The Annals of Statistics
1980, Vol. 8, No. 4, 833-839

EXTENSIONS OF THE STOCHASTIC ORDERING PROPERTY
OF LIKELIHOOD RATIOS!

By GORDON SIMONS
University of North Carolina

Extensions in two directions are described of the well-known stochastic
ordering property of likelihood ratios. 1. It is shown that the stochastic ordering
property holds in a very general conditional sense. 2. It is shown that, for the
usual setting occurring in sequential analysis, sequences of likelihood ratios
possess the same stochastic ordering property in a multivariate sense. Applica-
tions to sequential analysis, and elsewhere, are described.

1. Introduction. It is well-known that a likelihood ratio L, =
4,(X, 5 X))/ p.(Xp, + - ¢ 5 X,) for a sample X, - - -, X, is stochastically larger
under the density g, than under the density p,. Since this fact is equivalent to the
unbiasedness of likelihood ratio tests (in the context of two simple hypotheses), it is
a consequence of the Neyman-Pearson fundamental lemma. Here, we are con-
cerned with two possible extensions. The first (Theorem 1) is concerned with the
conditional behavior of a likelihood ratio. We show that, conditional on any
portion of the information in X,,- - -, X, which one might choose to extract,
likelihood ratio tests are still unbiased. The second extension (Theorem 2) is
concerned with sequences of likelihood ratios. We show that, under the usual
setting occurring in sequential analysis, sequences of likelihood ratios are stochasti-
cally larger, in a multivariate sense, when the (simple) alternative hypothesis is true
than when the (simple) null hypothesis is correct. This stochastic ordering is an
example of the rather strong ordering described in a recent paper by Kamae,
Krengel and O’Brien (1977). (It is an interesting and perhaps significant fact that
some of the “machinery” developed in their paper, which has potential applicabil-
ity, fails for the present context.)

The stochastic ordering of likelihood ratios has been exploited in the statistical
literature to show that a number of one-sided tests have a monotone power
function. One needs to be working with a model that possesses the monotone
likelihood ratio property. This approach has been taken, in sequential analysis
settings, by Lehmann (1959; Lemma 4, page 101) and J. K. Ghosh (1960); it could
have been taken by Lehmann (1959; pages 68 and 69) in a fixed sample size setting
but was not because an approach based upon the Neyman-Pearson fundamental
lemma gives stronger results. We return to a discussion of Ghosh’s and Lehmann’s
approaches (which are not identical) in Section 4.
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Theorem 1 is the subject of Section 2. The setting for Theorem 2 is laid in
Section 3, and its statement and proof are given in Section 4. Finally, Section 5
discusses the failure of Proposition 1, in Kamae, Krengel, and O’Brien (1977), to
serve as a vehicle for proving Theorem 2. Its objective is to point out the need for a
proof of their proposition based upon weaker assumptions.

2. Conditional stochastic ordering of likelihood ratios. In this section, we show
that the conditional probability of rejecting a simple hypothesis in favor of a simple
alternative is greater when the hypothesis is false than when it is true no matter
what information in the sample one chooses to condition upon. This conclusion
follows immediately from the following theorem.

TuEOREM 1. Suppose L is the P-Q likelihood ratio (essentially the Radon-Niko-
dym derivative dQ/dP) for probability measures P and Q defined on a common
measurable space (R, F) and & is a sub-o-field of & on which P and Q are
equivalent. Then Q(L > ¢|&) > P(L > c|®&) as. for each real value c.

ReMARK. This result would be a trivial extension of the unconditional result
were it the case, in general, that L is the Pt;-Q8 likelihood ratio for &; it is not.
(Here P® and Q% denote conditional probability measures given &.)

Proor. For simplicity, we shall assume that P and Q are equivalent on ¥ so
that
(1) O(F) = (gL dP, Fe&b.
This implies that P and Q are equivalent on & and that, for any bounded
& -measurable random variable Y,
) [gYdP = (g Y Ly'dQ, E €&,
where L, denotes the P-Q likelihood ratio for &. What we wish to show is
equivalent to

Q(L > ¢c|&)P(L < c|&) > P(L >c|5)Q(L < c|®) a.s.,

which follows from the two inequalities:

3) O(L >¢|&) > cP(L>c|&)Lg" as,
and E
(@) O(L < c|6) < cP(L <cl&)Ly'  as.

Since the right-hand side of (3) is & -measurable, (3) can be verified by showing
that

JEQ(L >¢c|8)dQ > [gcP(L > c|&)Lg 'dQ, E€b,
which, as a consequence of (2), is equivalent to
O(L>c,E) > cP(L >c¢, E), E € b,

and which, in turn, is immediate from (1). Thus (3) is justified, and, in a like
manner, (4) can be justified. []
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A multivariate generalization of Theorem 1 is described in Section 4. As far as
we can judge, this generalization does not have a statistical interpretation, but it
does generalize a lemma in Eisenberg, B.K. Ghosh and Simons (1976) which has
some statistical content.

3 Types of ordering. In this section, we introduce the multivariate generaliza-
tion of stochastic ordering, appropriate for our purpose, by focusing on the special
case of two dimensions. The salient new features are present in R?. (Readers who
wish to consider this topic in the abstract setting of a partially ordered Polish space
should read the first section of Kamae, Krengel and O’Brien (1977).)

Let P and Q be probability measures on a common measurable space. A random
variable U is stochastically larger under Q than under P if

(5) o(U >u) > P(U >u), -0 < u < oo.

One possible generalization of (5) to two random variables U and V is the
condition

(6) QU >u,V>v) 2 PU>u,V>v), -0 <uov < o

However, neither this condition nor any variation of it is as satisfactory, for our
purposes, as the condition

™ o(u, vyelrI) » P(U, V) eI, I1ey,

where § denotes the class of Borel measurable increasing sets in R* (sets / such
that (4, v;,) € I, u; < u,, v; < v, = (4, vy) € I). Notice that (7) is stronger than
(6) but is equivalent to

o((U, V) e D) < P((U, V) € D), D e 9,

where 9 is the class of Borel measurable “decreasing sets” in R? (with an obvious
meaning), due to the fact that decreasing sets are complements of increasing sets.
There are obvious analogs of (7) for random vectors of every dimension.

Now suppose there exists a probability space which admits random vectors
(U,, V) and (U,, V,) whose distributions agree with those of (U, V) under P and
0, respectively. Further, suppose U; < U, and ¥V, < V,. Then, clearly, condition
(7) must hold. for (U, V). More importantly, Strassen (1965), has proven an
equivalence. Namely, condition (7) holds, if and only if, there exists a probability
space with random vectors (U,, V) and (U,, V,) having the properties described.
His result generalizes to random vectors of any (countable) dimension (and
further). Additional equivalences are described by Kamae, Krengel, and O’Brien
(1977).

4. Multivariate stochastic ordering of likelihood ratios. Let P and Q be proba-
bility measures on a common measurable space (2, ¥), and let {%,} denote a
nondecreasing sequence of sub-o-fields of %. Further, let L, denote the P-Q
likelihood ratio for %,, n > 1. For simplicity, we shall assume that P and Q are
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equivalent on each %, so that, for each n,
®) O(E) = [;L,dP, Ecg,

Finally, let 9(R") and $(R*) denote the measurable increasing sets of R” and R*
respectively.

THEOREM 2.
9) o((Ly,---,L)elI) > P(L,---,L,)€EI), I€3R)n>1l,
and
(10) O(L, Ly ---)eI) > P(L,Ly,---)€EI), I € IR™).

ProOF. We shall use induction to prove (9). According to Proposition 2 of
Kamae, Krengel, and O’Brien (1977), (9) implies (10). Suppose I € 3(R") for some
n > 1. Observe that

(L, --,L)eI and (L, ---,L_,1)&I=1L, > 1
Thus, it follows from (8) that
) oLy -, L)EL(Ly -, L_, 1) €& I)
> P((L,---,L)e, (L, --,L,_,1)&l).
Likewise, it follows from (8) that

(12) oLy, -+, L) &L (L, L, )ET)

< P((LI’ ct T ’L,,) e 1,(L1, e ’L"—l’ l) (S 1).

Next, we shall need an induction hypothesis to conclude that
(13) O((Ly,- -+ Loy DET) > P(Ly, - -+, L, D) ET).

The initial case is n — 1 = 0, for which (13) is a triviality. Inequality (13) can be
established for n — 1 > 1 by making the induction hypothesis that the inequality in
(9) holds with n replaced by n — 1. This is because the event [(L, - - - , L,_, ) €
I)] can be expressed as [(L,,- - -, L,_,) € I'] for some increasing set of I’ in
¢ (R"~1). Finally, inequalities (11), (12) and (13) combine to yield the inequality in
®- 0

The following corollary is really a theorem, due to J.K. Ghosh (1960), about
generalized sequential probability ratio tests. Its proof simply depends upon the
observation that the event in question is expressible in the form [(L,, L,, - - - ) €
I] for some I € $(R™).

COROLLARY. Suppose {A,} and {B,} are sequences of constants with 0 < A, <
B, < o for n>1, and that N = inf{(n : L, & (A,, B,)}. Then Q(N < o and
L, > By) > P(N < o0 and Ly > By).
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ReMARks. 1. If P(N < o) = Q(N < o) = 1, this corollary says that the gen-
eralized sequential probability ratio test, which chooses P or Q as Ly < Ay or
Ly > By, is unbiased. Ghosh uses this result to obtain a more interesting result
concerning the monotocity of certain one-sided sequential tests.

2. The proof of this corollary depends upon (10). A more elementary argument,
in the sense that it does not depend implicitly upon Proposition 2 of Kamae,
Krengel and O’Brien (1977) (whose proof relies upon the theory of weak conver-
gence), can be given by just using (9). All one needs to do is to prove that
OQ(N < n,Ay > By) > P(N <n,\y > By) for n > 1, which is easily done. These
same inequalities were validated by Ghosh, who used an induction argument that is
somewhat more intricate than our proof of (9).

3. A proof of this corollary, in a very restricted setting, appears in Lehmann’s
book (1959), Lemma 4, page 101). His approach is to show that there exist two
sequences of random variables {L,,} and {L,,}, defined on some probability
space, with L,, < L,,, n > 1, and with the distributions of these sequences the
same as {L,} under P and Q, respectively. By combining (10) with Strassen’s
(1965) result (described in Section 3), one sees that Lehmann’s approach is possible
in full generality. Of course, there is no guarantee that the construction of the
sequences {L,,} and {L,,} is sufficiently easy, in general, to make this an
appealing approach.

4. Theorem 2 applies to many situations that have nothing to do with gener-
alized sequential probability ratio tests. For instance, it immediately follows that

Q(L, >c,i0.) > P(L, >c,i.0.),
regardless of the sequence c,. (This is well-known in the elementary “i.i.d. context”,
in which L, takes the form II.,q(X)/p(X)), n > 1, with X, X, - - - ii.d. with
common density p or g. For such situations, Q(L, — o) = P(L, — 0) = 1 except
in the trivial instance that L, = 1 a.s.) Likewise, it immediately follows that the
expected number of times L, exceeds c, is at least as large under Q as under P.

5. A conditional version of Theorem 2 along the lines of Theorem 1 is possible.
Specifically, if & is a sub-o-field of %; and P and Q are equivalent on &, then
(14) o(L,---,L)eIl&) > P(L,:--,L, € 1|&) as,

I €93RY),n > 1,
and
(15) O((Ly, Ly, - - - ) € 11&) > P(Ly, Ly, - - - ) € I|6) as,

I € 3(R™).
These results generalize Lemma 2 of Eisenberg, B.K. Ghosh and Simons (1976).
From the conditional version of Theorem 2, one can easily obtain conclusions such
as
o(L, >c,iol(Ly, -+, L) EA) > P(L, >c,io|(L,- - -, L) € A),

where ¢, is an arbitrary sequence, and A4 is an arbitrary Borel set in R*. It is even
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possible to replace the condition (L,, - - - , L,) € A by the more general condition
(L, Ly, - - + ) € B, where B is a Borel set in R®. Stated more precisely and more
generally, if & is any sub-o-field of \/;,%,, on which P and Q are equivalent, and

if I is an increasing set in (R*) such that the event [(L,, L, - - - ) € I] belongs to
the tail o-field of {L,}, then

O((Ly, Ly, - - - )€ I|&) > P((Ly, Ly, - - - ) € 1]6) a.s.

5. Discussion. The nesting of the o-fields ¥, is crucial for the validity of
Theorem 2, as the following counter-example shows:

COUNTER-EXAMPLE 1. Let P(X, = X, =i) =3 for i=0 and 1 and Q(X, =
0,X,=1)=Q(X, =1,X,=0)= Q(X, = X, = 1) =3. Further, let F, = o(X))
and %, = o(X,). Then L, =2 or 2 as X; =Oor 1,i = 1,2, and

QL >LL,>1) = 0X,=X,=1) <PX;=X,=1)
= P(L,>1,L,>1).
This means that (9) would not hold for n = 2 (in fact, for no n > 2). []

If the assumptions of Proposition 1 of Kamae, Krengel and O’Brien were
weaker, it would provide an alternative route for verifying (9) and, hence, Theorem
2. The assumption which causes the problem, when translated to our context, is the

following: For n > 1,5® = (s}, - -, s,), t® = (¢, - -, ¢,) and s® < ™ (com-
ponent-wise),

(16)  Q(Lyyy > cl(Ly, - -+, L) = 1) > P(L,,, >c|(Ly, - - -, L) = s™),
But (16) is to strong: 0<c< oo

COUNTER-EXAMPLE 2. Let the joint distributions of X, and X, under P and Q be
defined by the following table:

(C¥)] P(X,=1i,X,=)) 29X, =i, X;=1)
0, 0) 7/12 1/12
©, 1) 1/12 1/4
@Gy 1/3 2/3

Further, let %, = o(X)) and %, = o(X, X,). Then L, = 1/20or2 as X, =0 or I;
L,=1/7,30r2as (X, Xy) = (0,0), (0, 1) or (1, 1); and

Q(L,>2|L,=2) = 0 <3= P(L,>2|L, =}),
which contradicts (16) for realizable values of s and ¢®, s < ([
Note that (16) does hold for s™ = ¢®; i.e., forn » 1,
(17) Q(Ln+l >C|Ll’ ttt ’Ln) > P(Ln+l >c|L|’ c e ’Ln)’ 0 <c¢c < oo,

on account of Theorem 1. Unfortuhately, (17) (for n > 1) and the other assump-
tion required for Proposition 1, namely that

(18) O(Ly>c) > P(L; >c), 0<c< o,

are together, not strong enough to prove (9):
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COUNTER-EXAMPLE 3. Let U and V be Bernoulli random variables whose joint
distributions under P and Q are implicitly specified by: P(U =0) = Q(U = 1) =
QW =1U=0=PWV=1U=0=0V=0U=1)= PV=0U=1) =3
Identify U with L,, V with L,, and check that (17) and (18) hold when n = 1.
Consider the increasing set I = {(u, v): v > 1} in 9(R?) and check that Q((U, V)
€ I) =3, which is less than P((U, V) € I) =3. Thus (17) and (18) can not imply
). ‘

REFERENCES

[1] EISENBERG, B., GHOsH, B. K. and SIMONS, G. (1976). Properties of generalized sequential probability
ratio tests. Ann. Statist. 4 237-251.

[2] GHosH, J. K. (1960). On the monotonicity of the OC of a class of sequential probability ratio tests.
Calcutta Statist. Assoc. Bull. 35 139-144.

[3] Kamag, T., KRENGEL, U. and O’BRIEN, G. L. (1977). Stochastic inequalities on partially ordered
spaces. Ann. Probability 6 899-912.

[5] LEnMANN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[6] STRASSEN, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist.
36 423-439.

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA

321 PurLLIPs HALL 039A

CHAPEL H1LL, NORTH CAROLINA 27514



