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RECURSIVE ESTIMATION BASED ON ARMA MODELS

By E. J. HANNAN

The Australian National University

A recursive estimate of the stochastic structure of a stationary time series is
constructed based on the assumption that the true structure is ARMA, i.e., has
a rational spectrum. The estimate is recursive in the sense that each successive
estimate is obtained from the previous one by a relatively simple adjustment,
that could be effected in a “real time” situation. The procedure is basically that
of updating a regression when all variates involved are constructed from
previous estimates of the parameter vector. The strong convergence of the
estimate to the true value is established as well as a result relating to the rate of
convergence.

1. Introduction. Consider initially a scalar ARMA model for an observed
sequence y(¢), namely

(L.1) oy (t —Jj) = Z§B;e(t = j), «(0) = B(0) = 1.
The sequence, &(¢), whenever it occurs, will be taken to be stationary and ergodic
and to satisfy

(1.2) & {e(IF,_1} = 0. 6{e(1)1F,_,} = o

Here ¥, is the o-algebra determined by e(j),j < ¢. Introduce the generating
functions

8(2) = 2oz, h(z) = Z§B7,

and let R be the region in R?*? wherein g(z) # 0, h(z) # 0, |z| < 1 and g, A have
no common zero. Then & is open. (See [3] for example.) The symbol 8 will be used
for a typical point in R and the notation g, h, will then also be used. Also we shall
put ' = (a;,* - -, a,, By, ,Bq). Below cases will be considered where o, ,BJ
depend on ¢, in which case we shall write g,, h, for Za,(?)z/, = B(#)z’. When § € &
the £(¢) are the linear innovations.

Recently attention has been paid to recursive estimation of (1.1) i.e., sequences
of estimates, #(n), constructed from the data to time n where f(n) is obtained from
6(n — 1) by a relatively simple adjustment. (See [4], [S], [7], [14], [15] for example.)

However we have in mind situations where y(#) does not satisfy equation (1.1),
which is why dependence upon # has been emphasized. (This point of view is
emphasized in [7], as also is the prediction error criterion shortly to be introduced.)
To begin with let us point out that a recursion might be constructed commencing
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from a rearrangement of (1.1), namely,
(1.3) é(r) = —Z{B(t — D&t — j) + Zfay(r — Dy(z — ),
where the vector of parameter estimates, (¢ — 1), has yet to be defined. Putting

v(t)l = {_y(t - 1), Tt _y(t _P), é\(t - l)a T aé(t - q)}
the equation (1.3) may be rewritten as

(14) (1) = y(t) — 9z — 1)'v(2).

This suggests computing () as a regression of y(¢) on v(¢f) where this regression is
recursively constructed using Plackett’s algorithm (See [1], for example). Interpret-
ing (1.4) as a regression, this algorithm would be written in the form

(1.5) 0(n) = 8(n — 1) + P(n)v(n)é(n), 6(0) =0
(1.6)

P(n) = P(n—1) — {1 + o(n)P(n — l)v(n)}_lP(n — Do(n)o(n) P(n — 1).
Now it is evident how the recursively defined regression may be computed since at
time n all components in the right sides of (1.5), (1.6) are available. To complete the
definition of the recursion initial values for P(0) and é(¢),1 — ¢ <t < 0 and
y(8), 1 — p <t < 0 must be prescribed. Let us assume, for example, that the latter
are observed and that the initiating £(¢) are put equal to zero. It will be convenient
to assume that P(0) is positive definite. As will be seen from the proof given below

the effects of these initiating choices asymptotically vanish. The equations (1.5),
(1.6) are equivalent to

P(n) = {So()o(sy + P(O)™'} "

8(n) = P(n)”'Ziy(2)o(9).
It will be convenient to put
5 1
K(n) = -;Z’I'U(t)v(t)’
so that
K(n) = n'P(n)™" = n='P(0)"".

The recursion, (1.5), (1.6), has been called RML, (or AML), these corresponding
to recursive (or approximate) maximum likelihood but it is in no sense a maximum
likelihood method on Gaussian assumptions. This does not invalidate the recursion
since the data will be neither Gaussian nor precisely satisfy (1.1). In [12] it is shown
that a, slightly changed, form of RML, does converge almost surely (under certain
conditions) and results contained in [13] indicate that, if (1.1) holds, it is not
asymptotically efficient. By this is meant that the asymptotic distribution of

1
n2(6(n) — @) will not be that which would obtain for the maximum likelihood

estimator, computed on Gaussian assumptions. The “certain conditions” just
mentioned, which impose restrictions on g, A for (1.1), will be indicated in Section
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3. Partly for these reasons a second recursion, called RML,, will mainly be
discussed in this paper. As indicated earlier this is derived from the “prediction
error” criterion, Sg,(£)% It is shown in [13], using the results of this paper, that the
RML, recursion is asymptotically efficient. To avoid confusion with RML, we, for
the moment, indicate the output of this new algorithm by 8,,(n). Then

(1.7) 0y (n) = By (n — 1) + Pp(n)z(n)éy(n), 0,(0) = 0

(1.8) Py(n) = Py(n—1) = {1+ z(n) Ppy(n — 1)z(n)} "
X Pp(n = 1)z(n)z(n) Pp(n — 1)

(1.9) é(1) = y(1) = Oyt = 1) 0p(2).

In this last equation v,(¢) is defined as was v(f) but with &,,(¢) replacing é(¢).
However (1.7), (1.8) differs from (1.5), (1.6) because therein v(#)" has been replaced
by

z(t)l = {“Tl(t - 1)9' T “ﬂ(t—P)» é(t - 1)" c ,f(t - q)}

wherein
(1-10) 2(‘l),"‘M,j(t - 1)"1(’ - = éM(t)’ ngM,j(t - l)é(t —j) = éM(t)-

Here a,, () is the estimate of o; made at time ¢ and similarly for B,, (#). This
recursion differs slightly from the definition of RML, given in [11] because of
(1.10). This definition is preferred here because it is slightly more symmetrical and
results in the relation

(L.11) n() = &) = 0,(1 = 1)'2(0),

as is easily checked. Again initiating values will be needed and again we take
P(0) > 0. We also put

Ry (n) = %Efz(t)z(t)’.

Then once more RML, may be represented as a regression, except for the initiation
of P(n), but now of y,(t) = &,(¢) + n(r) — & on z(¢), t = 1,- - - , n. Thus

Ou(n) = {P(0)™" + Z1z(1)z(ry )}~ 'S1z(6)$ 1 (0).

To see this it is only necessary to observe that if y,,(¢) is defined as &,,(¢) + 8,,(¢ —
1)’ z(¢) then (1.7), (1.8) are of the same form as (1.5), (1.6), with y,,(#), z(¢) replacing
y(®), v(f). The formula for y,,(¢), given earlier, now follows from (1.11).

The purpose here is to study these algorithms, and especially RML,, by the
techniques of Hannan (1976). However while the algorithm constructed above has
been based on the model (1.1) it will not be assumed that the data is generated by
(1.1), but rather, more generally, that y(?) is stationary and

(L12) (1) = ZFe(t = Jj), 23|y < oo.
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Putting ky(z) = Sz’ it is assumed that ko(z) # 0, z < 1, which is needed since we
require that the &(#) be the linear innovations. If (1.1) does hold then k, = g~ 'h, of
course, but (1.12) is more general in that &, is not required to be rational in z. The
process y(¢) generated by (1.12) has spectral density

Joe) = 2 fee )P,

which is continuous because of the second part of (1.12).

Because we shall be concentrating our attention on RML, in the remainder of this
and the next section we shall now eliminate the M subscript. Unfortunately it has
been found impossible to analyze this algorithm without further modification
because §(n) may leave . For this reason regions R,, R, satisfying R, c }, C
@ are introduced. R, will be prescribed later. @, is such that for 8eRR,, g,, by #
0,|z] < 1+ 6,8 >0 and any pair of zeros, one from g, and one from h,, are at
least § apart in the complex plane. Alternatively (and equivalently) the resultant of
g, and h, could be bounded away from zero. Let §(n) be the output of the new
recursion (defined in (1.13) below) Then s(t), 7n(?), §(¢) and hence z(¢), K(¢) are
computed from #(n) where 0(n) is f(n) until 0(n) first leaves 4}, when 0(n) is kept
at a fixed point in R, until §(n) enters R, when () is put equal to f(n) once
more, and so on. The formula for 0(n) is

(1.13) é(n) = O(n — 1) + P(n)z(n)&(n), &n) = $(n) — 6(n — 1y z(n).
The equation for P(n) is as before. Thus f(n) is still of the nature of a regression

Y - N lsn s

(n) = (PO)™" + Ziz()z(2)'} S} 5(1)2(2)
but z(%), y(¢) are defined in terms of #(n) not the output §(r). Rules such as this
have been used in practice. An alternative, discussed in [9], is

6(n) = 6(n — 1) + P(n)z(n)é(n)

where all terms on the right are constructed from é(n). This recursion cannot be
summed as a regression and seems to be more difficult to analyse.

2. The almost sure convergence of RML,. It will easily be seen how the
discussion of RML, extends to RML, and this and other questions will be treated
in Section 3. All convergence will be almost sure but often the symbol a.s. will be
omitted, for brev1ty

Let ©, C & be the set of points that minimize

(2.1) J 'wao(‘*’)lkol_z dw, ky = g5 lho-
Here the argument variable, exp iw, has been omitted from k&, and this will often be
done. Since all integrals are over [—m, 7] we henceforth omit these limits. It is

assumed that @, is not empty. If (1.1) holds for # = 6, then ©, contains only 8,
Introduce the vector ¢,(z),

(2.2) 4)0(2)’ = (_hg_l.z, AR _ho_l.zp, ho—zgo.z, AR ,ho_zgo.zq).
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Here g, hy are evaluated at z but this argument variable has been omitted from the
notation for brevity. The place of ¢,(2) in the theory can be perceived from the fact
that the (vector) transfer function from y(?) to z(#), if a;(?), B;(¢) were fixed at the
values corresponding to the point #, would be ¢,(z). Put

K(0) = [fo(w)pos dow.
It is evident that K(#) corresponds to K(n) in the sense that if a, ,(2), B;(¢) are held
fixed at the values corresponding to # then K(n) - K(9). The condltlon that 6
minimizes (2.1) results, since 4R is open, in

[fow)poks ' do = 0, 8 € 8,
as is easily checked. Hence calling ¢, k, h, evaluated at §, € O, ¢,, k|, h,, then

(23) ffo(‘*")‘lf‘alz«')_l dw = ffo(‘*’){‘?ol;o—l - ¢‘11;1_1} do = —L(0, 0,)(8 — 6,)
where

L(6, 8, = ffo(w)qﬁ’z‘l’;(h_z/h-l) dw
and q>2, h, are evaluated at 02, intermediate between 6 and 6, In case (1.1) holds

f f0<1>k0 dw = 0 since fok0 is analytic within the unit circle, as is also ¢, and
¢(0) = 0. Thus then

(24) L(8, 85) = [fobeditho 'hy de.

Let %.(8,) be a closed sphere whose boundary is at least 26 from the boundary of
@} and such that, for 8 € R.(8,), I — K(8)"'L(8, 6,) is less than unity in the
Euclidean norm, ||.||. Let ¢, be the union of the R.(8,), 8§, € ©,. Then choose R,

so as to satisfy the requirements of it given in Section 1, as can clearly be done. The
set R, is not vacuous since I — K(8,)L(8,, 6,) = 0.

THEOREM 1. Under the above conditions 0~(n) — 0, as.

The proof is long and complicated. A first step is to prove that the smallest
eigenvalue of Ie(n) is bounded away from zero so that 8(n) — 8(n — 1) = o(1) (i.e.,
converges almost surely to zero) and coefficients in the sums defining 6(n) as a
vector of regression can be lagged into an earlier o-algebra, thus allowing the
martingale convergence theorem (mgct) for square integrable martingales ([10],
page 151) to be used. Then #(n) is shown to converge to a deterministic formula
é(n). The definition of AR, ensures that é(n) returns infinitely often to A, and the
use, essentially, of a Liapounoff function ensures that é(n) converges to 6.

We state three simply established lemmas for later use.

Lemma 1. If Za()x(t — j) = e(?) (or ZBy(0)x(t — j) = e(D)) with x(j) pre-
scribed for —p < j < 0 (or —q < j < 0) then
(25) (1) = B la()x(—j) + Zb(De(t — j)
with
la (), [B()] < co’, 0<p <, 0 <ec.
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Here and below c is a finite positive constant, not always the same one. Since
g(z) = Say(#)z’ has all zeros greater than 1 + & then g(z) = {1 + z,(Hz}{1 +
z)(H)z} - - - {1 + z,(#)z} with |z(#)] < b < 1. The result then follows by a simple

induction.
By successive substitutions using (1.9), (1.10), (1.11)

(26) &) = ZFc(De(t — ), m(1) = 2§ d(D)e(r = )), §(1) = ZFe0)e(t — ).

LemMa 2. [c(D), |40, |e(D)] < @), Z5°a; < 0.
The proof is fairly immediate, using Lemma 1.
LEMMA 3. Foralla > 1 .
=180, e m(e), St E(e)? < e(log n)”.
For example, using Lemma 2,
Sre (0 = S Eee(Der — )))

< c(log n)“E’,‘[t‘l(log t)_“{23°aje(t —j)2} ],
and the result follows since the factor in braces is stationary with finite mean.

Let 0 <Ay(n) < - -+ < A, ,(n) be the eigenvalues of n~'P(n)~! and assume
lim infA(n)=0,j=1,---,d; lim infA(n) >0,j=d+1,---,p+gq. Let
Q(n) be the sequence of orthogonal matrices diagonalizing P(n)~' and choose a
subsequence along which Q(n) converges to an orthogonal matrix Q. Then,
because K(n) has all elements bounded, by Lemma 2, there is a subsequence 7,
along which the elements in the first 4 rows and in the first 4 columns of
QP(n)~'Q’, and hence of QI?(n)Q’ converge to zero. On the other hand, the matrix
in the last p + ¢ — d rows and columns of n~!QP(n)”'Q’ has its smallest eigen-
value with positive limit inferior. Put { Q8(n)}’ = (8,(n):0,(n)’) where the partition
is after the dth element. After §(n) has left &}, and before it reenters @R,, §(n) and
hence 8,(n) does not change. It may “jump” at points of exit and reentry. At the
remaining points 8(rn) = 6(n) and 8(n) — 8(n — 1) = 6(n) — §(n — 1). Consider

L {QP(n)'Q'}00(n) = +(QP(m)'Q"}QA(n — 1) + 5 Q(m)é(n).

At such remaining points we see that 8,(n) — 0,(n — 1) > 0 as n, n — 1 increase
through a sequence of points excluding points of jump. This is because
n~'Qz(n)é(n) — 0, in virtue of Lemma 2, and the fact that n ~'e(n)* — 0. The proof
then follows by dividing these “remaining” points into d + 1 sets according as

increases through each set, |0,(n) — @,(n — 1)| < ce + o(1) which establishes the
result since ¢ is arbitrary.
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Let ¢, be the uth point of exit from R, and r, be the subsequent point of reentry
into ®,. Were lim inf A,(n) > 0 it could be shown (see below) that these points
e,, r, are very sparse by showing that it must take an increasingly long time for §{n)
to move R, out of R, (and from entry into 9, back into ®R,). However in the
present circumstance it is possible that #(n) might move from R, out of @, (for
example) along a line whereon 8,(n) hardly changed, and very rapidly, since 6,(n)
might be changing rapidly because A(n) — 0, j < d. On the other hand when b(n) is
outside of R, it can, in principle, become arbitrarily large. Consider, therefore, first
points e,, r, for which

27) SUP, <ner, 10(M)I] < A4 < o0
and one or both of
16(e,) = Bx(e, = DIl > v, 16(r, = 1) = 8,(r)| > »,
hold. We shall not introduce a special notation for such points “of type A” but for the

moment only these are considered. To the vth such point, §,(n) will have changed by
at most

(2.8) St Y z(0)E(D)|| + ¢ < c(logr,)”

using the boundedness of §(n), of the elements of P(n) and the boundedness away
from zero of the norm of the submatrix of PK(n)P’ in the last p + ¢ — d rows and
columns. The bound on the right in (2.8) comes from Lemma 3. Thus

(2.9) o < c(logr,)”.

Next consider points “of type B”, for which the opposite of (2.7) holds i.e., ||§(n)||
eventually exceeds 4.

18(n) = 8(n = DI < Ay(n)™'niz(n)é(n)].
Since nA,(n) > c then when 16(n — 1) > ¢

log{__llf'(ﬂ_} o|Mowu

1] ~ < cl|lz(n)]| |é(n
18(n — 1)]| 18(n = 1) llz(n)Il |€(n)

+ n(n) — &(n)| + cz(n)'z(n).
Thus up to the conclusion of the vth excursion of type B
vlogAd < e{r, + o(r,)}.

This follows from Lemma 2 and the ergodic theorem. Thus

lim sup{v/r,} < c/logA.

Now taking A4 arbitrarily large it is evident that the proportion of points of type B
in the first n points may be made as small as is desired and this is also true for
points of type A for any » > 0, as follows, even more strongly, from (2.9). We shall
omit these points, and N points (N fixed) before and after them. This will
asymptotically make no difference to x’IE’(nk)x, where x’ is one of the first d rows
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of Q, since that is converging to zero in any case and the contribution of each term
to that quantity is asymptotically zero. Nevertheless we later need the fact that the
points omitted can be taken to be a proportion of all points to time n, that
converges to zero. Let 3’ indicate a sum wherein these points are omitted. In

(2.10) ng 'S’ z(£)z(8) x
we shall repeatedly substitute for £(¢) by means of (1.11), expressed in terms only of
the n(¢ — j). Now
x'z(t) = Zgf(On(t —Jj) + r (o)
where

1., 2
;Elrs(t)

may be made as small as is desired by taking s large. This follows from Lemmas 1
and 2. We shall show that in

(2.11) ne 'S{Za o - HY
any coefficient may be lagged, ie., replaced by f(t — /), / < N’, where N’ is
arbitrarily large but fixed, so as to make a negligible difference, asymptotically, to
(2.11). Indeed, each f(#) is a sum of products of elements of Qf(t — /), up to a
fixed lag determined by s. Recall, from (1.11), that §(?) = n(¢) — 0'(¢ — Dz(¢) =
n(?) — {QO(¢ — 1)} Qz(#). Thus the factors comprising a term in fi(#) can be
decomposed into components in 8,(¢ — j) and 8,(¢ — j), for various j. Since s and
N’ are fixed, we may choose N so large, but fixed, so that no time point, ¢ — j, at
which a jump occurs, nor any time point before and after that, arises in this process
if the sum in (2.11) is restricted to 3’. So far as components in 8,(#) are concerned,
we have already seen that these may be lagged as desired so as to make an
asymptotically negligible difference to (2.11). Thus if a(¢) is a term in f(#) we have
a(t) — a(t — 1) = o(1) and hence the effect of replacing a(f) by a(t — 1) in
S(On(t — j) gives a contribution to (2.11) that is o(1), using Schwartz’s inequality
and the ergodic theorem. Consider then components in 8,(¢). Say b(¢) is such a
component and it occurs in the substitution process for the first time as a
coefficient of {(¢), which is necessarily a component in Qz(¢ — j) for some j. Then
a typical term arising at this moment will be of the form a(#)b(¢){(¢). However we
know that

no'S%e(1)* > 0,
and hence it will make no asymptotic difference if we lag b(¢) in any way
(remembering that a(¢), b(¢) are uniformly bounded). Now we may finally reinsert
the omitted points of jump, and associated points, whose coefficients may certainly
be lagged arbitrarily since the proportion of these points in the first n, converges to
zero. Thus the desired result concerning (2.11) and the lagging (or leading for that
matter) of its coefficients is established. Now it will be shown that

(2.12) ne 12m(1)? > 0 j=12--"
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To see this observe that (2.11) is

nT S f(0)e(e) + { fo()w(®) + Z5f(e)m(z = D} ]
where 7(¢) = e(¥) + Y(#) and Y(¢) is measurable %,_,. By the mgct, using our
ability to lag f(¢) “into an earlier o-algebra”, it follows that

limk—m”k_lszfo(t)s(t){fo(t)‘l’(t) + Z15(On(e ‘j)} = 0.
Hence
limy_, ,me lz'll*fg(t)e(t)z =0

because (2.10) converges to zero. However because of the second part of (1.2),
putting eD(£)? = e(£)?, for |e(?)* < ¢ and €P(£)? = e(£)* — £D(¢)? then

ne o0 {e(6f’ — *} = n 'S e - & {eD(1)F,_,}]

+ 1 'S fo()*[e@(0)” ~ & {4115, } |-

The first term on the right converges to zero by mgct (using the ability to lag the
fo(®?). The second may be made as small as is desired by taking c large by the
ergodic theorem combined with the boundedness of the fy(¢). Thus o1, 'S fi(1)* —
0 and (2.12) is established for j = 0. Now consider (2.11) with the term for j = 0
omitted and repeat the argument. This establishes (2.12) for j =0,1,- - - , s and
since f(f) converges geometrically to zero as j increases, uniformly in ¢, by Lemma
1, (2.12) holds in general. Now f,(¢) is a sum of products of (¢ — v), B,(f — v) and
we know that these may be lagged or lead up to any arbitrarily large but fixed lag
and that f(#) converge geometrically to zero at a rate independent of z. Thus in
(2.12) f(#) may be evaluated as if all o,(f — v), B,(¢ — v) were replaced by
a,(?), B,(¢). When this is done f(¢) becomes the coefficient of z/ in the expansion of
h,(z)¢,(z) x (Where ¢y(2) is defined in (2.2) and ¢,, h, are ¢, h, for 8 = 6(¢)). Indeed
in the process of substitution the relation now being used is n(t — j) — 8'(#)z(t —
J) = &t — j), for all j. This means that &t — j) = b~ 'gn(¢t — j), where z, in A, g,,
is being interpreted as the lag operator. Thus x'z(¢) may be written as

= SxOn(r = j) + ExPk (e - j)
where the x( are the first p components in x and the x(® are the last g. This is of
the form {h,x'¢,}n(¢) which establishes what we wish. Thus

. o . _ 1,
(213)  limy_ 372 on 12';".&(’)2 = lim_,ng lE'f"ﬁf" &b x| do.
However |h,|*x'¢,¢,x is

I‘I’p— ,(e"“‘)h,(e"“’) — Xq—1(eiw)gt(ei°’)|2|h,| -2
where y,_,, x,_, are polynomials (with coefficients the elements of x) of the
indicated degrees. Now, secondly, since |A,| > § > 0, we may consider

S I = xpm1(e*)g () do
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which is of the form ||4,x||> where det 4, is the resultant of the polynomials g,, A,
and since this resultant is bounded away from zero the result follows. Thus (2.13)
and hence (2.10) cannot converge to zero and a contradiction has been reached.
Thus we have

ProPOSITION 1. lim inf A((n) > 0O, as.
Sum the recursion so that

6(n) = 1%(&)“%2’;{@(:) + n(2) — &) }z(2) + o(1).

Now
{loge,}* > cvo, a>1
the proof being as before, but simpler, since §(n) must change appreciably when
moving from R, out of R,. (See (2.9)). Using Lemma 2 the contribution from
points of exit and entry to a typical element in the averages forming #(n) can be
dominated by
en 'S {Sgak( - j)’)

the sum being over points of entry and exit, Taking points of entry for example,

and putting b = a~!,

St %(t — j)? < 3 exp(ch?)e(vr — j)* < o
so that, using Kronecker’s lemma, the contribution from these points to 6(n)
converges to zero and this will be true also of the N points before and after them.
Now the argument of the type that established (2.13) may be repeated. Thus
express any element of z(f) or &(¢) as, for example, &(¢) = Z¢;(¢)e(t — j), observe
that the ¢;(#) may be lagged up to any fixed amount, that Lemma 2 holds and then
Proposition 2 below follows. In this proposition

A [ 1aa -1, & & 1
(2.14) 6(n) = ;zlffo(w)‘ﬁr z* d“’] ;zlffo(‘*’)‘bt{z; - '}E"'Z * dw.
In (2.14) ¢, g, etc. are functions of exp iw and a star has been used also for
conjugation, for convenience.

PROPOSITION 2. lim,_, {f(n) — 8(n)} = 0 as.

The form of u(n) is simple in that ¢,; {h " 'g, — h~%g, + h~'} are just the
instantaneous z transforms that express z(?), y(#) in terms of y(¢ — j),j > 0. Thus
z(9)z(¢), for example, has been replaced by its expectation as if it were obtained
from y(7) by a filter with fixed coefficients having z-transform ¢,. Assume that 0~(n)
and hence (n) enters R, only finitely often and ultimately remains outside of R,
after last leaving 4,. Then

j j - 8% & 11\,
o(n) - 0 = K(9) lffo(w)¢a{7lf_7t§+70} dw
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where K(6) was defined above (2.2) and 6 is the value at which 0(n) is held after
the last exit of 8(n) from R,. Then (see (2.3))

(215) 6 = 0+ KO) " (f)ao 2)* do = 0~ K(0)'L(6, 696 - 89

for any 6, € ©,. Thus

(2.16) (0 -6,) = {I—- K(8)"'L(8, 8,)}(8 — 8,)

and a contradiction is reached because |1 — K(8) 'L(8, ,)|| < 1 for § € R(8,)
and @ does lie in one such set. Thus we have the following.

PROPOSITION 3. @(n) returns infinitely often to R, or eventually remains perma-
nently in R, a.s.

The proof may now be completed by the construction, essentially, of a
Liapounoff function (that was suggested to the author by L. Ljung). Consider

2
}dw

where g, hA,l are constructed from é(n). Now when f(n) = 6(n) then é(n) — 0(n) =
o(1) and thus when 8(n), i.e., 9(n), is in R, before leaving that region,

2

A

_ En—1

@.17) ffo(w){ f—

<
n n—1

; oo -1l (&4, 1
@18)  O(n) = K(n) ’;E'{ffo(w)@{% - f—? tr }* de + o(1)

where &a, is ¢, constructed from 0: and I?(n)‘1 is the first factor in (2.14) but with
8. h, replaced by g, h,. Thus it will be sufficient to show that the first term on the
right converges to ©,. For simplicity we shall now call the first term on the right é(n).
Now, from (2.3), when 8(n), i.e., (n), is in %R, before leaving that region,

l L - " gn

— K(n) lffo(w)d’,.( T )* dw

n

d(n) — 6(n—1)

—_ % K(n)~'L(6(n), 85){8(n) — 8,}.

Also (2.17) is

ffo(w){80 }é( )dw{é(n) - 6(n - D} + o(n™?)

where 0 indicates the gradient vector with respect to § and we have used the fact
that 6(n) — (n — 1) = 0(n ") to show that the neglected term is of the indicated
order. Thus (2.17) is

g
h

(2.19) 2ffo(w)&>;(—i;) dw{8(n) — 6(n — 1)} + 0(n7?)

n

- —%[é(n) — 8o} L(6(n), 8)* R(n) "' L(6(n), 86){6(n) — 8,) + O(n~?).
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The factor multiplying n~" is < 8(¢) < 0 if d(n) € R.(8,) and ||f(n) — 8,|| > e. This
is because ||I — K(8)"'L(8, 8,)|| < 1 and || K(8)|| > &, > 0. Also
Y

8n 2
(2.20) [fo(w) T dw > o°.

n

Now for n sufficiently large 6(n) will have returned inside %, and will be an
indefinitely long time in @, thereafter. If ||f(n) — 0|l > & for all §, € O, then for
some such 8, the right side of (2.19) is not greater than —&8(e)n ' + 0(n~?). Since
Sn~! diverges a contradiction to (2.20) is reached and the theorem is proved.

THEOREM 2. Let the conditions of Theorem 1 hold and y(t) be generated by (1.1)
and additionally let & {e(n)*} < co. Then lim,_, _n%(@(n) — 8y) = 0, as., a < %

In Lemma 2, now, ¢; < cp/, 0 < p < L. ) )

There is an ny, P(ny, < 00) = 1, so that 6(n) = O(n), n > n,. Also since 8(n) —
6(n — 1) = n='K(n)~"2(n)é(n) and n~=4e(n) -0 then almost precisely as before
f(n) — 8(n — 1) = o(n"3). For n > n,

T B
0(n) = R(m) ™'~ S13()()
and a typical element of K(n) or of n™'S $(1)z(¢) is of the form
1 N . .

(221) —S1{SFa()e(r — HEFh(Ne( = )3 a0, ()] < e, 0 < p < 1.
Consider the part of (2.21) comprised by

1 ;

;27{2 k=08 ()b (2)e(t — je(t — k)}

Let us consider the error incurred by replacing ai(?), b (f) by a;(t — j), by (t — k).
The error is the sum of three terms, of which we take one for example

@22)  TSIEEReno{a(t) - gt - )}bDelt — j)et = ).

Take n, > n, and J(n) = b logn, so that J(n)log p < — log n. Then (2.22) is
dominated by

n™t +| TS0 (1) ~ gt~ DY Bl)elt — ets = B)

+| 7 ZnE R ks 80 = 4 = D)BDels = ets = ).

The last term is dominated by
c”_32:,2;;k-1(n)Pj+k_y(")|3(’ — Je(t — k)|

which is evidently 0(n~2). The middle term is dominated by

2.23) cn~\(log n)’S7 1~ B0 _op*|e(t — j)e(t — k)|
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since g;(¢) is a sum of at most ¢j terms each a product of ¢j factors that are elements
of 8(s), s < ¢, so that |a(#) — a(t — j)| is dominated by gk~ 2. However (223) is
dominated by

ellog n)*S/Ch= St {1~ 3le(t = IZFo"e(t — K]}

. 1
< clog n’n 7O B= 1+ Ol(r) B~ D[ Spe(r — K)| )]

for 8 > 0. This is eventually o(n~“), a < 3. The other two error terms resulting
from the replacement of a;(?), b, (¢) by a(¢ — j), b (¢t — k) may be treated similarly.
Now

X, = SIZS5_oa(t — )bt — K)e(t = j)e(t — k)
is a martingale and the increasing process associated with X, (see [10] page 148) is
= S[E3%,m1a(t — Kb (1 — K)e(t — j)e(t — b))’

which is clearly 0(n). Thus n~'X,, is o(n~?), a < 3, by [10] (page 151). The terms in
(2.21) forj < k thus are o(n~?) and the same is true for j > k. Hence to order n~*
we need consider only

1
;2723°a,~(t)b,-(t)e(t =) = —Zi5%a(0)b(1)

+ 2 HERa (DB O (el — ) - 7).

Since e()> — o2 is a sequence of square integrable martingale differences we see
that the second term is o(n~“) and hence (2.21) is

(2.24) ~SH{EPa DB} + o(n?), a <1

Now using the same technique as was used on (2.22) we may show that in (2.24)
ai(t), b(¢) may be replaced by corresponding expressions wherein the elements of
0(s), s < t, wherever they occur, may be replaced by the same elements of 8(¢) with
an error that is 8(n~“), a < 3. Hence, for n > ny,

0(n) = 6(n) + o(n™?), a <
Now put O(n) = {6(n) — 8,} K(n){f(n) — 8,}. Then

O(n) = O(n — 1)(1 - %) + %{é(n — 1) = 8o} { R(n) — 2L(6(n), 6,))

N
.

+ o(n7Y)

remembering that §(n) — 6, — 0, d(n) — 6(n — 1) = 0(n~"). We know that eventu-
ally K(n) — 2L(6(n), 8,) > 0. Thus

(2.25) O(n) = O(n — 1)(1 _ —) + o(nY),
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and hence, putting nZ“Q(n) = r(n)
r(n) = rn — 1)(1 - 9) + o(1)

n
where b = (1 — 2a) > 0. However this implies that r(n) — 0 and the result follows.

3. Discussion

1. It is not easy to analyze the nature of the convergence properties of RML,
when (1.1) does not hold because (2.1) is then not relevant. Thus we restrict
ourselves to the case where (1.1) holds. Now 0, is just that true point, §,. The proof
down to Proposition 3 is hardly altered except that now (see the explanation below
Proposition 2)

o(z) = (=2, =24 -, =28, k72,- - - ,k7'29)
and -
L(6, 8p) = [fobedthy ' de,
while R, = R(6,). As said before, (2.1) is no longer relevant and a Liapounoff
function has to be constructed in another way. Consider Q(n) = {é(n) -
8, K(n){0(n) — 8}, as in [5). Since

Bn) = 6(n = 1) =~ R(n)" [t do{(n = 1) = 65} + ()2

then
(3.1

A A 1 1,4 " a _

0m) = O(n = D1 =) = {000 = 1) = 8o} 1feb 33 (29(h5™") — 1} do

X {b(n — 1) — 8,} + 0(n™?),
where now @R (h, ) indicates the real part of Ay '. Now
2hg") = 1 = || {1 — |21 Bye” [}

so that a sufficient condition for Q(n) to converge to zero is that 3| Byl < 1. Of
course the convergence of Q(n) to zero is necessary and sufficient for the conver-
gence of #(n), and hence 8(n), to 6,. If g = 1 then | By,| < 1 so that convergence
does then take place. (In fact it is shown then, in [5], that no regions R, R, need
then be introduced.) However for ¢ > 1 the matrix of the quadratic form in (3.1) is
not necessarily positive definite and in fact simulations (see [11]) show that 8(n)
need not converge to 6.

2. It may be shown by detailed calculation, for RML,, that whenp = 0,9 = 1,
and (1.1) holds, when § € @ then so necessarily does 6. (Thus },, R, may then
be much more generously defined.) However this is not so in general. Indeed let
ho=(1—poz) ', h=(—pz)"",0 < p, py < 1. Then

|l
AP

2

dw

(32) ol -2
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is minimized, if # is not restricted to be a polynomial, at # = h{2 — hy 'h}. Assume
2po — p > 1. Then k has a zero inside the unit circle. We may now find two
sequences of polynomials k,, A, that have no zeros within the unit circle and that
converge uniformly to Ay, A and it may be shown that there is a corresponding
sequence };q, minimizing (3.22 with Ao, h replaced by hy, and h, and of degree g,
that converges uniformly to 4. Now by a theorem of Hurwitz (see [2] page 194)) it
follows that, for sufficiently large g, }fq will have a zero within the unit circle.

Nevertheless it is probable that the region 9, as defined above is much too
restrictive. As mentioned earlier, the definition used relates closely to that which
would be used in proving the iterative convergence of a Gauss-Newton algorithm
for optimizing a Gaussian likelihood. Indeed @ is just the limit to which a first
iterate would converge as n — oo, if the initial value was 4.

3. The discussion can be extended to ARMAX models, i.e., models of the form

Sy (t —j) = Ziyu(t —Jj) + Z§Be(t —)),

Introducing j(z) = Eyjzj it will now be necessary to require that any three zeros,
one from each g, A, j, form a set of diameters > & in the complex plane, or,
equivalently, that the resultants of the three polynomials be bounded away from
zero. Also the coefficients y; have to be bounded in the treatment considered by us.
It has not been found possible to discuss convergence unless u(?) is restricted and
we require that u(z) be generated by a regular stationary process with zero mean.
(Mean correction of the data will not affect the results. Indeed trend correction of
y(2), u(t) could simultaneously be carried out by a separate recursive procedure.)
Thus

u(t) = EF[&{u()|F,_,(n)} — &{u()|F,_;_,(n)}],

and for fixed j the summand, £(¢ — ) let us say, is a sequence of square integrable
martingale differences. Under these conditions results entirely analogous to those
given in Section 2 may be established (see [6]).

4. Theorem 2 would hold even if (1.1) was not true provided the «; satisfy
K < cp’, 0 < p < 1 (for example if y(¢) has a rational spectrum) in the sense that
the distance from 4(n) to @, is o(n %), a <1.

5. The standard situation in which Theorem 1 applies would be the so-called
over-identified situation where ©, would consist of one point. However the oppo-
site, under-identified, case can arise, at least in simulations. In such a case, ©,
could consist of a continuum and é(n) would not converge in a conventional sense
but rather could be expected to approach the continuum but “search” along it. A
case that has been brought to my attention by Dr. P. C. Young is of a vector
ARMAX model where data is generated according to

y(n) = A~ 'Bu(n) + C ~'De(n),

A, B, C, D being polynomials in the lag operator of degrees p, g, r, s. If this is
regarded as an unconstrained ARMAX model with generating functions of degrees
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p +r,q+ r,p+ s respectively, then too many parameters are being estimated,
we are in the under-identified case, and it can be expected that the recursion will
search over the parameter space in a haphazard way as it approaches the con-
tinuum .

Acknowledgment. 1 am grateful to Mr. V. Solo for picking up a slip in (3.1) and
for suggesting the argument via (2.25), to him and Dr. P. C. Young for other
stimulating discussions and to Professor Ljung for suggesting the Liapounoff
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