) —
syt(l = y) + sty(l — y) = ys(1 — ).

(c) (Independence.) ForO0<s=<landy=r=<1, E(W’(ys) — sW(y))W°(r) = ys(1 — r)
— sy(1 — r) = 0. Since Y(s) and W'(r) are uncorrelated and normally distributed, they are
independent. Since this is true for each s, the Gaussian process Y is independent of W°(r).

Proposition 3. Let I(x) =a+ b(l — x), for | — y=<x <1, where a> 0 and b > 0. Then
Pr{W’(x)<l(x);1-y=x=1}=

b+aly b+a/y—2ay(l —v)
6 ()] -9
© ((y(l = y))‘”) ( QA=)

)exp(2a2y(l —y) — 2ab — 24%/y).
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ProoF.

Pr{W’x)=l(x);l—y=x=<1}

=Pr{W'x)=a+bx;0=x=yv}

=1 — Pr{W°(x) = a + bx; for some x € [0, y]}

=1—=Pr{W°x)— xW°y)=a+ (b — W°(y))x; for some x € [0, y]}

=1 = Pr{W°(ys) — ysW°(y) = a + (b — W°(y))ys; for some s € [0, 1]}

=1—=Pr{Y(s) = a+ (b — W°(y))ys; for some s € [0, 1]}

=1- Jm Pr{¥(s) = a + (b — t)ys; for some s € [0, 1]/ W°(y) =1}

1 -
= P = ¢

By Proposition 1(b) and 2(c) this is equal to

b+a/y
(D<?%-¥}}'/))),_I“) - j Pr{Y(s)=a + (b — 1)ys;

_t2

1
for some s € [0, 1 — €X dt.
R R C ()

By Proposition 1(a) and Proposition 2, the integral is equal to
b+a/y 2
1 —2a(a+by—1t t
rexp a(a+by—ty) dt
e @my(1—7v) Y 2y(1 =)

b+a/y 1
- L, 2y = )7

t2
-5

+ 2at — 2a%y(1 — y) + 2a*y(1 — y) — 2ab — 2a2/y) dt

b+a/y l
- f am(d - )"

4 1/2
'eXP<—<W‘ a2y(l = y)" ))

.exp(2a®y(l — y) — 2ab — 24*/y) dt

b+a/y
1
= exp(2a’y(l — y) — 2ab — 2a° J’ _—
pRay(l =7 M. @

(t = 2ay(1 = y))’
.exp{—m—} dt

b+ a/y—2ay(1 - 7))
= expa’y(l — y) — 2ab — 2a* (I>< . O
pa“y( Y /) Q=7
In (6), set b = 0; then
Pr{iW’x)=a;1—y=x=<1}=

< aly ) — @(W)expaazy(l -vy) - 2(12/‘)/).

7 o — 2
™ A= )7 Ga=)7"
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Let ¢,(a) be the value of a for which this probability is 1 — «. Estimate the qth quantile of F
by the ¢ + ¢,(a)n"/? quantile of F,. For large n, the probability is approximately 1 — « that
no true quantile (for quantiles above 1 — y) exceeds the estimated quantile. For y =1, 1 —

exp(—2a®) is used in place of (7). Since the length of the confidence band decreases as n™

1/2
b

considerable savings result. For example, for each a, c.i(a) is less than one-third as large as

C](a).

Values of c,(a)
‘ a
\ 9 95 99 995 999
01 10730 12239 15175 16277 .18586
05 24022 27399 33972 36435  .41606
1 34084 38878 48203 51703 .59037
2 48771 55631 68974 73983 84476
3 60712 69251 85861 92097 1.05179
4 71370 81410 100938  1.08268 123623
5 80182 92507  1.14706 123036  1.40486
1 107298 122387 151743 162762  1.85845
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