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CANONICAL VARIABLES AS OPTIMAL PREDICTORS

By V. J. YOHAI AND M. S. GARCIA BEN
Universidad de Buenos Aires

Let X= (X}, -, X,) and Y =(Y},- - -, Y,) be two random vectors.
Given any random vector Z, let Y% be the best linear predictor of Y based on
Z. Let p be any natural number smaller than m. We consider the problem of
finding the p-dimensional random vector Z = (Z,, - - - , Z,)’ where each com-
ponent Z; is a linear function of X, which minimizes the determinant of
E(Y — Y3XY — Y2). We show that Z,,- - -, Z, coincide with the first p
canonical variables (except for a nonsingular linear transformation). We also
show that the square of the (p + 1)th canonical correlation coefficient
measures the relative improvement in the prediction of Y when p + 1 Z;’s are
used instead of p.

1. Introduction. Let X = (X, --,X,) and Y=(Y,,---,Y,) be two ran-
dom vectors and assume m < n. Assume also that E(X) = E(Y) = 0 and let

( 2ll 2|l2 )
Zh Zp
be the covariance matrix of (X’, Y'Y, where X, and X,, are nonsingular matrices.

Classically, the problem of canonical correlation consists of finding vectors
b, :-,b,inR™andc, - -,c,in R"such thatif ¥, = b; Xand W, = ¢; Y then

(i) V;, W, are the two linear functions of X and Y respectively, with variance 1,
which have correlation coefficient with maximum absolute value.

(i) for i < m, V, is the linear function of X with variance 1, uncorrelated with
Vi + -+, Vi_;, and W, is the linear function of Y with variance 1, uncorrelated
with W, - - -, W,_,, such that the pair (¥}, W) has a correlation coefficient with
maximum absolute value.

(iii) for i > m, W, has variance 1 and is uncorrelated with W, - - -, W,_,.

For 1 < i < m the pair of variables (V;, W)) is called the ith pair of canonical
variables and the absolute value of its correlation coefficient p, is called the ith
canonical correlation. Clearly p? > p3 > - - - p2 is satisfied.

It is well known [Rao (1973, Section 8f)] that to solve this problem it suffices to
find a m X m matrix B and a #n X »n matrix C such that

(1.1) . BZ,I;'S,B =R,
(1.2) BI,B =1,
(1.3) CZ,2i'5,C = R,
(1.4) CZ,C =1,
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where I, is the m X m identity matrix and where R, and R, are two diagonal
matrices with decreasing elements in their diagonals. Then the vectors b,(1 < i <
m) and ¢,(1 < i < n) which solve the problem of canonical correlation are given by
the columns of B and C respectively. The ith diagonal element of R, and R, is p? if
1 <i < m and if i > m the ith diagonal element of R, is 0. The treatment of the
case where m > n is analogous.

The solution to the canonical correlation problem is unique (except for a change
of sign in the b;’s or the ¢;’s) if and only if the numbers p? are all different.

In this approach to the canonical correlation problem, the vectors X and Y play
symmetrical roles, but in many practical problems their roles differ. This happens
for example when the components of X are observable variables correlated to the
components of Y, while the components of Y are not observable or have high cost
of observation. In this case the researcher may be interested in using X to predict
Y. If m is very large it would be useful to summarize the information contained in

X in a few variables Z,, - - -, Z,, linear functions of X:
Z, = a)X,
choosing a,, 1 <i < p, such that the vector Z = (Z,,- - -, Z))’ be the best for

linearly predicting the vector Y. This may be formalized as follows: Let Y% be the
least square predictor of Y based on Z. Then Y% is given by [Rao (1973, Section

4g)):
(1.5) Y: = E(YZ) E(ZZ)"'Z.

It is well known that Y% is the best linear predictor of Y based on Z using either
of the following criteria:

(i it minimizes E(|Y — Y%,
and

(ii) it minimizes |E(Y — Y3)(Y — Y%),
among all predictors of the forms Y% = DZ, where D is any n X p matrix. (| |
indicates the matrix determinant and || || the vector Euclidean norm).

Then we may define the best p-vector Z for predicting Y using two different
criteria:

(a) the vector Z which minimizes

(16) E(IY - YzI)
or
(b) the vector Z which minimizes
(1.7) |E(Y — Y2)(Y — Y2)'|.

The problem of finding Z which minimizes (1.6) is treated in Rao (1973, Chapter
8, Problem 2). The variables Z,, - - - , Z, which solve this problem are in general
different from the first p canonical variables, being the same in the particular case
that X,, is of the form A I, where A is a scalar.
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On the other hand, if the criterium for choosing Z is to minimize (1.7), we will
show that a solution is to choose Z = (V},- - -, V,) where V},- - -, V, are the
first canonical variables.

2. Proofs. We will prove the following theorem:

THEOREM. Consider the problem of choosing a m X p matrix A* such that
Z* = A*X minimizes (1.7), among all the p-dimensional vectors Z = A'X. Then

(i) The m X p matrix A, given by the first p columns of the matrix B satisfying
(1.1) and (1.2) is a solution to this problem.

@) If p)f > pﬁﬂ then every other solution A* is of the form A* = A,G where G is
any nonsingular p X p matrix.

On the other hand with k equal eigenvalues pj_,,l = p3+2 =-...= p3+k and
qg<p<gq-+kthe p— q last columns of A, can be chosen as any set of p — q
orthogonal eigenvectors associated with the common eigenvalue, and in this framework
every solution can be written in the form A* = A,G.

(iii) The minimum value of (1.7) is given by

P
12| 'Hl (1 - o).

Proor. Replacing in (1.7) Y% by its expression (1.5), it turns out that (1.7) is
equivalent to
(2.1) |E(YY') — E(YZ)E(ZZ) 'E(ZY)|.

Let us note that the best linear predictor of Y based on Z is the same as the best
linear predictor of Y based on DZ for any p X p nonsingular matrix D. D may be
always chosen such that the covariance matrix of DZ be the identity. Then without
loss of generality we may choose A* among the matrices A such that:

(2.2) E(ZZ) = AZ A =1,

Replacing Z by A’X in (2.1) and using (2.2) the expression (1.7) to be minimized
may be written
12y — T, AAZ,|

and this is equal to [Press (1972, Formula 2.4.2)]:
(2-3) |222| llp - A(2122;21221A|‘

Since the first factor does not depend on A, the problem of minimizing (1.7) is
reduced to finding a m X p matrix A such that
24) L, - AZ,E5'S,Al

is minimized, subject to the restriction (2.2).
Let B be a matrix satisfying (1.1) and (1.2) and put H = B™'A. Then replacing
A = BH and using (1.1), (2.4) is equivalent to

(2.5) L, — H'R,H|.
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Moreover by (2.2) and (1.2) the matrix H satisfies
(2.6) HH =1

.
Given any p X p symmetric matrix A we denote by A(A) the ith largest
eigenvalue of A. Then (2.5) is equivalent to

2.7 ‘I=I1 (1 — A(HR H)).

According to Lemma 2.6 of Okamoto (1969) a p X m matrix H* minimizes (2.7)
if and only if

(2.8) H* = SQ,
where Q is any nonsingular p X p matrix, in particular we may take
Q=1

and S is any m X p matrix whose columns are eigenvectors of R, corresponding to
the first p largest eigenvalues. Since R, is diagonal with nondecreasing elements in
its diagonal, the first p vectors of the canonical base on R” satisfy this property.
Therefore H* may be taken equal to

_ IP
Ho (o )

where O denotes the (m — p) X p matrix with all its elements 0. Then A; = BH, is
a solution to the problem of minimizing (1.7), where the matrix A, is formed by the
first p columns of B.

The proof of (iii) follows immediately replacing A by A, in (2.3) and using (1.1).

To prove (ii) it is enough to observe that given any other matrix A* such that
Z* = A* X minimizes (1.7), we may obtain a nonsingular matrix D such that A =
A*D’ satisfies (2.2). Denote H* = B 'A. Then from (2.8) and the fact that

pf > p‘fﬂ we have
- (3

(o)
where Q is a p X p nonsingular matrix. Then

I
A* = B{ 7 |QD'"! = AQD'"!
(%)oo' - a0

and denoting G = QD’~! we obtain (ii).
In the case where p7,, = pZ,, =+ =p2,, and ¢ <p < g + k the matrix of
the p — g last columns of A, can be replaced by

(bq+l’ bq+2’ R bq+k)F

where F is a k X (p — q) matrix such that F'F =1,_,. After this change the
solution A* = A,G depends on both F and G, and every solution which minimizes
(2.4) can be written in this way.
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REMARK. Point (iii) of the theorem yields an interpretation of the square of the
p + l-canonical correlation p,,,: it measures the relative improvement in the
prediction of Y when a (p + 1)-dimensional vector Z is used instead of a p-dimen-
sional one. In effect from point (iii) of the above theorem we have that the
determinant of the covariance matrix of the residual vector Y — Y% when an
optimal p-dimensional vector Z is used is

P
% .Hl (1- o7).
i=

If a (p + 1)-dimensional optimal vector Z is used the determinant will be reduced

to
p+1

2
22| ‘H] (1-07)
i=
and then the relative reduction of the determinant is plfﬂ.
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