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D-OPTIMUM WEIGHING DESIGNS

By Z. GALIL" 2 AND J. KIEFER!

Universities of Tel Aviv and Cornell, and University of California (Berkeley)

For the problem of weighing k objects in n weighings (n = k) on a chemical
balance, and certain related problems, we obtain new results and list the designs
which have been proved D-optimum up to this time. While some of these
optimality results have been known for some time, others are fairly recent. In
particular, in the most difficult case n = 3(mod 4) we prove a result characterizing
optimum designs when n = 2k — 5. In addition, by a combination of theoretical
bounds and computer search we find previously unknown optimum designs in
the cases (k, n) = (9, 11), (11, 15), and (12, 15), and establish the optimality of
Mitchell’s (10, 11) design. In some cases the optimum X’X is not unique. Thus,
we find two optimum X’ X’s for the (6, 7), (8, 11), (10, 11), and (10, 15) cases. As
a consequence of these results and other constructions, D-optimum designs are
now known in all cases k < 12 (for all n = k), and in many other cases. Essentially
complete listings for all n = k had been given previously only for k < 5.

1. Introduction. Let k and n be positive integers with k = n, and let 2’ = Z(k, n) denote '

the set of all » X k matrices X = {x;;} consisting entirely of entries +1. If X maximizes
det(X’X) over %, then X or X’X is said to be D-optimum.

The problem of characterizing such X arises in two statistical settings, both with uncorrelated
homoscedastic observations. In both cases 1/det(X’X) is proportional to the generalized
variance of the least squares estimators of the parameters 6,, 8, - - -, 0, of interest.

Firstly, there is the setting of finding the weights §; (1 < j = k) of k objects with n weighings.
In one model, in which a chemical balance is used with each object present on each weighing,
we let x;; = 1 or —1 depending on whether the jth object is on the left or right pan in the ith
weighing. That weighing model may be altered to allow the x;; to be 1, —1, or 0; i.e., all k
objects need not be present in each weighing. The development of the next paragraph shows
that every X optimum for the previous model is optimum for this one. Also, when k =n=r
the optimality results for x;; = +1 are well-known to correspond to optimality results for k =
n=r— 1 with x;; = 0 or |, the “spring-balance” model; see Mood (1946). The equivalences
of the various D-optimality problems for the two settings is also treated by Hedayat and Wallis
(1978), pages 1206 and 1220, when k = n.

Secondly, there is the setting of estimating the parameters of the first order regression
model on the p-dimensional cube [—1, 1]” with p = k — 1, the ith observation being at (z:1, z:2,

-+, z;p) with expectation 6; + Y% z;;6;, which we can write ¥t z;6, by defining z = 1.

Expanding det(Z’Z) into a sum of Z squares of k X k determinants (Cauchy-Binet

expansion) each linear in its entries, we conclude that, as a function of a single z;,j, ( _]0 < k) for
all other z;; fixed, det(Z’'Z) is quadratic in z,,;, with nonnegative coefficient of (z;, )°. Hence,
z,j, can be changed to one of the values 1 or —1 without decreasing det(Z’Z). Making such
changes, one by one, for each Z,;, of a D-optimum Z, we conclude that there is a D-optimum
Z in . Conversely, each X in % can be transformed, by multiplication of each row by I or
—1, into an element of & with the same determinant and all x;, = 1. (The reduction to % need
not yield all Z; thus, for p = 2, n = 3, the three points (1, 1), (1, —1), (=1, z32) constitute a D-
optimum design for every zs; in [—1, 1], with det(X'X) = 16.)
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If [-1, 1]” is replaced by {—1, 1} ” in the above, we obtain the even simpler correspondence
of the weighing problem to the first order (resolution III) fractional 2”-factorial problem.

The cases k = n are called saturated.

The problem of finding an X is the subject of many papers, two early ones being those of
Hotelling (1944) and Mood (1946). For reference to the many contributions of Kishen,
Banerjee, Raghavarao, and others, see Raghavarao (1971), who also gives typical results.
Many of the known results characterize a D-optimum X subject to the restriction to X’s in &
for which X’X is permutation invariant (has all diagonal elements equal and all off-diagonal
elements equal). The imposition of this restriction simplifies the optimization problem consid-
erably, but for many k and » it yields designs that, although often fairly efficient, are not
optimum in Z. This is known, for example, from the saturated cases n = 6 or 7 in Mood
(1946) and n = 2(mod 4) in Ehlich (1964a). The matter is discussed in Cheng (1980) and
Kiefer (1978). In the present paper we are concerned with finding a D-optimum X in &
without any such restriction.

We note that recent combinatorial literature often refers to “weighing matrices” as square
orthogonal matrices with entries from {0, 1, —1}. This should not be confused with our
weighing designs X.

Other optimality criteria, such as tr(X’X) ™", have also been considered, and we shall refer
in Subsections 2.0 and 2.1 to some results on them; but our main concern here is with det(X’X).

There are some commonly employed rules, discussed by various authors such as Mood
(1946) and Mitchell (1974b), for augmenting or reducing Hadamard matrices to yield designs
in cases other than the saturated case of Case 0 of (2.0). However, the optimality or
nonoptimality of the designs produced by such recipes is not always clear in the literature. The
paper of Payne (1974) clarified and vastly expanded the state of knowledge of optimality of
such designs. In Section 2 (in terms of n) and in Section 5 (in terms of k) we summarize the
current state of knowledge, incorporating some new constructive devices and optimality results
of the present paper. We shall occasionally refer to the searches, more extensive than those of
Mitchell (1974b), which have been carried out using our modification of his pioneering
technique. Details were reported in Galil and Kiefer (1980).

Results of this and previous papers imply that certain forms of X and X’X, both of which
forms we term “regular”, are optimum if they exist. Previous work, including Payne’s for n
= 5, assumes the existence of Hadamard matrices for constructions. Although we are able to
avoid assuming such matrices always exist, and to extend constructions to such cases as k =
n — 1 of Case 2 of (2.0) not previously considered, other existence questions are generally
more difficult, and are not much treated here. We show that easily constructed optimum
designs are regular except in certain saturated instances of Case | and in Case 3 for n < 2k
— 5, for all “practical” values (k, n). The (9, 9) and (11, 11) optimum designs gave difficulty
because they are not of this regular nature, and their optimality was proved, respectively, by
Ehlich and Zeller (1962) and by Ehlich in unpublished work mentioned in Subsections 2.1
and 2.3, using a combination of theoretical and computer developments. Regular optimum
designs for (9, 11), (11, 15), (12, 15) were found by us by extensive computer search and (with
Mitchell’s (10, 11) design) are proved optimum herein by means of our development that
stems from the work of Ehlich (1964b).

Ehlich is the pioneer and chief contributor of ideas to this subject of finding D-optimum
designs in the non-Hadamard cases. We are grateful for the inspiration of his work and for the
communication of Ehlich (1978).

2. Listing of D-optimum designs. For further discussion, we divide the values of n into
four cases:
Case 0: n = 0(mod 4),
Case 1: n = l(mod 4);
Case 2: n = 2(mod 4);
Case 3: n = 3(mod 4).

(2.0)
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We denote by 4" the nonnegative integers and by .#; the set of all integers in 4" that fall in
Case j. We have included n = 0 in Case 0 to shorten the discussion, below. Although X’X is
k X k, the value of n appears to be more critical than that of k in determining optimality
structure, since n has more important influence on the values of the entries of X’X. This
accounts for the classification (2.0). (The case k = 2 is separated by its triviality: every D-
optimum X has orthogonal columns if » is even and columns with inner product *1 if n is
odd.)

The term “normalization” will be used herein to refer to the following operations on X:
multiplying on the left by a diagonal matrix of *1’s and/or a permutation matrix (which
permutes or reflects the points of {—1, 1} * that are rows of X, but does not affect X’X); the
same operations on the right, which permutes rows and corresponding columns of X’X and
multiplies some entries of X’ X by —1, but leaves det(X’X) unchanged. The optimum structure
of X'X is generally listed in a convenient form “after normalization”. For example, in the
regular case in Subsection 2.1 all off-diagonal elements of an optimum X’X can be taken as
—1 after normalization. Without normalization, some could be of each sign.

2.0 Case0. An n X n Hadamard matrix H, is a member of Z(n, n) with H, H, = nl,. A
necessary condition for H, to exist is that n be 1, 2, or =4 in Case 0, and we also include the
empty matrix H, for use in further discussion. There is much more literature on the existence
of H, than on all other aspects of the subject of weighing designs; see, e.g., Hedayat and
Wallis (1978). By now H, are known to exist in Case O for all n =< 200, and for infinitely many
other n. There is an X in Z(k, n) with X’X = nl, if H, exists (namely, k columns of H,), and
such X can in fact often be found much more easily, as we describe in the next paragraph.
Such an X is not only well known to be D-optimum, but also minimizes ®(X’X) over % for
every nonincreasing convex orthogonally invariant extended real-valued @ defined on the
nonnegative definite symmetric k X k matrices; see Kiefer (1975). It also minimizes the
individual variances of best unbiased estimators of the §; (diagonal element of (X'X)™"), as
was shown by Hotelling (1944).

In Case O the “regular” X’s in Z(k, n) are those with X’X = nl,, for which det(X'X) = n*.
We now make a simple observation about the existence of such designs. For fixed k it is
unnecessary to assume the Hadamard conjecture of existence of an H, for all n in .4; as Payne
and others do, in order to give optimality results for all such n. (Payne mentions that the
assumption can be avoided when k = 4.) For, we only need k orthogonal n-vectors for the
columns of X, not n of them. One way of constructing such an X is to adjoin vertically

sufficiently many »; X k submatrices of H,’s. If n, + na + --- + np =nand n, = k and H,,
exists for | =i=< L, such an X can obviously be constructed. A convenient sufficient condition
for this to be possible for given k and all n = k is the

PROPOSITION. For k = 4, let n, = min{ j: j = k, j € M;}. Suppose Hj exists for all j in g
satisfying ny < j < 2ny. Then, for all n = k with n € A;, there is an X in & (k, n) with X' X = nl,.
(A construction can similarly be given in terms of orthogonal arrays of strength 2.)

Thus, for example, when k = 6 our knowledge of Hs and H,. suffices, and for k < 100
(which presumably includes all “practical” values) the proposition may be used.

The other three cases of (2.0) are not so simple, and their investigation in the saturated case
was pioneered by Ehlich (1964a, b). (See also Wojtas (1964).)

2.1 Case 1. Ehlich showed that an X in Z(n, n) with X’X = (n — 1)I, + J, (where J,
consists entirely of 1’s) is D-optimum. Unfortunately, such an X can exist only if 2n — 1 is the
square of an integer. Such designs are known for the “practical” values n = 1, 5, 13, 25.

It is perhaps somewhat surprising at first glance that the unsaturated case of Case 1 is easier
to handle than the saturated case. It was shown by Cheng (1980) that any X in Z(k, n) with
X'X = (n— DI, + Jy and det(X’X) = (n — 1)*"(n — | + k) (the “regular” designs of Case 1)
is not only D-optimum, but also optimum with respect to a large subclass of the ®’s of the
previous paragraph, including all those of common interest. (The D-optimality in the unsat-
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urated case, obtained by Payne (1974), can also be obtained by a simple modification of
Ehlich’s saturated case proof; but the more general results require Cheng’s analysis.) Moreover,
for k < n such an X can always be obtained when the regular design of Case 0 in Z(k, n — 1)
exists, by adjoining a row of I’s to that design, whose construction can often be obtained from
the Proposition of the previous paragraph even if an H,-; is not known. Although such an
adjoining is a common practice in the literature of weighing designs, the D-optimality over
& (without the additional symmetry restriction) of the resulting X was evidently unknown
before Payne’s paper. Thus, Mitchell (1974b) made computer searches in several of these cases,
always obtaining such an X, and remarking that Mood had suggested such designs would be
“very efficient.” Forvalues of n-< 20 in Case 1, we are left without knowledge of an optimum
design only in the saturated cases k = n =9, 17. Ehlich and Zeller (1962) state that for k = n
= 9 the nonregular design obtained by them, for which the above-diagonal elements of X'X
are all 1 except for a single 5, can be proved optimum. A normalization of the design given in
Table 4b of Mitchell (1974b) is of this form, and such a design can also be constructed using
a method of Williamson (1946, page 433). Ehlich (1978) has indicated to us that the method
of proof of optimality is similar to, but simpler than, that mentioned in Subsection 2.3 below
for the kK = n = 11 case. The method also shows no other form of X’X can be optimum for k
=n =9. While the k = n = 11 case required machine help, the calculations by Ehlich and
Zeller (1962) in the kK = n = 9 case were done by hand.

2.2 Case 2. Here Ehlich (1964a) and Wojtas (1964) showed in the saturated case that any

X for which X'X = (¥ D). where M = (k = 2li + 2/, is D-optimum. Ehlich
A B
-B" 4
k = 22 and 34. Other optimum designs in these cases were obtained by Yang (1968), who in

references cited by him there also obtained optimum X for k = 42, 46, 48, 52.
For general k < n € .4, we define the regular X in Z(k, n) to be those for which X'X =

constructed such X of the form ( with 4 and B circulants, in all cases k < 38 except

L 0
(0 M)’ where for k even L = M = (n — 2)I,/2 + 2Jis2, and for k odd L and M are (n —

D pz1yy2 + 2Jk212; thus, det(X'X) = (n = 2)* (n =2+ k)2 or (n — 2)* ¥ (n — 1 + k)(n = 3
+ k), for k even or odd. These designs were proved D-optimum by Payne for k < n — 2 using
the work of Wojtas, and one can also see that Ehlich’s proof requires only simple modifications
to apply to Case 2 for n = k. (In fact, Payne’s proof also applies for n = k, but he does not say
so because he gives constructive methods only when k < n — 2 and H,_ exists.)

When k < n — 2 and one knows an H,_» or, more generally, a regular X in %(k, n — 2)
constructed from the Proposition of Case 0, a regular optimum X for Case 2 is achieved by
using one of Mood’s devices, discussed and employed by Mitchell and by Payne. This X is
obtained by adjoining to X two rows, one consisting entirely of ones and the other consisting
of k/2 (respectively, (k — 1)/2) Is following by k/2 (respectively, (k + 1)/2) —1’s, depending
on whether k is even or odd. It seems not to have been observed by the cited authors that,
when k = n — 1 with n € 42, removing a column from an optimum saturated regular X of
Ehlich in Z(n, n) (mentioned two paragraphs above) yields an optimum regular design in
Z(n — 1, n). Thus, just as the construction problem in Case 1 was much simpler for k < n than
in the saturated case, so in Case 2 it is simpler for Kk < n — 1 than in the saturated or near-
saturated (k = n — 1) case.

That these results seem unknown is indicated by the fact that Mitchell’s computer search
for optimal designs included the cases (k, n) = (5, 6), (9, 10) (also excluded in Payne’s work),
in which cases the previous paragraph implies that such search could be dispensed with.
Unlike the D-optimum designs. of Case 1, those of Case 2 are not yet known to have other
optimum properties, except that Cheng (1980) has shown they are among the E-optimum
designs (that is, they maximize the minimum eigenvalue of X’X), not all of which need have
this X’ X structure.
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2.3 Casi 3. This is well known to be the most difficult case, and we devote the next two
sections to new results for it. We first summarize, here, the previously known results. If one
knows an H,., or, more generally, a regular X in Z(k, n + 1) from the Proposition of Case 0,
deletion of one row of X yields an X in %(k, n) with X'X = (n + 1)I — Jx. However, such an
X was until recently known to be optimum for k > 2 only when n = 3 (e.g., Mood (1946)). For
k = n =17, the optimum design X is not of this form. It was found by Williamson (1946) and
discussed by Mood (1946), and the exceptional above-diagonal elements (3’s) of that X’ X other
than —1 can be put into positions (1, 2), (3, 4), (5, 6) by normalization. Designs for the cases
k < n = 7 have been obtained through computer search by Mitchell (1974b) but their
optimality was not previously verified theoretically. His computer search yielded, after
normalization, the X described just above, and Payne (1964) proved these optimum for k < 5.
The optimality for k = 6 is proved herein.

For n = k = 11 (not treated by Mitchell), an X’X was obtained through computer search
combined with some algebra by Ehlich and Zeller (1962), in which paper the optimality of the
design was indicated to be questionable. This design was subsequently verified by Ehlich to be
optimum, as described to us in Ehlich (1978). This X’X has exceptional above-diagonal
elements 3 rather than —1 in positions that (by normalization) can be taken to be (1, 2), (2, 3),
3, 4), (4, 5), (6, 7), (8,9), (10, 11). An X of this character, obtained by the computer search
method of Galil and Kiefer (1978), is listed in Table 9a herein.

Not knowing this X’X had been proved optimum in earlier unpublished work of Ehlich,
and viewing this evidently “nonregular” case as a good example on which to investigate
properties of variations of our computing method, we ran several thousand trials in this case
and found other designs that gave the same value of det(X’X) but two other forms of X'X.
Two such designs are listed in Tables 9b and 9c. The first of these has an XX that differs from
that described above only in having an additional above-diagonal 3 in position (1, 3). The
second has an X’X that is a “block matrix” whose description is deferred until that concept is
defined. (All three forms of X’X were obtained several times, in a total of about 1% of the
computer trials. Thus, the designs are not “easy” to find in this case by use of our general
search method, which does not make use of the special theoretical devices used by Ehlich in
this case.)

Subsequently, Professor Ehlich (1978) very kindly sent us a description of the ingenious
combination of theoretical developments and computer search by means of which he obtained
designs with all three of these structures of X’X, proved them optimum, and proved no other
structures of X’X could be optimum. Thus, the design of Table 9a should be viewed as that of
Ehlich and Zeller, and those of Tables 9b and 9c as Ehlich’s, but we list them here because
there is no indication that they are to appear elsewhere in print. These X'X all have
determinant B = (5 X 2')%

Ehlich’s indication of the proof of optimality is that a simple inequality eliminates all X’X
with off-diagonal elements other than —1, —5, or 3. The computer program searches among
all normalized 11 X 11 matrices C with such elements (and diagonal elements 11) and shows
none with a —5 can have det C = B. Using the upper bound of Ehlich (1964b) listed in Table
1 herein, and further computer search, only 7 possible C’s with det C = B are found to within
normalization. Finally, a systematic search for X’s that realize one of these seven C’s as X'X
yields the three structures of Table 9. )

Designs for k < n = 11 have not previously been proved optimum theoretically except for
Payne’s treatment when k& = 5. Of the designs found by Mitchell (1974b, Tables 4d and 4e) for
k =9 and 10, the former is improved upon by the design of Table 5 herein, found in our more
extensive search. Both the design of Table 5 and Mitchell’s design for k = 10, as well as X with
X’'X = 121 — J, for k < 8, are proved optimum herein. The size of these designs is such that
computer search using our modifications of the Detmax procedure invented by Mitchell
(1974a), which of course requires more computing for these larger values of k and #, is also
decreasingly successful. For example, as stated above, only about 1% of the starts (involving
some random element) reached an optimum solution when k = n = 11.

Payne (1974) showed that an X with X'X = (n + 1)I; — J; (and determinant (n + 1)*"'(n
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+ 1 — k)) is D-optimum provided n is sufficiently large compared with k. He gives n >

iakp2f K
(5/2)3%k ([k/Z]

numerical evidence suggests that n > 7k/2 might suffice, and that the proof is likely to fail in
general for k < n < 3k. Our own early numerical investigations indicated that n = 2k might
suffice, so that the evidence cited by Payne is a commentary on his method of proof rather
than on the definitive results. In Section 3 we show n = 2k — 5 suffices.

Because of this complex situation, we have chosen not simply to define X of the above form
as “regular” in Case 3. Rather, we are guided by a development of Ehlich (1974b), which we
now describe. Thus material through (2.5) is also used in proving the Theorem of the next
section.

Let € = %, be the class of all symmetric k X k matrices with diagonal entries » and off-
diagonal entries —1 or 3, where n € A45. Let

2.1 Y (k, n) = maxae., , det A.

as a crude sufficient bound for which his proof works, and remarks that

Ehlich shows maxxe » det(X'X) < ¥(k, n) in Case 3.

A block of size r is an r X r matrix with diagonal elements » and off-diagonal elements 3.
A block matrix in 6, with block sizes r1, ra, - -+ rysatisfying Y1 r; = k is a k X k matrix with
diagonal blocks of those sizes and with all other elements equal to —1. As Ehlich shows, any
such block matrix C has

det C=(n—=3*{1 - G}Y[[i(n—3+4r),
G=Yir/(n—3+4n).

2.2)

Ehlich also shows that there is a block matrix in %, . which has maximum determinant in %5,
and which is a member of the subset %, . of % , which consists of block matrices with blocks
of only one size or blocks of only two contiguous sizes, u of size r and v of size r + 1, where
consequently

23) u+v=s, ur+v(r+1)=sr+v==k.
For any block matrix C, in %, , with s blocks, (2.2) and (2.3) yield
det Cy = Dpp(s)=(n =3 (n =3 +4r)'(n + 1 + 4r)*{1 — G}
2.4) =m=3)"(n=3+4n""""*n + 1 + 4r)"{1 - G},
G=[k(n=3)+4sr(r+ D]/(n+4r+ D)(n+ 4r — 3).

Ehlich’s last-cited result is thus ¥(k, n) = max, Dz .(s). Of course, s uniquely determines r
except when s| k. In that case, the block matrix with r = ro, u = uo, v = 0 is identical to that
with 7 = roy — 1, u = 0, v = uo, and either yields the same result in (2.4). The X'X = (n + 1)I,
— Jy, discussed earlier has s = k.

In Case 3 we call X in Z(k, n) “regular” if X'X = C¥ is of the form C, in %,» described
in (2.3) and (2.4) and

(2.5) det C¥ = Dy, n(s) = max; Dy a(2).

If s = k maximizes Dy .(s), we call the resulting X and X'X = (n + 1)I} — J; “very regular.”
As we shall see, the s maximizing D; .(s) need not be unique.

In Section 3 we characterize cases where very regular designs maximize Dy .(s), and the
construction problem of D-optimum designs in Z'(k, n) is then handled in all practical cases
by the simple construction described at the outset of the discussion of Case 3, above. For other
k with n € 43, we encounter difficult construction problems of whether C¥ is realizable as an
X'X. If not, we have no optimality characterization. Many saturated or near-saturated cases
give evidence that such C¥ are not realizable as X’X. As we mention in Section 4, that is
always so when k = n < 91. In Section 4 we discuss Dy .(s) further and give a few positive
results in regular cases that are not very regular. As more becomes known about the form of
D-optimum designs in Case 3, it may become convenient to alter the definition of regularity.
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2.4 UNIQUENESS. In Case 0, if an optimum X’X exists that is regular, then it is well known
that every D-optimum X’X must have that same form. The same conclusion holds (with
possible normalization) in Case 1 and Case 2, as can be seen by examining the modification
of the uniqueness part of the proofs of Ehlich (1964a) needed to make them apply when k <
n. Finally, when n > 2k — 5 in Case 3, the same conclusion applies if a D-optimum X’X exists
that is very regular, as one can see by tracing through the inequalities in the reductions in
Ehlich (1964b) that are described in the development of (2.1)-(2.4) relating to %,» and %.»,
together with the proof of Section 3 below, as these apply when n > 2k — 5.

When n < 2k — 5, no general Case 3 uniqueness results for X’X are known, and we now
describe examples of nonuniqueness. (Uniqueness for the optimum X'X for kK = n = 7 may be
obtainable from Williamson’s development.) Table 1 and Section 4 describes the lack of
uniqueness that is possible among regular block designs that are optimum in Z(k, n). In the
borderline case n = 2k — 5 of case 3, the theorem of Section 3 shows that an optimum design
can have the very regular X’X consisting entirely of blocks of size 1 (s = k) or can have one
block of size 2 and the rest of size 1 (s = k — 1). The smallest possible example is (k, n) = (6,
7), and in Table 2 we give an optimum X for which X’X has s = 5, the above-diagonal 3 being
in position (1, 2). We remark herein that our theorem obviates the need for Payne’s longer
proof of optimality of the very regular X'X in this case. In addition, we have settled his
question about uniqueness in the negative. In the next case (k, n) = (8, 11), we also obtained,
and list in Table 3, an optimum X (X’ X with s = 7, above-diagonal 3 in position (1, 2)) other
than the very regular one. For the case (10, 15), we list in Table 4 an optimum X whose X’ X
has s = 9, the above-diagonal 3 again being in position (1, 2).

For n < 2k — 5, there are four cases of (k, n) in which we know a regular optimum X’X at
the current writing. For the case (9, 11), Table 1 shows that s = 6 or 7 is possible, and the first
of these (Table 5) was found frequently in our search. However, the second of these was not
obtained in 1500 trials. (Mitchell’s Table 4d gives a block design with s = 5, not optimum.)
For (10, 11), where Mitchell’s design (proved optimum in our Section 4) has s = 5, we have
also found an alternate with s = 6, given in Table 6. (Mitchell states that he did not attempt
to list more than one maximizer of det(X’X).) For (11, 15), Table 1 shows that s = 8 (Table 7)
gives the unique block design optimum in %(11, 15). For (12, 15) we have only found an
optimum X’X with s = 6 (Table 8), not one with s = 7. Ehlich (1978) indicates that he has
found the latter.

Perhaps most interesting is the presence of three different forms X’X mentioned in
Subsection 2.3 as being optimum in the case k = n = 11. Two of these, not block matrices,
were described earlier (Tables 9a.and 9b). The third, yielded by the X of Table 9c, is a block
matrix with one block of size 5 and three of size 2.

Thus, lack of uniqueness of the optimum X’ X is quite possible, and we do not yet know the
general situation. It is well known from simple examples that the uniqueness of the D-optimum
“information matrix” (analogue of X’X) in “approximate” design theory does not persist in
the exact theory, as has been illustrated in the example of k = n = 3 on [—1, 1]* in Section 1.
Still, these first examples of nonunique D-optimum X’X in the simple standard weighing
design setting are somewhat surprising. (For nonuniqueness of the E-optimum design, even
possible in the approximate setting, see Cheng (1980) and also his references to earlier work
of Takeuchi.) We emphasize that we are not treating here the more detailed consideration of
nonisomorphic X with the same X’ X—for example, of nonisomorphic H,.

3. Optimum very regular designs in Case 3. We now prove

THEOREM. If k < n € A; and n = 2k — 5, then max, Dy o(t) = Dpn(k) = (n+ ) '(n — k
+ 1), and hence any very regular X (with X'X = (n + 1)Ix — Ji) is D-optimum in %(k, n). If n
> 2k — 5, the value t = k uniquely maximizes Dy n(t), while if n = 2k — 5 the one other
maximizing value is t = k — 1, for which X' X (if it exists) differs from (n + 1)1 — J, by having
3’s in positions (1, 2) and (2, 1) after normalization. If n < 2k — 5, Dy n(t) is not maximized by
t=k.

PrOOF. Suppose k < n € A3 and n = 2k — 5, and that t = s < k maximizes Di .(?).
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Continuing with the nomenclature and developments of (2.1)-(2.4), we adopt the second
representation just after (2.4) in the cases s| k. This means we may assume v > O for all 5, and
hence

3.0 sr<k-—1.

With this choice, the parameters u, v, r, s, G hereafter refer to C¥ satisfying (2.5) with s < k
and hence r > 0.

Let C** be obtained from C* by replacing one block of length r + 1 (recall v > 0) by a
block of length r and a block of length 1 (perhaps now yielding blocks of three lengths in
C**). We shall show the resulting contradiction det C** > det C* except in the single case r
=1, v=1n=2k — 5, when det C** = det C*. Writing L = n + 4r + 1 to simplify
calculations, we have from (2.2) after some simple arithmetic,

L'™(L = 4)™(L — 4r — 4)°""'"¥det C** — det C*]

r+l_ 1 o
L L—-4r L-4

=16r{l — G} + 8r{—=1+2(r+ L'} =8r{1 —2G + 2(r + 1)L™'}.
From (2.4) and (3.1),
L(L—4){1 —2G+2(r+ )L™}
(3.3) =L(L—4)—2[k(L—4r—4)+ 4k — )(r+ D] +2(r + 1) (L — 4)
=L[L-2-2k+2r]=L[n+6r—1-2k}l=L[n+5 - 2k].

(3.2) =(L—4)(L—4r){l—G+ }—(L—4r—4)L{l—G}

This last, and hence (3.2), is nonnegative provided n = 2k — 5.

We also see that the left side of (3.3) can be zeroonly if r=1,v=1,and n =2k — 5. In all
other cases we have obtained the contradiction det C** > det C*. In the single case n = 2k
— 5, we have also proved that s = k is optimum in %, and have also shown that s = k — 1
(r=1, v = 1) is optimum (and no other s is) in that case.

Finally, if C* has s = k — 1 and r = 1, so that C** has s = k, the left side of (3.3) is L(L
—2k), whichis <0ifn<2k—-5. 0O

4. Case 3 with.n < 2k — 5. When k < n < 3 the optimum design is always very regular.
When n = 7, the only value k =< 7 not covered by the theorem above is k = 7. In particular,
Payne’s intricate proof in the case k = 5 is unnecessary. The saturated case k = 7 was treated
by Williamson: As mentioned earlier, an optimum X is not regular since ¥(7, 7) is not a
square. It is of interest that Ehlich’s inequality det X’X < max, D (s) (see just below (2.1)
and (2.4)) can be used to give a much shorter proof of Williamson’s result: One computes
easily that ¥ (7, 7) = D;1(5) = 84 X 2'2 but since det(X’X) is trivially seen to be a square
divisible by 2™ in this case, we must have det(X’X) < 81 X 2"%. Williamson’s design attains
this bound, and is thus D-optimum. The upper bound of Ehlich’s inequality is actually
achieved for k = n = 3, but the method just used obviously fails for the X’s proved optimum
by Ehlich when k = n = 11.

Before going on to the case n = 11, we list in Table 1 the values smax of s that maximize
Dy, n(s), together with ¥(k, n) for k < 15 and n < 2k — 5. (A printout for larger k, is available
to interested readers.)

The values D, .(s) were studied extensively by Ehlich. We note that, as was the case for
¥ (7, 7) in the previous paragraph, ¥(n, n) is not a square for n = 11 or 15 and thus Ehlich’s
upper bound is not attainable in %(n, n) (there is no regular optimum X) in these cases.
(When k& < n, det(X’X) need not be a square, and this simple unattainability argument fails.)
In fact, an analysis of Ehlich’s results for ¥(n, n) show that it is a square (for n € .43) for
infinitely many (but sparse) n, the only values <200 being 91 and 47; it seems quite unlikely
that the bound is attainable in those large cases. Of course, whenever ¥ (k, n) is not attainable
by an X'X, there is no reason for the D-optimum X’X to be a block matrix (with smaller



D-OPTIMUM WEIGHING DESIGNS 1301

TABLE 1
Optimum block matrices for n <2k — S,
n < 15 (Case 3)

k n Smax Y(k, n)

7 7 5 3441 x 10°
9 11 6,7 .1359 x 10"
10 11 5,6 .1288 x 10"
11 11 5,6 .1203 x 10"
11 15 8 5617 x 10"
12 15 6,7 7644 x 10"
13 15 6,7 .1032 x 10"
13 19 9,10 2899 x 10'7
14 15 6 1387 x 10"
14 19 7,8 5130 x 10"
15 15 6 .1855 x 10'®
15 19 7,8 9029 x 10"
15 23 11 .1906 x 10

Dy n(s) than ¥(k, n)). Indeed, when k = n = 11 a D-optimum X’X need not even be a block
matrix (Tables 9a and 9b) as it was in the nonregular case k =n = 7.

The approach of finding new D-optimum designs in Case 3 by using a large number of
trials with our computational search scheme succeeded in four cases where n < 2k — 5 (in
addition to a number of very regular cases before we knew the Theorem of Section 3), as well
as in the three cases n = 2k — 5 where it found nonunique optimum X’X. These are the cases
(k, n, 5) = (9, 11, 6), (10, 11, 6), (11, 15, 8), (12, 15, 6), (6, 7, 5), (8, 11, 7), (10, 15, 9), listed in
Table 1, mentioned in Section 2.4, and given in Tables 5, 6, 7, 8, 2, 3, 4. In all of these, our
search succeeded in finding a D-optimum X in Z(k, n), achieved for a block matrix X’'X
satisfying det X'X = ¥(k, n). In these seven tables the designs X have been written so that the
blocks of length 2 occur at the beginning, the above-diagonal 3’s appearing in positions (1, 2),
(3,4), -+, (2v—1,2v), where v = 3,4, 3,6, 1, 1, 1 in the respective cases. As mentioned in
Subsection 2.3, we have also listed, in Table 9, three X’s for k = n = 11 obtained by our
computer search, which yield matrices XX for designs X found earlier by Ehlich and Zeller
(1962) or Ehlich (1978), and which were proved optimum by the latter.

5. Summary of results for small k. The case k = 2, mentioned at the start of Section 2, is
trivial and has been known for many years. For k = 3 and 4, Payne gave detailed calculations
that characterize the D-optimum designs for all n = k. For these values of k, the developments
of Sections 2 and 3 also guarantee existence and optimality of a regular X, always very regular
in Case 3. The same is true for k = 5, which was treated almost completely by Payne (except
for n = 6). Payne did not treat cases k > 5 so completely. For kK = 5 his development assumes
all H, exist in Case 0, an assumption we have seen how to weaken, and to eliminate in all
practical cases.

For k = 6, our results again imply existence and optimality of a regular X for all n = k,
always very regular in Case 3. For k = 8 there is a regular X that is optimum for n = k, always
very regular in Case 3. Tables 2 and 3 illustrate the lack of uniqueness of X’X for (k, n) = (6,
7) and (8, 11).

For k = 7 we again have a regular D-optimum X for all n = k, except that in the saturated
case the Williamson block design with s = 4, not regular (Table 1), is optimum. For all other
values n in Case 3 we have very regular designs.

For k = 9 the saturated case was settled by Ehlich and Zeller (1962), as discussed earlier.
Our developments yield regular optimum X for all n > 9, the only Case 3 design that is not
very regular being that of Table 4 for n = 11.

For k = 10 we always have regular optimum X, always very regular in Case 3 except for n
= 11. The design of Table 4e of Mitchell (1974b), after adjunction of a column of +1’s and
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TABLE 2
D-optimum X for (k, n) = (6, 7)

(X'X has s = 5, first block of size 2; very
regular X is also optimum; det(X'X) = 2'¢

= 6554 x 10°,)
+ o+ o+ - -+
e
+ - - -+ o+
- -+ o+ + o+
e
-+ - - 4+ o+
+ o+ -+ -+
TABLE 3

D-optimum X for (k, n) = (8, 11)

(X'X has s =17, first block of size 2; very regular X is
also optimum; det(X'X) = 372" = 1433 x 10°.)

- - 4+ - - o+ o+ 4
- - - + o+ o+ - %
+ 4+ -+ - -+ 4
+ -+ o+ - o+ - %
- - - + - - 4+ %
- 4+ o+ o+ o+ = - 4
-+ - - - o+ - 4
+ - - - + - - 4
+ 4+ - -+ o+ o+ 4
- - 4+ - o+ - o+ 4+
+ 4+ o+ - - - - 4
TABLE 4

D-optimum X for (k, n) = (10, 15)

(X’'X has s =9, first block of size 2; very regular X is also optimum;
det(X'X) = 2"3 = 4123 x 10'2)

+ - - - - =+ o+ o+ o+
-+ - - - -+ o+ o+ 4+
+ 4+ -+ o+ o+ -+ o+ o+
- - - - 4+ 4+ - o+ - %
+ o+ o+ o+ - - -+ -
- 4+ -+ o+ -+ - -
+ o+ o+ - -+ o+ = =4
e T e TS
+ -+ -+ - - -+ ¥
- -+ -+ o+ o+ o+ -+
+ o+ - - 4+ - - - - 4
- - 4+ o+ 4+ -+ -+ o+
- - + o+ - - - 4+ - 4
+ - - 4+ -+ o+ = - ¥
e T S TS




(X' X has s = 6; first four blocks have size 2; Mitchell’s design with s =
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D-optimum X for (k, n) = (9, 11)

TABLE 5

(X’'X has s = 6; first three blocks have size 2; det(X'X)
=3%2% = 1359 x 10".)

+ - + + - - - + +
+ - - - 4+ + + - 4
- - -+ 4+ -+ 4+ o+
-+ - - 4+ + - 4+ o+
- - + - + - - - 4+
+ + + + 4+ o+ - -+
- -+ - -+ o+ o+ o+
+ + - - - - 4+ - +
- - - + - 4+ - - +
- 4+ o+ o+ - = o+ - 4+
+ + - - = = - + 4+
TABLE 6

D-optimum X for (k, n) = (10, 11)

5 is also optimum; det(X'X) = 3 x 2% = 1288 x 10'".)

+ - - -+ o+ o+ =+ o+
- - + - - + + 4+ - +
- 4+ - -+ o+ = 4+ o+ o+
+ + -+ -+ = = = 4
- - - - = = = = 4+
- - -+ o+ - o+ o+ -+
+ + - - - - + 4+ - 4
+ -+ o+ - = = 4+ 4+ o+
- -+ o+ o+ o+ - - -+
- 4+ o+ o+ - - + = 4+ o+
I
TABLE 7

(X'X has s = 8, first three blocks have size 2; det( X' X) = 2%5?3°3| =

D-optimum X for (k, n) = (11, 15)

5617 x 10.)
+ - - - - + + - + + o+
+ + - + + - - - - + o+
+ + - - - - + - + -+
- + + - - - + + - + o+
+ - + + - + - + - -+
- + - + - + - + + +  +
+ - + - + - - + + + o+
- - + + - - + - - + o+
- + + - + + - - + -+
- - - - + + + + - -+
- - + + - - - - + s
- - - + + - + + + S
+ + - - - - - + - -+
- - - - + + - - - +  +
+ + + + + + + - - -+

1303
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TABLE 8
D-optimum X for (k, n) = (12, 15)

(X’X has s = 6 blocks of size 2; det( X' X) = 3%5°2% = 7644 x 10')

- -+ o+ - - - -+ o+ 4+
-+ - -+ - -+ -+ =%
- - - - - -+ o+ o+ o+ o+ %
+ - - 4+ -+ o+ o+ -+ =4+
- - - 4+ 4+ o+ -+ o+ =+
+ o+ -+ o+ -+ - - -+
- - 4+ -+ o+ o+ - -+ o+ 4+
+ 0+ 4+ - -+ =+ - - 44
-+ - - - 4+ o+ - 4 -+
+ - 4+ -+ -+ o+ o+ - - %
+ o+ - -+ o+ - -+ 4+ o+ 4
+ - - - - - - - -+ o+
- -+ o+ o+ o+ = = = - -y
+ 0+ o+ o+ - - - -+ o+ =4
-+ 4+ o+ - - 4+ = -+ 4
TABLE 9
D-optimum X’s for (k, n) = (11, 11); det( X' X) = 5°2* = .1074 x 10"

TABLE 9a. X’X has above-diagonal 3’s in positions (1, 2), (2, 3), (3, 4),

4, 5),(6,7), (8 9), (10, L1).

+

P+ ++ 0+

<+
+

I+ + + 11

<+
<+

<+

+

<+
<+

+

o+ + 4+

+

L+ + 4+ 1+

+

P+ + 1+

+

L+ 1+ + 4+ 1+

F+ 1+ 1+ 1

+ 1+ 1

4+

T T

TABLE 9b. X’X has above-diagonal 3’s in positions (1, 2), (1, 3), (2, 3),

(3,4),(4,5),(6,7),(8,9), (10, 11)

I+ 1 ++ 1 4+ 1 + 1

I+ 1 ++ 1 + |

+

+

+ 1+ 1+ 01+

<+
+

+

I+ + 01

|+ + +

I+ + 1

I+ 1+

I+ + 1 + 1

+

P+ ++ 0+

I+ + + +

i+ + 101+

+

I+

L+ 4+ +

+ 4+ 1

R R R S
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TABLE 9c. X'X is a block matrix with s = 4 and blocks of size 5, 2, 2,
2 in that order

- + + 4+ o+ - - = -+ %
+ -+ - = 4+ o+ = =+ o+
+ + - -+ - -+ o+ o+ 4+
- - - 4+ -+ 4+ o+ o+ o+ o+
- - - - - + - - + = %
R S N e
-+ - - o+ o+ o+ - - o+ 4+
- -+ - - = -+ o+ o+ o+
+ + o+ o+ o+ -+ -+ = 4+
+ + + + o+ o+ - o+ = = %
- - - = - - 4+ 4+ = = %

normalization, is proved by our developments to be optimum, since it is a block design with
(k, n, 5) = (10, 11, 5) (see Table 1). Our search found Mitchell’s design frequently, but also
succeeded in finding a design with the alternate value s = 6, given in Table 6. Table 4
illustrates the lack of uniqueness of X'X for (k, n) = (10, 15).

For k = 11 there are the three X’ X’s proved optimum by Ehlich, as described in Subsection
2.3 (see Table 9). For all n > k we have a regular optimum X, the only Case 3 design that is
not very regular being that for n = 15 given in Table 7.

For k = 12 our development yields regular optimum X for all n = 12, the only Case 3 value
of n for which there is no very regular design being 15. An optimum design for n = 15 with s
= 6 is given in Table 8. Ehlich (1978) has found the optimum design with s = 7 in this case.

For larger values of k of practical interest, the Proposition of Section 2 and our other
developments yield regular D-optimum designs in all cases except n € .4; with k < n < 2k —
5. The last 7 lines of Table 1 list these unknown cases for k = 13, 14, 15.

Added in proof. Additional Case 3 results obtained by us, to appear in the Proceedings 1979
Tokyo Conference, include D-optimum designs for the cases (12, 15, 7) and (2k — 5, k, k — 1)
for all k; and unattainability of W(k, n) for the cases (13, 15), (14, 15), (9, 11, 7).
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