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ISOTONIC, CONVEX AND RELATED SPLINES!

By IaAN W. WRIGHT AND EDWARD J. WEGMAN
University of North Carolina

In this paper, we consider the estimation of isotonic, convex or related
functions by means of splines. It is shown that certain classes of isotone or
convex functions can be represented as a positive cone embedded in a Hilbert
space. Using this representation, we give an existence and characterization
theorem for isotonic or convex splines. Two special cases are examined showing
the existence of a globally monotone cubic smoothing spline and a globally
convex quintic smoothing spline. Finally, we examine a regression problem and
show that the isotonic-type of spline provides a strongly cansistent solution. We
also point out several other statistical applications.

1. Introduction. A good deal of literature concerning statistical inference
under order restrictions has appeared in the last 15 years. Barlow et al (1972)
presents a rather convenient source book for this material. The main body of this
work can be conveniently divided into two areas: inferences concerning functions
on a finite or countable set and inferences concerning functions on the real line or
intervals in the real line. It is with this latter group of inferences that we are
concerned.

Examples of functions of interest would include regression functions, probability
distribution and density functions, failure rate functions and functions related to
spectral analysis such as spectral densities, gain and transfer functions and so on. It
is often known that these functions are isotone (i.e., order-preserving) and, hence,
should be estimated with a function that preserves the order. See Robertson (1967),
Wegman (1970a, b), Barlow, Marshall and Proschan (1963) and Marshall and
Proschan (1965) for examples of such estimation problems. A characteristic feature
of these isotonic estimators is that they are step functions. In most of these
situations, smoothness is frequently just as desirable as isotonicity so that while the
step function may be isotone, its lack of continuity prevents it from being widely
accepted as a satisfactory estimator.

More recently, there has appeared a good deal of literature concerning the use of
splines in statistical estimation problems. See Wright and Wegman (1980) for a
review of some of these efforts. While a spline fit satisfies the requisite smoothness
properties, it may not be isotone as desired. In this present paper, we present a
combined approach. For technical convenience, the class of partial orders is
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restricted to those compatible with the additive group of real functions. Our
framework is general enough to encompass estimation problems for monotone, or
convex or positive functions and other related families of functions.

2. Partial orders and isotonic splines. In this paper we shall be dealing only
with abelian groups of real functions which can be added pointwise.

DErINITION 2.1.  The relation, >, on the group, G, of functions is required to
satisfy the following conditions:

O f>f

(i) f > g, g > h implies f > h

(iii) f > g implies f+ h> g + hforallh € G.

(iv) f> 0, g> 0 implies f + g >0

(v) f> g and g > fimplies f = g.

A group satisfying (i) to (v) is called a partially ordered group. If condition (v) is
dropped, G is called a preordered group. The set, P = { g € G: g > 0} is called the
positive cone of the order, > . The set, P, defines and is defined by the partial
order, > . ’

The partial order, >, defined here is essentially distinct from the partial order
which usually occurs in papers on isotonic methods—(cf. Barlow et al (1972,
Chapter 7)). In the standard treatment, a partial order, say, >, is induced on the
real line. A function f is said to be isotone if it preserves the order. That is, f is
isotone iff f(x,) > f(x,) whenever x,>x,. Two functions may both be isotone and
yet not comparable. What is true, however, is that the set of isotone functions
forms a positive cone as just defined. We have in mind an essentially different use
of the partial order, > .

We let L, represent the set of functions on [0, 1] which are Lebesgue measurable
and square integrable with the usual Banach space norm. We let W,,, m > 1, be the
set of functions on [0, 1] for which f, j = 0,1, - - ,m — 1 are absolutely continu-
ous and f is in L,. This is a Hilbert space with inner product {f,g)=
PN SfO()gYN(t)dt. Let C*, k = 1,2, - -, 00, be the set of all functions on [0, 1]
which are k-times continuously differentiable, and finally we let D be the ordinary
differentiation operator, i.e., Df(¢) = df/dt.

In order to define a suitable positive cone, we let F be a continuous linear map
of W, into W, which commutes with the differentiation operator, i.e., D(Ff) =
F(Df) for all f € W,, ¢ W,,_,. We define a partial order, >, on W,, by f> 0 if
and only if (Ff)(¢) > 0 for every ¢t € [0, 1].

There are several operators, F, of particular interest.

ExampLE 2.1. If F is the identity map, the set, P = { g € W,: g > 0} is just the
set of positive functions in W,,.

EXAMPLE 2.2. If F = D, P is just the set of monotone nondecreasing functions
in W, Similarly, if F = — D, P is the set of nonincreasing functions.
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ExampLe 23. If F= D% P is the set of convex functions in W, while
F = — D?yields the set of concave functions.
ExaMPLE 2.4. If F is defined by
Ef(t) = Df(v) 0<t< M
= -Df(t) M<t<l,
then P is the set of unimodal functions with mode M.

ExampLE 2.5. If F is defined by
Ff(ty = =D*(r) t, <t<t,
= D¥(t) O0<t<tort, <t <l
then P is the set of functions which are concave on [¢,, ¢,] and convex elsewhere.
The applications of these sample characterizations should be abundantly clear.

In principle we desire to find an estimating function which belongs to P. Clearly,
in general, there will be many possibilities. In order to ensure that our estimate is
also as smooth as reasonably possible, however, we select a function satisfying the
following criterion:

Minimize [§(f™(¢))* dt subject to
Q.1 @) f € W,, Fftf) >0 forevery 1 € [0, 1]
®) e < (1) < By i=1,2--,n

Constraints (2.1a) are, of course, simply that f € P. The second constraint (2.1b)
deserves a bit more comment.

Suppose our data points are {(4,,); i = 1,- - -, n}. A function f in W,, which
coincides exactly with a polynomial of degree 2m — 1 on each interval [¢, ¢;, ] and
which minimizes [3(f"(¢))* dt is called a polynomial spline of degree 2m — 1 and
thes,i=1,2,- - -, n are the knots of this spline.

A well-studied problem in approximation theory is to find a solution of the
following optimization problem:

Minimize [§(f"(¢))* dt subject to
2.2) @few,
(b)f(tl) =yi9 i = 17 27 ttt,n.

The solution f, called an interpolating spline is a spline as just defined.
In contrast the problem:

Minimize S7_,(y; — f(2,))* + A fd(f™(2))* dt
2.3) with A > 0 fixed and subject to (a) f € W,

also has a spline function solution called a smoothing spline. See Kimeldorf and
Wahba (1970) or Cogburn and Davis (1974) for details.
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A smoothing spline intermediate between (2.2) and (2.3) solves the following
problem:

Minimize [3(f™(¢))* dt subject to
2.4) o < ft) < B, i=1,2-,n

See Attéia (1968) for more details.

We note here several closely related papers. The first by Copley and Schumaker
(1978) (see also Daniel and Schumaker (1974) and Mangasarian and Schumaker
(1969)) considers the problem, cast in our notation

Minimize [(Lf())* dt subject to
2.5) @f ew,
(b) a; < Ff(tl) < Bi’ i= 1’ 2’ ttc,n,

where L is a linear differential operator of degree m and F is now a bounded linear
functional on W,, (rather than the continuous linear map we defined). Copley and
Schumaker give existence and characterization results. Our approach, while having
some similarity to theirs has several distinctive features including our characteriza-
tion of sets of isotonic functions by F and, of course, that we are solving a different
problem.

The second closely related paper is that of Wahba (1973) in which she considers
not a finite number of constraints of the form of (2.4), but a continuous constraint
of the form a(?) < (n,, f), t € [0, 1] where the {n,} are elements in W,,. Again,
Wahba’s problem is somewhat different in character from the one we solve here.

In closing this section, we comment that Problem 2.1 is the isotonic version of
Problem 2.4. Our results show that a solution of (2.1) exists and is a polynomial
spline of degree 2m — 1. In general, we would also like to solve an isotonic version
of (2.3). Problem 2.1 is solved by present methods because the objective function is
a norm of a Hilbert space. While Anselone and Laurent (1968) have shown that the
objective function in (2.3) can be cast into the form of a Hilbert space norm, the
carryover of our present methods is not obvious and we do not attempt to solve an
isotonic version of (2.3) in the present paper.

3. A restricted isotonic spline. We consider first a restricted problem. Let F be
a continuous linear map of W,, into W, which commutes with differentiation.
Denote the partial order defined by F on W,, by >, and assume there exists a
function g € W,, satisfying o; < g(¢;) < B;fori = 1,2,- - ,n with (Fg)(z) > ¢ >0
for every ¢ € [0, 1]. The continuity of DF implies there exists a d > 0 such that

I DEf|| L, < d|ID"f||L, for every f € W,

Take N > d?|D™g||>L,/ €% In what follows, we shall assume n > m.
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THEOREM 3.1. Under the conditions just given, the problem:

minimize [{(f™(¢))* dt subject to

@few,

(€R)) ®f>0
© o < f(t) < B i=1,2,--,n
(@ FfG/N) > ¢, j=0,1,2---,N,

has a solution which is a polynomial spline of degree 2m — 1 with possible knots at t,,
i=12--+-,nandatj/N,j=0,1,---,N.

In order to establish Theorem 3.1, we need to establish some preliminary results.
The straightforward proof of Lemma 3.2 is omitted.

LemMMa 3.2 ||D"‘f||LZ < ||D"‘g||L2 and Ff(j/N) >¢ j=0,1,---,N together
imply that f > 0.
We next define

A={wyeEW,i=12" - ,m lup f> = —f(t) foreveryf € W,,)
A= {0, €EW,,i=12"---,n: v, f)=f(t) foreveryf € W,}
and finally
Ay = {W,EW,,i=0,1---,N:{(w,f>=—Ff(i/N) foreveryf € W,}.
Take L = A, U A, U A; and define p: L — R by

p(u) = —q u € A
p(v) = B v € Ay
p(w) = —e w; € A,

We define a convex subset C of W, by
C = {f€ W, foreveryl € L,{l,f) < p()}.

That is to say, C is just the set of functions in W,, which satisfy the constraints. Let
T be a continuous linear map of W, onto L, and suppose Ker T is of finite
dimension. (In the case of the application we have in mind, T = D™ so that both
conditions are trivially satisfied.) We thus have in mind finding s € C satisfying
| Ts|| = min;c || Tf||. Such an element s will be called the generalized spline
function relative to T in the set C.

Next let C = (feW,,:{Lf><0 for every | € L}. We posit four structure
axioms and, in turn state two theorems.

Hl. ¢ N (Ker T) = {0}

H2. The subset L c W,, is weakly compact and the map p is a continuous map

of L into R.
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H3. C n (KerT) is empty.
H4. I = {f€ W,: for every /, {I,f ) < p(I)} is not empty.
Under H1, Attéia (1968) proves Theorem 3.3.

THEOREM 3.3. Under H1, there is at least one spline function relative to T in the
convex set C.

We refer the reader to Attéia for proof. If, in addition, we consider the remaining
axioms, we have the following result due to Laurent (1969).

THEOREM 3.4. Under H1 — 4, the element s € C is a spline function (relative to

T in C) if and only if
— T*Ts € CC(F,)
where
F, = (l€L:sy=p(l)

and EE‘(FS) is the smallest closed convex cone with vertex 0 containing F, and T* is
the adjoint of T.

We are now in a position to apply Lemma 3.2 and Theorems 3.3 and 3.4 to the
present case.

ProOOF OF THEOREM 3.1. At the optimum s, ||[D™s|,, < ||[D™g]|,, and so by
Lemma 3.2, the spline function must satisfy all the constraints of L, and hence
s> 0. We need only to verify axioms H1 — 4 to guarantee the existence of s via
Attéia’s existence theorem and its characterization via Laurent’s characterization
theorem.

In our case , T = D™, so that Ker T is the set of polynomials of degree m — 1.
Every function in C is zero at all points ¢;,, i = 1,2,---,n. Hence as soon as
n>m— 1, Cn Ker T = {0}. Hence HI holds for n > m. For the L described, L
is finite hence compact in any topology. This implies p is continuous so that H2 is
satisfied.

Next we consider H3. C is the set of functions which satisfy the constraints,
while Ker T is the set of polynomials of degree m — 1. Hence if C N (Ker T') is not
empty, then an optimal solution, s, independent of the theorems of Attéia and
Laurent, will be a polynomial of degree m — 1. A polynomial of degree m — 1 is
trivially a polynomial spline of degree 2m — 1. Hence, we may assume C N (Ker T')
is empty.

Finally, I = {f € W,,: I, f> <p(l) for every I} contains the function g of the
conditions to Theorem 3.1 so that I is not empty. Thus provided C N Ker T is
empty, the characterizing Theorem 3.4 applies. Thus, — T* Ts belongs to the closed
convex cone generated by all / € L corresponding to active constraints. In other

words,
T*Ts = —2,c.41

with d, > 0 and 4, = 0 when / is not an active constraint. Recall that all / € L are



ISOTONIC, CONVEX AND RELATED SPLINES 1029

point evaluation functionals. Thus T*Ts is zero at all points except those corre-
sponding to active constraints (which become knots). Between knot points, 7*Ts =
0, i.e., D?"s = 0. Hence, s is a polynomial of degree 2m — 1 between knot points.

0

4. The general isotonic spline. We have already mentioned the general isotonic
spline with possibly an infinite number of knots able to occur anywhere. The
following result makes the details precise.

THEOREM 4.1. Let > be the partial order defined by F: W,,— W,. If there exists
g € W,, satisfying

Fg() > 0 ) t €[0,1]

and

1,2’...”1,

o < g(n) < B i

then the problem:
Minimize [Yf(1))? dt subject to

4.1 (@ f>0;(b) o < f(z) < B; i=12---,n

has a solution which is a polynomial spline of degree 2m — 1. Knots are located
(potentially) at data poinis, t,, and, possibly at a countable number of points elsewhere.

Proor. The proof follows the lines of argument for Theorem 3.1. We take
T = D™ and define

Ay = {w, €W, 1t €[0,1]: {w, f> = Ff(1) forevery f € W,,}.

Let p(w) = 0 for all w € A,. The key requirement that A, be weakly compact holds
in this case and p is continuous. The remainder follows as before. [J

A remark on the potentially infinite number of additional knot points in order.
Intuitively, the additional knot points are needed to force the spline to satisfy the
inequality Ff(¢) > 0 or more colorfully to prop the spline up where it sags.
Theorem 4.1 characterizes the general isotonic spline, but does not specify where
the knots are to be placed. We make further comment on computations in Section
7. Intuitively, however, we would not expect to need the full complement of
potential knot points. We would only need a finite number where the spline would
tend to go wrong, the others being inactive. Hence in actually computing an
isotonic spline, it would only be in the most pathological cases that more than this
finite number are needed.

5. Two examples. Passow (1974) and Passow and Roulier (1977) presented
some results concerning monotone and convex splines. If (¢,y,), i=1,2,---,n
represents the data points, they were interested in obtaining piecewise monotone or
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convex interpolating splines. Theorems 3.1 and 4.1 may be used to extend these
results. We assume ¢, <, < - -+ <1,

THEOREM 5.1. Let y, <y, < - - - <y,. (a) With arbitrarily small error bounds,
there is a globally monotone cubic smoothing spline satisfying (3.1) for m = 2 with
possible knot points at t,i=1,2,--- ,nand at j/N,j=0,1,-- -, N where N is
as defined in Section 3.

(b) With arbitrarily small error bounds, there is a globally monotone cubic smooth-
ing spline satisfying (4.1) for m = 2 with possible knot points at t,, i = 1,2, -+ ,n
and at a countable number of points elsewhere.

PrOOF. We need establish that there exists a suitable g satisfying the assump-
tions of Theorem 3.1. Let

$(2) = exp(1/(£* — 1) |1 <1
=0 lt] > 1.
o(?) is known to be infinitely differentiable on the real line and hence ¢ € W,
m > 1. Let ¢,(8) = [* () du. ¢, is in C* and it is clear that
(D=0 t< —1
=k — [\ ¢(u) du t>1

and, of course, D¢,(¢) > O for all z. When the conditions of this proposition hold,
adding together suitably scaled translates of ¢, will give a function f, € C* with
Df\(t) > O for every ¢ which satisfies fi(¢) =y, i = 1,2, - -, n. If ¢ is the error
bound on y;, the function g,(¢) = f,(¢¥) + e, ¢t € [0, 1] satisfies the hypotheses of
Theorem 3.1 and (4.1) with F = D and m = 2. []

THEOREM 5.2. Let
Yiv1 — )i Yi+2 ™ Vit
Lyl — 4 Liva — 4

fori = 1,2,---,n—2.

(a) With arbitrarily small error bounds, there is a globally convex quintic smooth-
ing spline satisfying (3.1) for m = 3 with possible knot points at t,, i =1,2,- - - ,n
and at j/N,j=0,1,- - -, N where N is as defined in Section 3.

(b) With arbitrarily small error bounds, there is a globally convex quintic smooth-
ing spline satisfying (4.1) for m = 3 with possible knot points at t, i =1,2,- - -, n
and at a countable number of points elsewhere.

PrOOF. From the function ¢(¢) of Theorem 5.1, we define
o,(2) = fﬂw[fx_w(p(u) du] dx.

When the conditions of the theorem hold, adding together suitably scaled trans-
lates of ¢,(¢) will give a function f, € C* with D?f,(¢t) > 0 for all ¢ which satisfies
L) =y,i=1,2,---,n. If ¢ is the maximum error bound on the y;, the function
g,(t) = £,(t) + (e1?/2), t € [0, 1] meets the assumptions of Theorems 3.1 and 4.1
with F= D?and m = 3. []
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6. Statistical interpretation. In the foregoing sections, we describe the isotonic
spline purely in terms of its mathematical character. We now turn to its statistical
nature. We consider a statistical model of the form

(6.1) Y(8) = f(1) + e(1), t €[0,1],

where Y(f) is an observation at location ¢, f(¢) is a function to be estimated and e(¢)
is an error. Of course, [0, 1] can be replaced with any finite interval. We have in
mind to discuss several possible error structures.

In our first type of error structure, we consider a data set (¢, Y(3)), i =
1,2, - - - such that the # are dense on the interval [0, 1] and such that e(z;) form an
i.i.d. sequence of independent errors. We assume, first of all, that the support of the
common density of e(?) is a finite interval, say [ — e,, e,] 'containing 0. There is no a
priori need to consider the density to be symmetric or with mean 0. We note that
Y() + e, = B; and Y(,) — e, = o; forms a 100% confidence interval for f(¢,). We
have the following lemma.

LeMMA 6.1. Suppose the model (6.1) holds with e(t),i = 1,2, - - a sequence of
i.i.d. random variables with support as described above. Suppose further that {t;: i =
1,2, - - }is dense in [0, 1]. Then for n > 0 and any interval (¢, t'), there is a t; and ¢,
in (¢, t") such that

B; — f(t,) < m almost surely

and
f(t) = o; < m almost surely.

ProOOF. We consider the subsequence of /s falling in the interval (7, t'). We
relabel this sequence # and we note that the subsequence, e(?;), of random errors
corresponding to the ¢, € (¢, ') again forms an i.i.d. sequence. Consider the interval
(—e,, —e, + m). Since the support of e(f) is (—e,, e,), the set (—e;, —e, + 1) has
positive probability. Hence with probability one, for sufficiently large i, e(s) €
(—e,, —e; + n). Thus

Bi=Y()+e = ft)+e(t)+e <flt;)—e +n+e = ft;) +n.

Similarly for ;. []
We may now state a consistency theorem.

THEOREM 6.2. Let F = D be the operator, so that we have a monotone nonde-
creasing spline. Suppose further that o;, B; are as defined above and that {t;} are dense
in [0, 1). Finally let f € W,, be nondecreasing, then s,, the isotonic spline based on
(t Y(2)), -« +, (2, Y(2,), exists and

s, — f almost uniformly with probability one.

Proor. Since a; < f(1;) < B; w.p. 1, fis the g needed to guarantee the existence
of s, in Theorems 3.1 and 4.1.

Let € > 0 be given. Since f is continuous on [0, 1], f is uniformly continuous.
Corresponding to ¢/3 there is a § > 0 such that |f(x) — f(¥)| <e/3 whenever
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|x — y| < 8. We divide [0, 1] into consecutive intervals, I;, of length & except for
possibly the last which may be shorter than 4.

Consider the interval /; and let its endpoints be x; < x; . Since both f and s, are
nondecreasing on [x;, x;,],

(1) = 5,1 < max(f(5.1) = 5,5, su(41) —f(x)}, 1 €L
Consider first f(x;, ;) — s,(x)).
51 = 5(5) < S = f(x) + fx) = s,(x) < 3
+f(x) = 5,(x),

since |x,, — x;| = 8. Now s5,(x;) > 5,(t;) > o; for every ¢, < x;. For the interval,
(x;,_15 %], we may choose an i such that ; € (x;_,, x;] and f(£) — «; <e&/3. This
happens with probability one by Lemma 6.1. Thus, since s,(x;) > s5,(¢) > «;

f() = s.(x) < f(x) = 5,(8) < fx) — o < flx) — f(z)
+f(t) — .
But f(x) — f(1) < /3 since |x; — ] < |x; — x;_,| = & and f(£,) — o, <e&/3 with
probability one by above. Hence f(x;, ) — s,(x;) < 3¢/3 = ¢ with probability one.
Similarly s,(x;, ;) — f(x;) < e with probability one so that for n sufficiently large

(1) — s,(0)] < e t € I,wp. L

Clearly this convergence holds for all /; except possibly the first and last, hence,
except on a set of measure less than 28. The almost uniform convergence is clear.

0

This result may be extended by the following corollary.

COROLLARY 6.3. Suppose the operator F in Theorem 6.2 is replaced by any of those
in Examples 2.2, 2.3, 2.4 or 2.5, and suppose Ff(t) > 0. If the remaining conditions of
Theorem 6.2 hold, then s, exists and

s, — f almost uniformly with probability one.

Proor. If F = — D, the result follows in an obvious parallel to Theorem 6.2. If
F = D?, the result follows since f and s, will be first nonincreasing and then
nondecreasing. The results of Theorem 6.2 can be applied to each part individually.
Similarly for the remaining cases. []

In the foregoing results, the convergence is uniform except possibly near the end
points 0 and 1. We remark here that by suitably regularizing the behavior of s,
outside the interval (min #, max #,) we can extend the uniformity of convergence to
the entire interval, [0, 1]. This can be done in several obvious ways which we shall
not detail here.

The regression model with e(f) having bounded support may be viewed with
suspicion by those used to conventional models with normal errors. However,
much data these days are collected with digital instrumentation which almost
implies bounded range on the errors. We also point out that at any given data
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point, (¢, Y(t)), the error bounds «;, 8; do not change as a function of n, i.e., we
are not supposing increasingly accurate bounds.

Of course, the fact that the support is bounded allows us to give 100% error
bounds which implies that f(#;) always falls in (;, 8;), which, in turn, guarantees the
existence of s,. If the support is unbounded, as with normal errors, finite 100%
error bounds are impossible. A natural suggestion is to replace the 100% error
bounds with a% bounds for some a < 100. The problem is that, with probability
one, f(¢,) will fall outside the error bounds for some 7, and, hence, we are not even
guaranteed the existence of a sequence of splines much less their consistency.
Hence, the consistency in the style of Theorem 6.2 for unbounded support is a
moot point. .

Not all is hopeless, of course, in this case. For large sets of data, about a% of the
intervals are not going to contain f(f) and hence may even be inconsistent with
isotonicity. A practical procedure may be to discard a percentage of the bounds
(say no more than a%) which prevent us from fitting an isotone spline, and use the
remainder to fit the spline. Alternatively, we could borrow a leaf from Barlow, et
al, (1972) and simply “pool adjacent violators”. Hence extend the length of interval
for a violating interval by “averaging” with an adjacent nonviolating interval.

We may also note that the situation where there are many data points is not
really the optimal situation for use of the isotonic spline anyway. If there is much
noisy data, a conventional smoothing spline is appropriate. And of course in a
noise-free data situation, an ordinary interpolating spline is appropriate. It is in the
context of a relatively sparse data set that the added knowledge of isotonicity will
allow for the relatively largest improvement in efficiency.

7. Concluding remarks. Sections 2 through 6 give existence, characterization
and statistical properties of isotonic splines. Questions of the computation of such
splines can be approached through a quadratic programming approach. The work
of prime interest here is the work of Kimeldorf and Wahba (1971); but also related
are the papers of Ritter (1969), Anselone and Laurent (1968) and Wahba (1978).
The thrust of Kimeldorf and Wahba (1971) is to give explicit, although rather
complicated, algorithms for constructing both interpolating and smoothing spline.
In fact, they give not only algorithms, but a general approach, based on reproduc-
ing kernel Hilbert spaces, for developing such algorithms. In Section 6 of their
paper, they show that problems of type of (2.1) with linear inequality constraints
may be solved as a quadratic programming problem. (They give a set of basis
functions in that paper which is not particularly easy to use computationally. More
favorable basis functions are given in Wahba (1978).) So long as there is a finite
number of linear inequality constraints, their method is applicable and so restricted
isotonic splines as in Section 3 of this paper may be computed directly. The key to
being able to do this is characterization of isotonicity by the function, F, so that
isotonicity becomes simply an additional finite set of linear inequality constraints.

The generalized isotonic spline has possibly an infinite number of knot points,
that is, of linear inequality constraints. Moreover, Theorem 4.1 in contrast to
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Theorem 3.1 does not specify the location of the constraints. Thus the results of
Section 6 of Kimeldorf and Wahba (1971) do not apply directly to the computation
of the generalized isotonic spline. As pointed out in Section 4, the role of the
additional knot points is to force the spline to be isotonic where it may not
naturally be so without the additional knots. In general, unless there is a very
pathological situation, a finite number of constraints will do to make the spline

isotone.

An approximate isotonic spline may be computed by adding a finite number of
knot points, say j/N, j=1,2,- -, N and requiring that Ff(j/N) >0, j =
1,2,- - -, N.In case F = I, this requirement would become simply f(j/N) > 0,
j=12---,N. If F= D, we simply have f'(G/N) > 0 which could be dis-
cretized as f(j + 1)/N) — f(j/n) >0, j=1,2,---,N—1 and similarly for
other F’s. Then a numerical solution to the problem with discretized constraints is
obtained by the quadratic programming approach of Kimeldorf and Wahba. In
practice, if a solution with discretized constraints failed to satisfy isotonicity, one
would add discretized constraints where the approximate solution was inadequate.

We note in closing, that if the j/ N are sufficiently dense, then they will closely
approximate the knot points specified by Theorem 4.1. This suggests that as the
constraints are discretized more finely, the approximate solution will converge to
the generalized isotonic spline (cf. Wahba (1978)).
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