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A BAYESIAN APPROACH TO A PROBLEM IN SEQUENTIAL
ESTIMATION!
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This paper considers the problem of sequentially estimating the mean of a
normal distribution when the variance is unknown. A continuous time analogue
of the discrete time problem is studied. For L in a class of loss functions,
properties of the value function and optimal continuation region of L are
presented. Asymptotic expansions are found for the value function and the
optimal boundary function of the loss function L.

1. Introduction. A sequence of observations is made, generating a sequence Xi, Xz, - - -
of independent normal N(A, 1/0) random variables with mean A and variance 1/6 both
unknown. Let (4, ) have the normal-gamma N — I'(a, 8, r, m) conjugate prior, where a, 3,
r>0and — @ < m < . That is, the conditional prior distribution of A given 6 is N(m, 1/(rf))
and the marginal prior distribution of 8 is I'(a/2, 8/2), gamma with parameters /2 and 8/2
and mean «/f. The posterior distribution of (4, ) given Xi, - - -, X, is then N — I'(a,, Br, x,
m,) where a, = a + n, ro=r+ n, m, = (rm + nX,)/rn, X, = (X; + -+ + X,)/n and

=B+ Yk (Xi — Xo)* + (X, — mP*/(r + n).

See, for example, DeGroot, (1970), Chapter 9.

We seek a sequential procedure for estimating the mean A of the X/’s. The loss after taking
n observations and estimating A by a function A, of the first n observations will be given by
E[|A — A.|*| X1, + -+, Xa] + cn, which consists of a term for error of estimation and a term
for cost of observation. For any number n of observations, the Bayes estimate m, of A
minimizes the posterior expectation of | A — A, |, and so the loss will be given by:

L,,=E[|A—m,,|"|X1, e, Xn]+cn

P(k + l) r (a,, - k)
<Bn)k/2 2 2
= | — + cn.
In ﬂl/zr (%)

If r = 0, then we have an improper prior, indicating a lack of prior knowledge about A.
With r = 0, m, and B, simplify to m, = X, and B, = B + ¥ (X; — X,)’, and L, may be
written as a function of a, and .. In the sequel, we will let r = 0 and the analysis will be in
terms of a, and B,.

We seek an optimal stopping rule which will tell us when to stop taking observations, so as
to minimize the expectation of L., E[L.]. We would like to find a region % in the (a, 8) plane
such that the optimal stopping rule says to continue sampling as long as (a», 8.) € ¥ and stop
as soon as (an, B.) € ¥. If such a region exists, it is called an optimal continuation region.
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For future use we note that 8, = 8 + S,-1 where S,-; = Y1 + ..+« + Y, is the sum of
n — 1 independent and identically distributed (i.i.d.) random variables Y1, ---, Y,_;. Hence,
Y;= W}, j=1,where W= (X1 + -+ + X; — jX;)/(J(j + 1).}2 Wi, W, - -+ are iid. N(O,
1/8) and, therefore, Y1, Ys, --- are ii.d. I'(1/2, 6/2).

Let %, = o(X1, - -+, X,,} denote the smallest o-algebra with respect to which X, .- -, X, are
measurable. A stopping rule or stopping time is a random variable r taking values 1, 2,
- -+, +oo such that r < o with probability one and {r=n} € £ forn=1,2, ... . For an
extended stopping time T we drop the requirement that 7 be finite with probability one.

The value function V associated with the loss function L is defined as:

V(a, B) = inf. Eq gl L(at-, B-)]

where the infimum is taken over all stopping times . E, s denotes expectation when the prior
distribution on @ is I'(a/2, B/2). If there exists a stopping rule ¢ such that ¥(a, B) = E, 4 L(as,
B.)], then o is called an optimal stopping rule.

Let €= {(a, B): V(a, B) < L(e, B)} and let ¢ = inf{n = 1: V(an, Br) = L(an, Br)}. Chow,
Robbins and Siegmund ((1971), page 70, Theorem 4.5) show that this o is in fact an optimal
stopping rule for the types of loss functions we are considering. Therefore, ¥ is an optimal
continuation region and W(a, 8) = E,g[L(as, B,)]. Unfortunately, the definition of ¢ is too
complicated to be of much practical use.

If V or o cannot be determined exactly, we would like to approximate them closely. The
approach will be to approximate ¥ and o for an analogous problem in continuous time. In
future work, the author will relate these results back to the discrete time problem.

Alvo [1977] considers the discrete time version of the problem of Bayesian sequential
estimation of the mean of a normal distribution when the mean and variance are both
unknown. Error in estimation is measured by squared error loss and sampling cost is ¢ units
per observation. Alvo suggests a stopping rule for this problem and obtains upper and lower
bounds on the risk associated with the stopping rule. He shows that the excess risk associated
with his suggested stopping rule is bounded above by terms of order c. In the present paper,
we consider the continuous time analogue of the discrete time problem. We approximate the
optimal stopping rule by approximating the boundary of the optimal continuation region. We
also approximate the risk or value function associated with the optimal stopping rule. In each
case these approximations are obtained by means of asymptotic expansions to arbitrarily large
powers of the sampling cost c. :

We formulate an analogous problem in continuous time as follows. Let § be a random
variable and {Z,, ¢t = 0} a stochastic process with right continuous sample paths. Suppose that
6 has a I'(a/2, B/2) distribution and that conditionally given 6, {Z,, t = 0} has stationary
independent increments with Z, distributed as a I'(#/2, 6/2) random variable. It may be
verified that the conditional distribution of ¢ given Z;, 0 < s < ¢, is I'(a./2, B:/2), where the
new parameters are o = a + ¢t and B; = 8 + Z,. The random variables Z, are the continuous
time analogues of the sums S,_; of independent gamma random variables in discrete time.

Let % = o{Z,, s < t} represent the smallest ¢-algebra with respect to which the random
variables Z;, 0 = s = ¢, are measurable. A stopping time or stopping rule is a nonnegative
random variable 7 such that r < o with probability one and {7 < ¢} € % for every t = 0. For
an extended stopping time T we drop the requirement that 7 be finite with probability one.

As in the discrete case, the value function V associated with the loss function L is defined as
Wa, B) = inf,E,p[L(a., B:)], where the infimum is taken over all stopping times 7. Let
€= {(a, B): V(e, B) < L(, B)} and o = inf{t = 0: Ve, B:) = L(a:, B)}.Using Theorem 3, we
show that ¢ is an optimal stopping rule for a class of loss functions in the continuous time case,
so that V(a, B) = E,g[L(as, Bs)]-

In Section 2, we present some background material on optimal stopping in Markov
processes. In Section 3, we show that ¥ has certain smoothness properties in continuous time
which help to characterize it. We show that ¥ and % have the properties

V<L and V=0 in ¥,
V=L and V, =L, in ~%,
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where &/ is a differential integral operator which is defined in Section 2 and ~% denotes the
complement of the set €. Moreover, we show that these conditions are sufficient for a function
U and a region €* to be the value function ¥ and the optimal continuation region %.

In Section 4 we give asymptotic expansions for the value function ¥ and the boundary of
the optimal continuation region ¥ for large a and for small c. We also look at some related
problems to which the techniques developed may be applied.

2. Preliminaries.

2.1. Results about Markov processes. 'We use some of the theory of Markov processes. For
notation and definitions, see Dynkin, (1965), Chapter 3.

Let X = (X,, #, P.), t = 0, be a Markov process with sample space (£, & ) and state space
(E, #). A #-measurable function f'is in the domain of %/, denoted 2(«), if the limit

() = limy o 2L E @) (X‘)t —/®)

exists for every x € E. Call & the infinitesimal operator of the Markov process X.
Theorem 1 gives what is known as Dynkin’s formula (Dynkin (1965), page 133).

THEOREM 1. Let of be the infinitesimal operator of a strongly measurable strong Markov
process X. Let f be a #-measurable function such that f € XH). Let v be a stopping time such
that E;7 < © and E.f(X,) < ®. Let f,, n = 1, be a sequence of bounded, -measurable functions
such that f, € XA ) for each n; frn(x) — f(x) and Afn(x) — HAf(x) as n — x for each x € E
there exists a function g such that | fo(x)| < gi(x) for each n = 1 and x € E, and E.gi(x.) <
; and there exists a function g, such that | fn(x)| =< gu(x) for each n = 1 and x € E, and
E.[[{ go(xe) dt] < . Then E.f(X,) — f(x) = E.[[; #f(X,) dt].

Proor. The result for bounded f follows from Breiman, (1968), page 376. The result for
general f'is proved by a simple truncation argument.

Theorem 1 applies, for example, to the nonnegative loss functions described in 3.1 (Bartold
(1976), pages 18, 19).

Let X = (X,, #, P.) be a standard Markov process with Euclidean state space (E, #). For
any U € 4, define a nonnegative random variable 7(U) = inf{t = 0: X, € U}. Call 7(U) the
first exit time from the set U. Dynkin ((1965), pages 104-111) gives conditions under which
7(U) is an extended stopping time. From these conditions we can deduce Theorem 2.

THEOREM 2. Let X = (X,, %, Px) be a standard Markov process with Euclidean state space
(E, #). If U € %, then 17(U) is an extended stopping time.

2.2 An optimal stopping theorem. Let X = (X,, %, P.) be a standard Markov process on a
sample space (2, # ), with Euclidean state space (E, #). Let J denote the natural Euclidean
topology on E. A #-measurable function f = f(x) is J-continuous if lim,,of(X;) = f(x) a.e. P.
for every x € E. Let £ denote the collection of all #-measurable J-continuous functions
h = h(x) such that —0 < h(x) =< o and E.h™(X;) < o for every t = 0, x € E, where k™ denotes
the absolute value of the negative part of h.

- For any f € #and any (finite or extended) stopping time 7, define the quantity f(X,) by:

JS(XD) = f(Xr(w)) if @€ {w:r(w) < o}
= lim sup.,» f(Xd(w)) if w€ {w:r(w) = o}

A function f € Zis regular if for any (finite or extended ) stopping time r and x € E, E.f(X,)
is defined and for any two (finite or extended) stopping times ¢ and r such that P.{o < 1} =
1, x € E, the inequality E.f(X,) < E,.f(X,) is true for every x € E.

A regular function fis a regular majorant of a function g if f(x) = g(x) for every x € E. The
function f'is the least regular majorant of g if f is a regular majorant of g and f < & for any
other regular majorant 4 of g.
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For g € 4, let s(x) = sup E.g(X,) where the supremum is taken over all (finite) stopping
times 7 such that E.g~(X,) < o, x € E; let 5(x) = sup E.g(X,) where the supremum is taken
over all finite and extended stopping times 7 such that E g™ (X,) < o, x € E.

THEOREM 3. Let g € & be an upper semicontinuous function satisfying condition A+:
(A+) Efsup=o g'(X)] <, Vx€EE

where g* denotes the positive part of g. Then s is the least regular majorant of g and s(x) = 5(x)
for every x € E. If 0 = inf{t = 0: s(X;) = g(X,)}, then s(x) = E.g(X,). If, in addition, lim,_,
g(X;) = —w a.e. P;, x € E, then o is finite a.e. P;.

Proor. See Sirjaev, (1976), page 176.

2.3. The (as, By) process. 1t follows from elementary considerations that the process {(a,
B:), t = 0} is a right continuous Markov process with Euclidean topological space (E, 7, %),
where E = R* X R*, 7 is the natural Euclidean topology on E, and £ is the ¢-algebra of
Borel subsets of E. The (a;, B:) process is also a Feller process (Sirjaev (1973), page 18) since
for every bounded, #-measurable, continuous function f on (E, #) and for every ¢ = 0, the
function E,g[ f(a:, B¢)] is continuous in (a, B). Because every right continuous Feller process
on a topological space (E, J, 4) is a strongly measurable strong Markov process (Dynkin
(1965), pages 98, 99), the process {(a:, B:), t = 0} is a strongly measurable strong Markov
process.

We will determine the infinitesimal operator of the (a:, ;) process. Let f = f(a, B) be a
measurable real valued function defined on E and continuous in a. Let

, Eflfla+t, B+ Z)] —fla+1,B)

t

Gf(a, B) = lim,

@b

P(a + t)
! J N2 et BB —fat b B ey,

10 5 (a+0)/2
2 t a Q+y
F(z " l)p(i)

provided this limit exists. If the integrand in this expression for Gf(a, B) is bounded by an
integrable function for 0 < ¢ < § for some 8 > 0, then by the dominated convergence theorem,
the limit can be taken inside the integral, giving

1 (% fle, AC
Gfte B) =3 j falein ey,

Suppose that fis such that both Gf(«, B) andfs (a, B) exist and are finite, wherefs denotes
the positive part of the partial derivative of f with respect to a. Then Zf(a, 8) =fa (a, B) +
Gf(a, B). If, in addition, the limit may be taken inside the integral in (2.1), then </f(a, 8) may
be written as

o L (" fla, B+ By) — fle, B)
"Q(f(a’ :B) —f"(a’ :B) + '2_ s y(l + y)a/z d

As an example, suppose that L(a, 8) = B"h(a) + ¢(e) is a function defined on E, where y
> 0, and h and ¢ are both nonnegative differentiable functions of a. Then Li(a, B) =
L(a, B) = B"H' (@) + ¢'(a). It can be shown that for a > 2y, GL(a, B) = % Bh(e) (¥(a|2) —
W¥(a|2 — y)), where ¥ is the digamma function defined by ¥(x) = d log I'(x)|dx and T’
is the gamma function. Thus, #/L(a, B) exists for every (o, 8) € E such that a > 2y, and
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SL(a, B) = BTH (a) + % Ma)[¥(a/2) — ¥(a/2 — )] + ¢'(«). For future use, we note that
HL(a, B) is decreasing in 8 for each fixed a if A'(a)/h(a) < (%)[¥(a/2 — v) — ¥(a/2)].

2.4. Three lemmas. We use Lemma 1 in Sections 3 and 4.

Lemma 1. Suppose €* is an open set of the form €* = {(a, B): B > f(«)}, where f is a
continuous nondecreasing function of a. Let T = 7.z be defined by T = inf{t = 0: B; < f(as)},
which we assume to be finite with probability one P,g. Then B8, = f(a.) with probability one P,z
for every (o, B) € €*.

PrOOF. Since f is continuous and nondecreasing and 8; = 8 + Z, is nondecreasing in ¢
with probability one, 8: = f(a,) = f(a;) = 87 = B., which implies that B, = f(a.).

Note that this lemma implies that («., 8;) = (a,, f(a,)) is on the boundary of ¢* with
probability one P,g. The stopping time 7 is the first exit time from the set % *.

Lemma 2 gives a set of sufficient conditions for a function U and a region ¢* to be the
value function ¥ and an optimal continuation region ¥ for a loss function L. The proof follows
easily from Dynkin’s formula. Essentially this result may be found in Sirjaev (1973), Chapter

LEMMA 2. Let L = L(a, B) be a finite loss function defined on the state space E = R* X R*.
Let V be the value function for L and let € = {(a, 8): V(a, B) < L(a, B)}. Assume that o, the
optimal stopping rule for L, exists so that V(a, B) = E, gl L(as, Bs)]. Suppose that €* is an open
set of the form €* = {(a, B): B > f(«)}, where f is a continuous nondecreasing function of a, and
that for each (a, B) € E the first exit time T = 1,5 from €* starting at (o, B) is finite with
probability one P.p. Suppose that U is a real valued measurable function defined on E satisfying
Dynkin’s formula with both T and o, for every (a, B) € E. Suppose also that:

U(a, B) < L(a, B) and #/ U(a, B) = O for (a, B) € € *,
U(a, B) = L(a, B) and £ U(a, B) = 0 for (a, B) & €*.

Then U = V and €* = € is an optimal continuation region.

Proor. For (a, B) € €*, we see using Dynkin’s formula that

Ea-ﬂ[ U(af’ ﬂ‘r)] - U((!, .B) = Emﬂ I:J’ .MU((I;, ,Bt) dt] =0.
0

Therefore, for (o, B) € €*, U, B) = EoplU(-, B:)] = Eap[L(ar, B-)] = V(a, B). Also, U(a,
B) = L(a, B) = V(a, B) for (a, B) €E ~ ¥*. Again using Dynkin’s formula and the assumption
that #/U(a, B) = 0 for every (a, B), U(a, B) = EaplU(as, Bo)] = EaplL(es, Bo)]l = V(a, B) s0
that U(a, B) = V(a, B) for every (a, ) € E. That ¥ = ¢* follows immediately. Therefore,
T = ¢ is an optimal stopping rule and ¥* = % is an optimal continuation region for L.

In Section 4 we use Lemma 3, which is a previously unpublished result of Michael
Woodroofe.

LeEMMA 3. Let L and L, be loss functions and let €; = {(a, B): Vi(a, B) < Lia, B)} be an
optimal continuation region for L;, i = 1, 2. For (a, B) € %, let o, be the first exit time from %,
starting at the point (a, B). Assume that o satisfies Dynkin’s formula with both L, and L,, and
that o, is an optimal stopping rule for L;. If /Li(a, B) < o/ La(a, B) for every (a, B) € %, then
%, C 6.

Proor. Let V; denote the value function associated with the loss function L;, i = 1, 2.
Suppose there is a point (a, 8) € % ~ %1. Then 0 = Vi(a, B) — Li(a, B) < Eop[L1(ats,, Bsy)]
— Li(a, B) = Eop [[8 L Li(ar, Be) dt] < Eop[[& A Lo(ar, Be) dt] = E.g[ LAy, Bsy)] — La(a,
B) = Va(a, B) — La(a, B) < 0, which is a contradiction.
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3. Some properties of V and €.

3.1. Introduction. Let L be a loss function of the form L(a, B) = B"h(a) + ¢(a) where y >
0; h is nonnegative, differentiable, a’h(a) — 0 as a — ; and ¢ is nonnegative, differentiable
and increasing in a, ¢(a) — % as a — . Suppose also that &L (a, B) is decreasing in 8 for
each fixed a. Such a loss function L will be said to satisfy Conditions A.

If a loss function L satisfies Conditions A, it can be shown that E, g[ L(a;, B¢)] is continuous
in (a, B) for t = 0 and a = ao where ag > 2y. We will consider only loss functions which satisfy
Conditions A and consider only (a, 8) € E such that a > 2y.

For a loss function L which satisfies Conditions A, let € = {(a, 8): M(a, B) < L(a, B)}
where V is the value function for L. For (a, 8) € E, let 0 = 0,4 be the first exit time from &,
o = inf{t = 0: (s, B:) = L(au, Br)}. Applying Theorem 3 to the function g(a, 8) = —L(a,
B), we find that o = g, is finite a.e. P,g and V(eo, B) = E,p[L(as, B,)]. Therefore, o is an
optimal stopping rule and % is an optimal continuation region for L.

In subsequent sections, we will prove the following properties of ¥ and 4:

V = V(a, B) is an upper semicontinuous function of («, 8), a continuous nondecreasing
function of B for fixed «, and inside ¥ a continuous nonincreasing function of a for fixed 8.
AV (a, B) exists for a > 2y, o/ V(a, B) = 0 for (a, B) in the closure € of %, and /V(a, 8) > 0
for (o, B) in ~ 4, a > 2y. The set % is an open set of the form

G.D €= {(a, B):B8> g(@)}

where g is a continuous, nondecreasing function of a defined by

(G2 g(a) = inf{B: V(a, B) < L(a, B))}.

% is unique in the sense that there is exactly one open continuation region ¥ satisfying:
3.3) (e, HEE=(a, )EE for =P

such that if 0 = o0, is the first exit time from ¥ starting at (a, 8), then V(a, 8) = E,s[L(a.,

B2)).

The boundary condition V, = L, is true on the boundary 8% of %.

For a measurable, real valued function U = U(a, B) defined on E = R* X R* and ¥* C
E, necessary and sufficient conditions are found such that U = Vand ¢* = &.

3.2. Proofs of some properties of V and 6.

LeEMMa 4.
(1) V= W(a, B) is upper semicontinuous in (a, 3).
(2) ¥ is an open set.

Proor. Let % be the collection of all bounded stopping times taking values in the set of
diadic rationals. Then

W(a, B) = infre ¢ Eopl L(ar, Br)].
Suppose T € ¥ takes values k/2" for k =0, 1, - -, m2". Then
n k
Ea’ﬂ[L(aﬂ ﬂf)] = Z;?n'zo Eﬂ,B[L(ak s ﬂk)I{T = 7}]
>
which is continuous in (&, B). Therefore, V is upper semicontinuous in (, 8). That € is open

follows from the upper semicontinuity of ¥. We will prove the following theorem.

THEOREM 4. Let the loss function L = L(a, B) satisfy Conditions A. Then:

(1) there is an optimal continuation region € of the form (3.1) with boundary function g =
g(a) defined by (3.2);

(2) g is nondecreasing in «;
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(3) g is a continuous function of «;

(4) the value function V = V(a, ) is, inside %, a continuous nonincreasing function of a for
fixed B;

(5) V = Wa, B) is a continuous nondecreasing function of B for fixed «;

(6) V(e B) exists for every (a, B);

(M) #V(a, B) = 0 for (a, B) in the closure of 6.

The random variable Z, has, conditionally given 6, a I'(z/2, §/2) distribution and 6 has a
I'(a/2, B/2) distribution. For a > 0, aZ, has, conditionally given 6, a I'(¢/2, 8/(2a)) distribution
and 0/a has a I'(a/2, afB/2) distribution. Therefore, for a = 1,

Ve, aB) = inf, Euapl(aB + Z:)"h(a:) + ¢(as)]
3.4 = inf, E.4[(aB + aZ.)"h(a) + ¢(a,)]
= a" inf; Eop[L(a-, B-) + (@7 — D¢(a)]
=a(a B) + (1 — a)(a).

If (o, B) € ¥ and a > 1, then V(a, aB) < a"V(a, B) + (1 — a")(a) < a’L(a, B) + (1 — a")é(a)
= L(a, af). Therefore, (a, af) € € and it follows that V(a, 8) < L(a, B) for B > g(a) and V(a,
B) = L(a, B) for B < g(a). Using (3.4), fora = 1,

35) (e, aB) = inf, E.gla"BTh(a) + d(a)]
= inf, E.z[8(a.) + ¢(a)] = V(a, B).

Combining (3.4) and (3.5) shows that ¥{(a, ) is a continuous nondecreasing function of 8 for
fixed @, proving part (5) of Theorem 4. Combining these results with the fact that € is open
proves part (1) of Theorem 4.

Let (o, B) € ¥. Because % is open, there is an ho > 0 such that (a + A, 8’) € ¥ and (a — A,
B)YE Fforf=Band 0<h=<hy. For0<h=ho, 0 = 0,5 = h a.e. P,pz. Therefore, V(a, B)
= E.p[L(as, BG)] = EﬂyB[Eahth[L(aG’ Bl = Ea,ﬂ[ Ve+h B+ Zh)] Then Via + h, B) — Ve,

B)=— E.g[V(a+ h, B+ Zn) — V(a + h, B)] = — hGn(a, B) where
" CalV(a + h, B + By) — V(a + h, B)] "2
Gu(a, B) = J; nre o +);)(a+m£;x 4 dy
and

(2 ()

By (34)and 3.5),0= V(a+ h, B+ By) — V(a+ h, B) = ((1 + »)* — ) (a + h, B). Therefore,
the integrand in the expression for Gx(a, B) is nonnegative and bounded by an integrable
function for 0 < h =< 1. Therefore, W(a + h, 8) — V(a, B) <0 and | V(a + h, B) — V(a, B)| =
0 as A — 0. A similar argument shows that | ¥(a, 8) — V(& — h, 8)| = 0 as h — 0. Therefore,
inside €, V(a, B) is a continuous nonincreasing function of « for fixed B, proving part (4) of
Theorem 4. ’

For (a, B) € 4, GV(a, B) may be written as

GV (a, B) = limpyo Gu(a, B)

_L [T B+B) - V@B
T2 1+ y)” 4

o ya+y)
since by the dominated convergence theorem the limit can be taken inside the integral.

For (a, B) € ¢, Vi (&, B) = limno (W(a + h, B) = V(e, B))/h = limay — Gi(a, B) =
~GW(a, B), and by similar reasoning, V.(a,B8) = —GV(a, B). Therefore, for (a,8) € &,
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AV(a, B) exists and #V(a, B) = Vo(a, B) + GV(a, ) =0, proving part (7) of Theorem 4
for (a, B) € 4.

To show that the function g = g(a) is a nondecreasing function of a, fix o° and let B° =
£(c°). Define the region €* by ¢* = €N {(o, B):a > a’, B> B°. For (o, ) EE, let 7 =
Top = inf{t = 0:(ar, Br) € € *} and let U(e, B) = Eop[L(a-, B:)] be the expected loss associated
with €*. Let ¢ = 0.z be the first exit time from %, an optimal stopping rule, starting at
(o B).

For (a, B) € ¢*, (as, Br) cannot be in ¥ without also being in ¥ * since a, and §; are both
nondecreasing in ¢, t = 0. Therefore, 7 = 0 and U(a, B) = V(a, B) for (o, B) € € *.

Suppose there is an a* > o’ such that g(a*) < B° = g(a°). Then (a*, B°) is on the boundary
of #* and inside %, so that U(a*, 8°) = L(a*, 8°) > V(a*, B°). Since €* is open, there is a o
> O such that (a* + 1, 8) EF*for0<t=<ty, 8> B° For 0 <t =1t, Ua¥ BY) = Va?, B)
a.e. P,» poand

Ea’,,BO[ U(a?, B?)] = Ea‘,Bo[ V(af, B?)] = Ea‘,lio[EaZ,B? [L(a:’ g)]] = Ea‘,ﬁo [L(a:’ Bg)]

That lim, E.p[Ua¥, B9)] = U(a*, 8% follows from Corollary 2 of Theorem 4.9 and
Theorem 4.10 of Dynkin ((1965), pages 123, 124) for loss functions L which are bounded
above; the result follows for loss functions L satisfying conditions A by a truncation argument.
This implies that U(a*, 8°) = E.~ [L(a¥, B%)] = V(a*,8°), which is a contradiction. Therefore,
g is a nondecreasing function of a, proving part (2) of Theorem 4.

We will now prove that #¥(a, 8) = 0 for (a, 8) € 3%. Let (a, ) € 0%. Because g is
nondecreasing in a, ¥(o, B) = L(«/, B) for « = a, which implies that ¥V (a, B) = La(a, ).
Therefore, «/V(a, B) exists and &V(a, B) = Va(a, B) + GV(a, B). Also, because g is
nondecreasing in a, (@ — h, B) € % for h > 0. Using Dynkin’s formula of Theorem 1,

h
Ea_},’,g[ V(a, B + Zh)] - V(a —h, B) = Ea_-},,p [J' .MV((I —h+1t, B + Zz) dt] =0
0
because &V = 0 inside ¥. Therefore,

Via, B) = V(@ = h, B)
h

M, B) — Ve, B+ Z4)]
h

Va(a, B) = limpo

= limajo Eanp

= —-GW(a, B).

Since V(a — h, B) < L(a — h, B) and (a, B) = L(a, ), then V; (a, B) = Lu(a, B) = Vi (a,
B). Therefore, #/V(a, B) = Vi (a, B) + GWV(a, B) = V' (a, B) — Va (@, B) = 0. By Theorem 3,
s(a, B) = —V(a, B) is a regular function, implying that V(a, 8) < E.4[V(a + h, B + Z4)] for
any (a, B) € E and h > 0. Therefore, &/V(a, B) = 0, which implies that o/¥(a, 8) = 0 for (e,
B) € 8%. This completes the proof of part (7) of Theorem 4.

Note that for (a, 8) € ~ %, Va(a, B) = La(a, B) exists. Therefore, o/V(a, B) = Va(a, B) +
GV(a, B) exists. This completes the proof of part (6) of Theorem 4.

It remains to be proved that g is continuous. Suppose a, | a as n — . Since g is
nondecreasing, g(a) < lim,.» g(an) = K. Suppose K > g(«) and let B be such that g(a) < 8
< K. Then (o, B) € € but (a + h, B) € ~ € for h > 0. This contradicts the fact that € is open.
Therefore, g is right continuous.

We use Lemma 5 to prove that g is continuous.

LEMMA 5. Let a be fixed, a > 2y. Then o/V(a, B) — & L(a, B) is strictly decreasing in B for
8 N Y g
= g(a).

Proor. Suppose 8 =< g(a). Then L(a, B) = V(a, B) and Lq(a, B) = Va(a, B), s0
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1 (* Wa, - L,
Ve, B) ~ SL(a, B) =5 f (o, B+ )i}l))+ _yl)f(; B+,
=ljm V(a,,3+ﬂy)—L(a,,8+ﬁy)dy

2 B 'g(a)—1 y(1 +y)"/2

because V(a, 8 + By) = L(a, B + By) for B + By < g(a), or y =< B~ g(a) — 1. Therefore,

® W, z) — L(a, 2) B2

z— 8 PR dz

1
@V, B) = AL(e, B) =3 j

&(a)

where z = 8 + By. Since (e, z) — L(a, z) < 0 for z > g(a), &V(a, B) — & L(a, B) is strictly
decreasing in B for 8 < g(a).

Now suppose a, T a as n — o and let K = lim, .. g(an) < g(a). Suppose K < g(a) and let
Bo be such that K < B8y < g(a). Then both (a, 8o) and («, g(a)) are on the boundary of ¥ and
AV (a, g(a)) = SV(a, Bo) = 0. By Lemma 5, /W(a, g(a)) — o L(a, g(a)) < V(a, Bo) — LL(a,
Bo), which implies that &/L(a, g(a)) > L(a, Bo). Because L satisfies Conditions A, &/ L(a,
g(a)) = #L(a, Bo), which is a contradiction. Therefore, g is a continuous function of «. This
proves part (3) of Theorem 4 and completes the proof of that theorem.

Theorem 5 describes a uniqueness property of %. The proof follows from the fact that
#V(a, B) > 0 for (a, B) € ~ €. For proof, see Bartold (1976).

THEOREM 5. The optimal continuation region % defined by (3.1) is unique in the sense that if
&* is an open set satisfying (3.3) and if for every (a, B) € E, V(a, B) = Eop[L(a-, B;)], where 7
= T, is the first exit time from €* starting at (o, B), then €* = €.

3.3. Necessary and sufficient conditions for optimality. In this section we prove Theorem 6,
which gives a set of necessary and sufficient conditions for a function U and a region $* to be
the value function ¥ and the optimal continuation region ¥. Lemma 2 gave one set of such
conditions. Theorem 6 plays an important role in Section 4.

Given a measurable real valued function U defined on E = R* X R* and a subset * of
E, consider the following set of conditions on U and ¢*:

(1) #* is open set of the form €* = {(a, B): B > f(a)} where fis a continuous nondecreasing
function of a, and the first exit time 7 = 7,4 from %* starting at the point (e, B) is finite with
probability one P,z for every (a, B8) € E.

2) U(e, B) < L(a, B) and «U(a, B) = O for (a, B) € €*.

(3) Ula, B) = L(a, B) for (o, B) & €*.

(4) Ud@, B) = Lu(a, B) for (a, B) & €*.

If we replace condition (4) by condition (4'):

@) LU(a, B) = O for (a, B) & €*
then by Lemma 2 conditions (1)-(3) and (4’) imply that U = ¥V and ¥* = &. Therefore, to
prove Theorem 6, we show that conditions (1)—-(4) imply condition (4"). From previous sections
we know that ¥ and ¥ satisfy conditions (1)-(4). Therefore, conditions (1)-(4) are necessary
conditions for optimality. Theorem 6 states that these conditions are also sufficient.

THEOREM 6. Suppose U = U(a, PB) is a measurable, real valued function defined on E = R*
X R* and €* C E. Then U = V and €* = ¥ if and only if conditions (1)~(4) are satisfied.

ProOF. Let (a, B) be on the boundary of ¢*. Then (a — h, B) is in the closure of ¢* for A
> 0. Using Dynkin’s formula of Theorem 1,

A
EonpglU(a, B+ Z1)] — U@ — h, B) = Ea—-h,ﬂI: J’ AU(a—h+t, B+ Z) dt:| =0
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because LU = 0 inside ¥* by condition (2). Therefore,
U@, B) — U@ —h B
h

Eo-1p[U(a, B) — Ula, B + Z4)]
h

Ua(O(, B) = liIIlhl()

= limhw

= —GU(a, B).

Therefore, ZU(a, B) = Ud(a, B) + GU(a, B) = 0 for (a, B) on the boundary of €*.

By condition (4), U, = L, outside ¥*. We can show as in Lemma 5 that «/U(a, 8) — #L(a,
B) is strictly decreasing in 8 for fixed a, for 8 < f(a).

Suppose there is a point (a, 8) not in the closure of ¥* such that «/U(a, 8) < 0. Then ZU(a,
B) — A L(a, B) < —L(a, B). Also, B < f(a) implies that #U(a, f()) — ZL(a, f(a)) < LU(a,
B) — LL(a, B). Since LU(a, f(a)) = 0, then ~ZL(a, f(a)) < —ZL(a, B). By Conditions A,
A L(a, f(a)) < A L(a, B), which is a contradiction, so it must be the case that #/U(a, 8) = 0 for
each (a, B) not in the closure of ¢*. Therefore, #U(a, B) = 0 for every (a, 8) € E. That is,
condition (4') is satisfied. Applying Lemma 2, we see that U = V and ¢* = 4.

For all results whose proofs required that «/L(e, B) be decreasing in 8 for each fixed a,
corresponding results hold for a = ao if & L(a, B) is decreasing in B for each fixed a = ao.

4. Asymptotic expansions.

4.1. Introduction. Let L be a loss function of the form L(a, 8) = Bh(a) + ca where y =
1, ¢ > 0, h is nonnegative and twice continuously differentiable, and h has an asymptotic
expansion in « for large a, say h(a) ~ k_pa® + k_p1a P + ..., where k_, > 0, p > y and,
if y > 1, then y > (1 + p)/2. Also, &/L(a, B) is decreasing in B for each fixed a. Such a loss
function will be said to satisfy Conditions B. In this section we consider loss functions which
satisfy Conditions B.

We will find asymptotic expansions for the boundary g of the optimal continuation region
% and the value function ¥(a, B) for large a, when ¢ = 1; and for ¥(«, B) when c is small. The
basis of the technique used was developed by Chernoff (1961, 1965) in the context of problems
involving the Wiener process. The technique has also been applied to the sequential test of a
normal mean when time — o by Chernoff and Breakwell (1964) and to the one-armed bandit
problem in the sampling inspection context by Chernoff and Ray (1965). Related results for
the discrete time case are presented in Starr and Woodroofe (1969).

In Theorem 6 we used the conditions U < L, &/U = 0 inside ¥* and U= L, U, = L, on
d%* to prove that U and %* were the value function ¥ and the optimal continuation region
%. We will find functions w = w(e, B) such that &/w(a, 8) = 0 and approximate the boundary
conditions ¥ = L and V, = L,. We will then investigate how well this technique has worked
to approximate the value function ¥ and the boundary g of the optimal continuation region
%.

If in Theorem 6 U and L and the boundary f of ¢* are all differentiable and f’(«) > 0 for
every «, then the boundary condition Uu(a, f(a)) = Lq(e, f(@)) is equivalent to the boundary
condition Ug(a, f(a)) = Lg(a, f(a)) by the chain rule. It is the boundary condition Uz = Lg
which we will use to find the asymptotic expansions for ¥ and g. .

In 4.2 we illustrate the technique using a loss function L for which ¥ and g can be found
exactly. In 4.3 we derive the asymptotic expansions for ¥ and g for a more general case when
V and g cannot be determined exactly. In 4.4 we give the asymptotic expansions for ¥ and g
as the cost ¢ per observation tends to zero. We look at some related problems to which these
techniques apply in 4.5.

Define a function w = w(a, 8) by w(a, 8) = (8/2)’T'(a/2 — »)/T'(a/2). Since w(as, B:) =
E[07|a, Be], {W(as, Bt), t = 0} is a martingale. Therefore, E,g[w(a:, 8:)] = w(a, B) for each
t = 0, so that &/w(a, B) = 0 for every (a, B8). It is also possible to show o/w = 0 by computing
Aw directly.
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We will approximate the value function ¥ = ¥(«, B) by series expansions of the form

G-2) "G-»)

Via, B) = a,ﬁ“l———-——+ O Y . S—
o (44
F(i) F(E)

and the boundary function g = g(a) of the optimal continuation region % by series expansions
of the form Bn(a) = cia™ + - -+ + cha™.

4.2. A special case. Let L(a, ) = B*a(a — 2)™* + ca where ¢ > 0 and a > 2. Then y =
2 and h(a) = a~*(a — 2)"% From Section 2.3, #L(a, 8) = —B%a® — 8a + 8)a % (a — 2) *(a —
4)7! + ¢, which is defined and decreasing in B for a > 4. L satisfies Conditions B. Therefore,
if there is a function U = U(a, B) and a region #* which satisfy the conditions of Theorem 6,
then for « >4, U= Vand ¢* = 4.

Let V(a, B) = a1 B*T((a/2) — 81)/T(«/2) and Bi(a) = c1a”. We will approximate the
boundary conditions H(a, g(a)) = L(a, g(a)) and Vg(a, g(a)) = Lg(a, g(e)). Since I'((a/2) —
81)/T(a/2) ~ (a/2)™ for large @, we have V'(a, Bi(a)) ~ a1cf2®a”®™® and Vi(a, Bi(@)) ~
a18:c§712% "%, Also, L(a, Bi(a)) ~ cia® ™ + ca and Lg(a, B) ~ 2c1a”* for large a.

Since &L(e, B) > 0 in ~%, setting &/ L(a, B) = 0 and solving for B gives an upper bound for
3%. This calculation gives B8 ~ c'?a? suggesting that ¢; = ¢'/? and », = 2. Then the relation
V=L on 3% suggests 8, = 1 and a; = c'’>. When a, = ¢1 = ¢"/%, »; = 2 and &, = I, the largest
order terms in the expansions for ¥'(a, Bi(a)) and L(a, Bi(e)) are equal, as are the largest
order terms in the expansions for ¥ (e, B1(a)) and Lg(a, B1()).

If we equate the largest order terms in the expansions for ¥(a, B2(a)) and L(a, Bz(a)) and
in the expansions for Vi(a, B2(e)) and Lg(a, B2(«)), we find that & = a; =0, », = 1 and ¢, =
—2c2. Therefore, V(a, B) = 2¢*B(a — 2)! and Ba(a) = ¢%a? — 2ca.

Let €* = {(a, B) : B > B2(a)} and define a function U = U(a, B) by

U, =V, B) if (o B)E E*
=L(a, B if (a,B)& ¢*

Then by Theorem 6, U = ¥V and ¢* = &, for a > 4.,
For this special case, the solutions ¥ and B; are exact solutions rather than asymptotic
approximations.

4.3. The general case. Let the loss function L(a, B) = 8h(a) + a satisfy Conditions B. We

will show that the value function ¥ and the boundary function g of the optimal continuation
region % can be approximated expressions of the form

r(3-s) r(3-o)

—_—t e+ @y B ———
o o
P(f) P(E).

Br(a) = c1a™ + -+« + cha’”
where 8, = (—k+2)y(1+p—y) 'and v = (1 + p)y~' — k + 1 and ay, c, are appropriate
constants, fork =1, ... n.

Ve, B) = alﬁsl

THEOREM 7. Suppose the loss function L(a, B) = B h(a) + « satisfies Conditions B. Let V"
and B, be defined as above. Then there are constants a,, - -+, a, and ci, - - -, cn for which

V(e Bu(@)) = L(a, Ba(@)) = O(@™™"") and
Ve, Ba(@) — Ly(@, Ba(@)) = O P27y
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as a — «. The constants ay, +++, an, c1, * -+, C» may be computed by the algorithm
ap = —M_p42 ST
Cr = (—W_ps2 — arbp2%c¥ 1) D!
where
D = a18:(8: — 1)2%¢8% — k_py(y — Del?

M_y.2 is the coefficient of the order a™** term not involving ay in the asymptotic expansion for
Vo, Bu(@) — L(a, Br(@)) and w_y.2 is the coefficient of the order o~ ®*V/"~**2 term not
involving ay, or cy in the asymptotic expansion for Vi(a, Bx(@)) — La(a, Bi(c)).

The functions B, and V" are asymptotic expansions for g and V in the sense that g(a) =
Br(@) + O(a™*) as a — ® and V(a, B) = V*(a, B) + O(a™"*") for (a, B) € C as a — .

Proor. The proof will proceed in three parts. We first find the expansions V" and 8.,
then prove that the 8, form an asymptotic expansion for g, and finally prove that the V" form
an asymptotic expansion for V inside %.

PART 1. Finding the expansions V" and B.. We assume that 4, and », are known and
proceed to find the coefficients a;, and ¢, for k = 1, -.., n. This approach is taken only to
simplify the presentation. The expressions for §, and »: can be found simultaneously with
those for a, and c; by a procedure similar to that used in the special case of 4.2.

Let the asymptotic expansion of I'(a/2 + 8)/T'(a/2) for large a be denoted by (a/2)°[1 +
ki(®) a '+ ko(&at+ -+ -]

For the case when n = 1, ¢; and a; may be found as in 4.2, and it may be verified that Vi(a,
Bi(@)) — L(e; Bi(«)) = O(1) and Vs(a, B1()) — Ly(a, Bi(@) = O™ **/7) as a — . For the
induction step, suppose that there exist a;, « - -, a, and ¢y, - - -, ¢, such that V"(a, B(a)) — L(e,
Br(@)) = O(a™*") and Vi(a, Bn(e)) — La(a, Bu(a)) = O(a™ PV 71y a5 ¢ — o, Let U™ =
V™ — L. Then

U™ (a, Brsr(a)) = U™(@, Brr1(@)) + @ns1Brsr(a)™*
T(a/2 = 6n41)/T(a/2)
= U™(a, Bu(@)) + @n+1Br+1()™*!
T(0/2 = 80s1)/T(@/2) + O@@™).

The relation U™(a, Br+1(a)) = U™(a, Br(a)) + O(a™") follows from the equality of the terms
in the expansions of V"*'(a, B.+1()) and L(a, Bn+1(a)) which involve c,.1 and are of order
a™"*1; there are no terms in these expansions of order greater than o ™*' which involve cn.:.
By the induction hypothesis, U™(a, Bn(2)) = O(a™"*'), and since U™(a, Bn(a)) has an
asymptotic expansion in powers of &, M_py1 = lime.a” U@, Bn(a)) exists. Also,
Ant18r41(0)? "' T(/2 = 8,41)(0/2) ~ Gnerci*12%+107™* as o — . Therefore, if a1 =
—M_p1 274751 then U™ (a, Buri(@)) = O(a™). Similarly,

UR(a, Brs1(@) = UM, Brs1(@)) + Gns18ns1Bnsr(a)’+ !
T(a/2 = 8n+1)/T(a/2)
= Uia, Bn(®) + Upp(a, Bu())Crrra™*!
+ 8n18na1Brar(0) 7 T(0/2 = 8n1)/T(a/2)
+ O(a Py,

Now, Ugs(e, Bn(a)) Crr1@"™' ~ Depra™PHIMmH oy B (a)) ~ Wopyia (PTI/M=7+1 g4
@nr18n+1Br41(@)* T T (@/2 = 8na1)/T(0/2) ~ @iy 8nyy 2074117 1q =P D/D=141 Therefore, if
Cn+1 = (—w—n+1 - an+18n+128n+16'§n+1_1) D_l, thCH U;+l(a, ,Bn+1(ﬂ)) = O(Q_“p+l)/y)—n) as
a—> o,
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PART 2. Proof that the Bn(c) form an asymptotic expansion for g(a) as a — o. Suppose n
= 3 and define a function U” = U”(a, B) by U™(a, B) = V" X(a, B) + kB*T(a/2 — &)/
I'(a/2) where k is an arbitrary real number. We are suppressing the dependence on k in the
notation for U"(a, B) and for f, and g, defined below. If k = a,, then U" = V™.

Define the function f, by fu(@) = Ba-1(a) + en(k)a” where en(k) = (—W_n+2 — k8,2%c¥)
D7, and en(an) = cn. As in the proof of the induction step in Part 1, we can show that for any
k:

U fol(@) — Ly fo@) = O~ P+0/r-n+1)

as a — o, Since 8, < 0 for n = 3 and D < 0, ex(k) is decreasing in k. Thus, fn(a) < Bn(a) if k
> an, fu(@) = Br(a) if k = a, and fo(a) > Br(a) if k < an.

It may be shown (Bartold, (1976), Section 4.8) that for « sufficiently large, say a = ax, there
is a differentiable function g, = gn(a) satisfying Uj(a, gn(a)) — Lg(a, gn(@)) = 0 and ga(a) =
fo(a) + O(a™*') as a — o. Then for « sufficiently large, g.(a) < Ba(a) if k > a,, gn(a) =
Br(a) + O(a™) if k = a, and gn(a) > Ba(a) if k < a,.

Define the function 6, = 8.(a) by O:.(a) = U"(a, ga()) — L(a, gn(a)) for a = ax. By an
argument similar to the discussion in Part 1, it may be shown that 6.(a) ~ hn(k)a™" +
O(a™"") as a — o, where hn(k) = m_n+2 + k2% c}". Then h.(a») = 0 and h,(k) is increasing
in k. If K > a,, then h,(k) > 0 and ,(a) is positive and decreasing in « for « large, say a =
ax. If k < a,, then h,(k) < 0 and ,(a) is negative and increasing in a for a large, say a =
k.

Let L™(a, B) = L(a, B) + On(a) and " = {(a, B):8 > gn(a)}. It may be shown (Bartold,
(1976), Section 4.8) that U"(a, B) < L™(e, B) for (a, B) € ¥ and «a large, say a = ;. Also, for
a = o, U, gn(@)) = L(e, ga(a)), Up(a, gn(a)) = Lg(a, gn()) and by the chain rule U3 (e,
gn(@)) = L(a, ga(a)). Define a function U” by

U'le, B)=Ue, B if (o HE "
=LY B) if (BEF".

By Theorem 6, U™ is the value function and ¢" the optimal continuation region for L", for a
= a;. The infinitesimal operator of L" is given by &/L"(a, 8) = &L(a, B) + 07.(e). If k > a, and
a is large, say a = a;, then 0(a) < 0 and «L.(a, B) < #L(a, B). This implies that € C ¢" for
a = oy, by Lemma 3. If k < a, and a = ax, then 87(a) > 0 and &/L"(a, B) > A L(a, B). This
implies that " C ¥ for a = a;, again by Lemma 3. Then for « sufficiently large, g(a) =
Br-1(@) + en(k)a™ if k > a, and g(a) < Bn-1(a) + en(k)a™ if k < a,. This implies that g(a) =
Br-1(a) + en(@n)a’ + O(@’™*') = Bn(a) + O(@™*") as a — .

Therefore, the B.(a) form an asymptotic expansion for the boundary function g(a) of the
optimal continuation region % as a — o,

PART 3. Proof that the V" form an asymptotic expansion for V inside € for large a. We have
proved that g(a) = B.(a) + O(@™*') as a — o, where g is the boundary of ¥. Let ¢n(a) =
L(a, g(a)) — V™(a, g(a)). As with 8,(a), it may be shown that ¢.(a) = O(a™™*') as a — .
Let (a, B) € ¥, so that B > g(a). Let 0 = g,z be the first exit time from %, the optimal
stopping rule, starting at the point (@, 8). Because &V = 0, by Dynkin’s formula of Theorem

’

EG'B[ Vn(ath Bﬂ)] - Vn(a’ B) = Ea,B[ J MV”(%, Bt) dt] =0.

Therefore, V(a, B) = Esp[L(as, Bo)] = EuplLllco, g(aw))] = Eap[V"(a0, glaw))] +
Eupldn(as)] = V™(a, B) + E.p[¢n(as)]. Because ¢n(a) = L(a, g(a)) — V"(a, g(a)) = O(a™?)
as a — oo, there is an aj, such that | ¢n(a) | < | pn(an) | for a = an. Let ap > 0 be given so that
we consider only a = a. Since | ¢n(a) | is bounded for ap < a < an, | pn(a)| is bounded for
every @ = ao. In a similar fashion, we can show that |a? pn(as)!|, |a" *¢n(es)| and
| @" ' ¢n(a,) | are bounded for a = ao. Since a" 2¢a(a) = 0 as a — o we have a” *¢pn(a,) =

0 as a — . Therefore, by the dominated convergence theorem, a” 2E,g[¢n(a;)] — 0 as
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a— o and a” ' E ,g[¢n(a,)] is bounded. Therefore, V(a, B) = V™(a, B) + O(a™™*") for (o, B)
€ ¥ and « large. This completes the proof of Theorem 7.

As an example, note that a continuous time analogue of squared error loss when estimating
the mean A of the normally distributed random variables X;, Xz, - - can be given by L(e,
B) = B(e — 2)"* + a — 2 for a > 2, assuming unit cost ¢ = 1 per observation. Using this loss
function L and going through four steps of the procedure described in Theorem 7, we find

that
1
1"2__ I‘g+l
2 2 1 22 22 l «
Vi(a, B) = 2282 4o_% g L
D=2y A R T
2 2
and
13 57 165
=g — a4y — ——
Bi(a) = a ke +4a TR

The techniques of Theorem 7 can be applied in the case of slightly more general loss
functions L. For instance, suppose L(a, B8) = B'h(a) + ¢(a) satisfies Conditions B, but with
¢(a) replacing a as the cost of observation, where ¢ is nonnegative, differentiable, increasing,
¢(a) = o as a — 0, and ¢(a) has an asymptotic expansion in a. For example, ¢(a) could be
ca, where ¢ # 1. Then we replace the cost of observation « by the asymptotic expansion for
¢(a) in finding the asymptotic expansions for ¥ and g.

We can also apply the same techniques to loss functions of the form L(a, 8) =" hi(a) +
oo + B"™h(a) + ¢(a) where y; and A; satisfy the conditions of Section 4.1 fori=1, ..., n, ¢
is as described above and y; > y2 > - -+ > y; > 0. This sort of loss function appears when, for
instance, we try to estimate at the same time both the mean A and the variance 87! of the
normally distributed random variables X;, Xz, -«

4.4. Expansions as c tends to zero. Consider the loss function L(a, 8) = Bh(a) + ca
where L° satisfies Conditions B. Let L(a, 8) = L'(a, 8). Then L%(a, 8) = cL(a, B.) where 8.
= Bc~'". Let V° be the value function for L° and let ¥ = V', Then V(a, B) = c¥(a, B.).

Let V(a, B) = cV"(a, Bc). It may be shown (Bartold, (1976), Section 4.5) that V“(a, B) —
V Xa, B) = c[V(a, Be) — V7(a, Bc)] = O(c*V/*#79+1) Also, the optimal boundary function
g°(a) for L(a, B) is approximated by B5(a) = ¢/"Bu(c) = ¢/* Y1 c;a” where ¢; and v;, i = 1,
.+, n, are as determined in Theorem 7.

An example involving arbitrary cost ¢ > 0 per observation was discussed in 4.2.

4.5. Some other problems in sequential estimation. In this section we describe some
additional problems to which the techniques of 4.3 apply. For each of these problems, the
statement of Theorem 7 is valid, except that the expansions V" of 4.3 are replaced by
expansions appropriate to the particular problem. The exponents &1, -, 8, and v, -+, ¥,
remain as indicated in Theorem 7, but the coefficients a;, ---, @, and ¢, +-+, ¢, will be
different for different problems.

Suppose that the random variables Xi, X3, - - - are i.i.d. exponential (6) with density f{x | §)
= fe ™% Ijo)(x). If the prior distribution of 6 is I'(a, B), then the posterior distribution of 8
given Xi, « -+, X, is I'(atn, Bn) where ap, =a +n, 8o =B+ S, and S, = X; + --- + X, is the
sum of »n i.i.d. I'(1, §) random variables.

The analogous problem in continuous time is to consider the process (a:, 8:) where a; = a
+tand B: =B + Z, fort = 0, Z, has a I'(¢, 9) distribution conditionally given 6 and 6 has a
T'(a, B) distribution. Then {(a;, B:), t = 0} forms a strongly measurable standard Markov
process with infinitesimal operator given by

B+ By) — fla, B)
w1+ y”

Af(@ B) =fi(e B) + f [ dy.
0
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The equation #f(a, 8) = 0 is solved by functions of the form

F —_
fla B = e

The case of gamma I'(A, #) random variables where A is known is a simple extension of the
exponential case.

The methods of Section 4 can also be applied to three additional normal cases, the first
involving the univariate normal distribution with known mean, unknown variance. The second
case is that of the k-variate normal distribution, Nx(A, 1/81:), with mean vector A and
covariance matrix 1/61,, where I, is the k X k identity matrix, A and 6 both unknown. The
third case involves the k-variate normal distribution, Nx(A, 1/ W), having mean vector A and
covariance matrix 1/6 W, where A and the positive definite matrix W are known and § > 0 is
unknown.
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