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ON EFFICIENCY AND OPTIMALITY OF QUADRATIC TESTS

By GAvVIN G. GREGORY
University of Texas at El Paso

Let Z,, Z,, - - - be iid. standard normal variables. Results are obtained
which relate to the tail behavior as x — oo of distributions of the form
F(x) = P{ZL. M(Z, + a)*> — 1] < x}. For test statistics which have such
limiting distributions F, asymptotic relative efficiency measures are discussed.
One of these is the limiting approximate Bahadur efficiency. Applications are to
tests of fit and tests of symmetry.

1. Introduction. Let Z,, Z,, - - - be i.i.d. standard normal variables. This paper
is concerned with test statistics which have a limiting distribution

G(x) = P(S2M(Z2 — 1) < x)
under some null hypothesis (H,) and a limiting distribution
F(x) = P{Z2. A[(Z, + @)’ — 1] < x}

under alternatives converging to H, In Section 2 several results are obtained
relating to the tail behavior as x — oo of G and F. These results are used in Section
3 to obtain asymptotic relative efficiency measures for a pair of competing test
statistics. One of these measures is the limiting approximate Bahadur efficiency
which is the ratio of efficacies of the form

= 1\eai/max{,}.

The condition of Wieand (1976) which allows this to be equated to a limiting
Pitman efficiency is investigated. Applications to goodness of fit tests and tests of
symmetry are considered in Section 4.

2. Asymptotics for infinite weighted sums of independent chi-square variables.
Let Z), Z,, - - - be ii.d. standard normal variables and {A, }7., and {a,}7-, be
two sequences of constants satisfying

G) A >A>--->0

R)) (i) S M <o

(il)) S¥_Aa? < oo.
Let n; be the multiplicity of the ith largest value in {A,}. Thus A, = A, = - - - = A,
>M+1=M,42=+* =M, ,, and so forth. The results of Gregory (1977a)
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Section 2 show the existence, under the conditions (2.1), of the following distribu-
tions:

G(x) = P{ZP.\(2Z2 - 1) < x}
G(x) = P{\Z3_(Z¢ - 1) < x}

(22) F(x) = P{S2_ N[(Z, + @)’ - 1] < x}
Fi(x) = P{\Z2,[(Ze + ) — 1] < x}.

When asymptotic centering is not effected we would drop from (2.2) the compo-
nents generated from the (— 1) but would require =\, < oo. Specific changes in the
results for this case are noted at the end of the section.

The following theorem is the analogue for centered distributions of Theorem 2 of
Beran (1975b). Beran’s result generalizes that of Zolotarev (1961). Our proof
follows along the lines of Hoeffding’s (1964) proof of Zolotarev’s result.

THEOREM 2.1. Under condition (2.1)

. 1 — F(x)
hmx—»oo 1 —_ Fl(x)

= Zo-n|+](1 - Ak/xl)_iexp{(alb‘k/zkl)/ 1- Ak/Al)}exp{ =M/ 20}
Proor. Let f(f;) be the density of F(F,) and let f, be the density of
Sean+M(Z, + @)? — 1] Tt is shown that lim,_, f(x)/f,(x) equals the right-

hand side in the statement of the theorem.
Based on the convolution formula we have

fx — Any) _x fl(x — Ay — )

23 = .
@3) Hi(x = Any) il = Any) R0 &
We first show that
(2.4) im, D =) _ exp{y/2\,}.

e filx) !

Let x*(», p?) represent a noncentral chi-square variable with » degrees of freedom
and noncentrality parameter p2. One may think of f, as the density of A, {x*(1, §%)
+ x*(n, — 1,0)} — A,n, where the chi-square variables are independent and 62 =
Sw_,af. Writing y = (n, — 1)/2 it is found for x > 0 that

(25) Filx = \ymy) = x7" e Rie T(2mh,) TN, (x/A)),
where

1 1

_ eG(xz)E_‘_ e—&(xz)7 2

b(x) =[2(n)] e ")/
z2(1—2) 77

1 1
= (¥ + e“”‘;)/2, y=0.

vy>0
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When y > 0 asymptotic behavior (x — o) for b,(x) may be ascertained by making
the change of variable to w = (xz)2 in the integral. It is found that

lim,_,b,(x)/ {278 "x"2exp(8x7)} =1, v > 0.
Also b, (x) is increasing in (positive) x. Now (2.4) may be established by using these
properties of b, and the inequality
(2.6) x%—(x—y)%<2*1y(x—y)_%,x>y > 0,

which shows that lim,_ (x? — (x — y)2) = 0
Suppose n, > 2. It is not difficult to establish that there are positive constants d,
and d, so that

I[y < x]fl(x = Mny =)/ filx —Any) < djexp{d,y}, —o0 <y <
for all x sufficiently large and independent of y. Then we have
(2.7) lim, ., f(x)/fi(x) = [2e" P (¥) dy

which is calculated to be the right-hand side in the statement of Theorem 2.1. Thus
the proof is complete if n, > 2.
Suppose n; = 1 so that y = 0 in (2.5). In this case sufficient for (2.7) is

(2.8) im,_, /%1 —=y/x)” zey/”‘f(y)dy—O for some 0 < p < 1.
Sufficient for (2.8) is
(2.9) lim,_,  xe*/?ify(x) = 0.

Let f, be the density of the variable
(210) A, 32 [(Z + @)’ = 1]+A, SRt [(Z + ) — 1]

+2k-n,+n2+n3+l [(Zk + ak)2 - 1]-

This variable differs from that for density f, in that the coefficient for the second
summation is A, ., instead of A, ., .. The density f,(2.5) is a location and scale
change on a noncentral chi-square variable. If the scale factor is increased then the
original density is bounded by a constant multiple of the new density for all large
arguments. From this observation we can deduce that

(2.11) f(x) < C f(x)

for large x where C, is some constant. In (2.10) the multiplicity of the largest A is
> 2. The results proved so far show

(2.12) lim, o fo(x) /P(x) =

where C, is a constant and p(x) is the density of the sum of the first two
components of (2.10). Recall that A; > A, ;. The density p(x) is obtained from
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(2.5) with suitable changes in notation. One can see that
(2.13) lim, . xe*/?ip(x) = 0.

"X—> 00

Now (2.9) is implied by (2.11), (2.12) and (2.13). []
COROLLARY 2.2. Under condition (2.1)

. 1-G _1
i, T o = Il = Me/A) ™ exp{ —Ae/20).

LEMMA 2.3.

i 1 - Gy(x)
Mmoo ™ /D1, /27,

=e 2/ (2)\1)(”'/2)_1F(”|/2)~

Together the above two results give
LEMMA 2.4. Under condition (2.1)

—log(l1 — G(x)) -1
e x/2\, '

In Section 3, G will be the limiting null hypothesis distribution of a test statistic
and F will be the limiting distribution under alternatives. The limiting power of the
size « test will be p(a) = 1 — F(G~!(1 — a)), 0 < a < 1. This is to be compared to
the limiting power of a second test statistic. Let all previously defined quantities be
given superscript * to denote the limiting form of this second test statistic.

lim

THEOREM 2.5. Let § = {2',;'=,a,f}%, L = exp{(1/2) 27:0=n.+1013>‘k/0‘1 — A} and
similarly for 8* and L*. Under condition (2.1) and the similar condition for {\}} and
{at},

lim,_,p(a)/p*(a) =0 ifé*>é86  or
8*=40 andnf <n

= 00 lf8>8* or

(2.14) *=9 and ny < n}
=L/L* if6=206* and
n, = ny.

PrROOF. Assume without loss of generality that A, = A} = 1. Let f(f*) and
g(g*) be the densities of F(F*) and G(G*) respectively. We prove the theorem by
showing
(2.15) lim, ., g(G ~'(u))/g*(G*~'(w)) = 1
and
(2.16) lim,_,, f(G ~'(u))/f*(G*~'(u)) = right-hand side of (2.14).

Lemma 2.4 yields (2.15) without difficulty. In order to show (2.16) several pieces of
information are needed.



120 GAVIN G. GREGORY

First we look at asymptotic behavior for G ~!'(x) and G*~!(u) as u — 1. Note
that Lemma 2.4 applies with the obvious transformation. From Corollary 2.2 and
Lemma 2.3 (recall A, = 1) we get

(2.17)
tim, (1 = w)/ {[6')]"™* exp(~ G ~'(u)/2) 23Ty + 1/Dexp(n,/2))

= H(I,co=nl+1(l — A) 72 exp{ —A/2}, where y = (n, — 1)/2.

Comparison of G ~'(u) to G*~!(u) is made by taking the ratio of terms as in the
left-hand side of (2.17). Taking the logarithm of the ratio and using Lemma 2.4
yield

(218) lim,_,{(n, — n})log(—2log(1 — u)) =[G ~'(u) — G* " (w)]} = ¢,

where ¢ is a finite constant. Using (2.18), the inequality (2.6) and the rates implied
by Lemma 2.4 we have

(2.19) lim,_,{[¢™'W)]* - [6*"')]?} = 0.
From the proof of Theorem 2.1 (with A, = 1) we have
(220) lim,_; (G ~'(u))/f1(G~'(u))
= I (1 = A) 72 exp{(a2/ (1= A) — DA/2),

where f,(x) is the density of F;(x) given by (2.5) with A; = 1. Substituting f, into
(2.20) and using (2.17) gives

AG = (w)(2m) 127~ 12T(y + 1/2)exp(n, + 82/2)
(1 = uw)b, (G (u) + n,)
= H(;co-n|+l eXP{al?‘k/z(l - >‘k)}’

where b (-) is given by (2.5). The asymptotic form for b, together with (2.21)
implies

(221) lim,_,

A6~ wW)[6 W]
(1 - wexp{8(G ~'(w)?)
-exp(n, + 82/2)87) = [Ig-,,+1 exp{ @A /2(1 — &) }.

Now using (2.19) and Lemma 2.4 one obtains (2.16) by examining the cases. []
Suppose it is desired to consider instead of G(x) and F(x) in (2.2) the distribu-

tions P{ZF. A Z? < x} and P{S?. A\(Z, + a;)* < x)} respectively. Define dis-

tributions analogous to G, and F, by dropping terms in the summation as in (2.1).

lim

(72 Ty + 1/2)

U—>
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These distributions exist if 2\, < oo in addition to (2.1). Similar results to the ones
proved hold in this case also.

(1) Theorem 2.1 and Corollary 2.2 hold with the factor exp{ —A,/2A,} removed.
(2) Lemma 2.3 holds with the factor exp{ —n,/2} removed.
(3) Lemma 2.4 and Theorem 2.5 hold as stated.

The results for efficiency calculations in the next section are Lemma 2.4 and
Theorem 2.5 which have the same form regardless of whether or not asymptotic
centering is effected.

We conclude this section by noting the possibility of using Corollary 2.2 to
approximate the tail probability of the null distribution G. If n;, = 1 then G,(x) can
be found from chi-square (one degree of freedom) tables or normal tables.
Consider the example A\, = 1/k, k = 1,2,- - - . The right-hand side in Corollary
2.2 is found to be exp{(y — 1)/2} where v is Euler’s constant. The distribution G is
tabulated in de Wet and Venter (1972) page 147. They find the upper tail
probability 1 — G(3.5) = .048. The approximation suggested by Corollary 2.2 is
1 — G@3.5) = 1.23539 (1 — G,(3.5)) = .042. This holds out the possibility of having
in general a useful and simple approximation to the distribution G' of an infinite
sum, in the region where hypotheses would be rejected.

3. Efficiency and optimality of quadratic tests. Suppose x is a random variable
on a measurable space (x, B) with unknown probability law £(x). Relative to this
unknown law suppose one would like to test a null hypothesis H,, against an
alternative hypothesis H,, based on »n independent copies of x. In some applica-
tions (Section 4) H, is simple and in others composite. In all cases H, is composite.
For two suitable tests of H, vs. H; we are interested in asymptotic relative
efficiency measures for a particular sequence of alternatives converging to one
member of the null hypothesis. Accordingly in this section we will consider a
sequence of simple alternatives converging to a simple null hypothesis which
specifies £(x). We will also call these hypotheses H, and H,; but no confusion will

result.

For eachn=1,2, --- let x,,i=1,---,n, be random variables which are
independent under the null hypothesis H, : £(x,;) = Popi = 1, - - -, n, for some
fixed probability measure P, on (k, B) as well as under the alternatives H, : £(x,,)
=P,i=1--,n Let P, be dominated by Py, with dP,,/dPy; = 1 + n"%h,,
for some sequence {A,,} in L, = L,(x, B, Py ) converging to hy € L,, say. Note
that fhydPy = 0. The sequence {P,} of product measures P, = P,; X - - - X P,
n times, is contiguous to the sequence {P,} of product measures P, = Py,
X+« + X Py, n times. We are concerned with tests which reject H, for large values

of a test statistic 7,,(Q) satisfying

(3.1 T,(Q) - ”_lzi;ejQ(Xm" an) _’POO’
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where Q is in the following class:
2 = {Q(’ )IQ(S’ 1), s, t €k,
is a symmetric non-zero kernel on
kX Kk  with  [Q%:, -)dPy X Py < oo,

JQ(, )Py (dt) = 0 ae. (Py)

and 11Q(s, O)h(s)h(2)dPy; X Py, > 0,

VheL, with [hdPy; = 0}.

The last two conditions for Q to be in 2 can be described in terms of the
eigenvalues {\,}7-o and corresponding orthonormal eigenfunctions {f,}i., of
QU QC, Df(OPy(dl) = N fy ae. (Pyy), [ fifidPy, = 0 if k # k' and [f2dP,, = 1).
The next to last condition on Q is equivalent to requiring that A; = 0 corresponds
to the constant eigenfunction f, = 1. Since

[1Q(s, Yh(s)h(£)dPyy X Poy = SN([fih dPy)’,
the last condition on Q is equivalent to requiring that all eigenvalues be nonnega-
tive.

We will obtain in this section asymptotic efficiency measures of a test sequence
{T,(Q)) relative to another {T,(Q*)}, Q, Q* € 2. We will also obtain optimal
tests in 2 and in the class consistent against a/l alternatives, # € L,, [h dPy, = 0.
This class is

3.2)

2 = {Q(’ N €20 =0,f,=1A,A--- >0
{fe} o is a complete system in L, }.

In a particular application a family of tests will correspond to a subset 2, say of 2
(or 2). In Section 3 will be examples (Cramér-von Mises tests) where 2, C 2 and
the optimal test in 2 lies in 2y,

Consider two test sequences { 7,(Q)} and {T,(Q*)} where Q, 0* € 2. We drop
the dependency on Q and Q* and write {7,} and {7,*} and similarly for all
quantities that depend on Q or Q*. Theorem 2.1 of Gregory (1977a) shows that the
limiting distribution of 7, under Hy(H,) is of the form G(F) of (2.2) with
a, = [hyf, dPy,. The limiting power of the size a test is

(@) =1— F(G™'(1 - a)).
The notion of Pitman asymptotic relative efficiency of {7, } with respect to { T¥} is
the limiting ratio of sample sizes for the tests of common size a to achieve the same

limiting power B at the same alternative. This depends on a and B. It is not
difficult to see that the Pitman efficiency of {T,,} to {7,}} would be

33) e*/e wherep,z, (@) = B = p* o2, (a).
(The existence of (3.3) would follow if the power functions were continuous
monotone increasing functions of e and e*.)

Wieand (1976) has a general treatment of Pitman efficiency and has conditions
under which a limiting (a — 0) Pitman efficiency is the limiting approximate



QUADRATIC TESTS 123

Bahadur efficiency. We will study this. Now however consider the attempt at a
related measure of efficiency,

e*/e where lim, 0P,/ (@)/P* oy /2(a) = 1.

One might anticipate that this measure would exist and be the same as the limit
(a = 0) of (3.3). This is not true. From Theorem 2.5 it is seen that there is not in
general such a choice for e and e*. The cleanest comparison of the tests is the
following which does not involve the limiting ratio of sample sizes. Recall § and L
from Theorem 2.5. Here a, = [hyf, dPy, k=1,2, - - - .

(a) The test with the larger & is superefficient.

(b) If 8 = 8* the test with the smaller multiplicity for the
34) largest eigenvalue is superefficient.

(c) If & = 6* and n, = n} the test with the larger L is more
efficient (but not superefficient).

When n, = n} it is possible to obtain from Theorem 2.5 a type of asymptotic
relative efficiency involving the limiting ratio of sample sizes. If n; = n{ then

(3.5) e*/e = 8%/ (8*)

is the unique choice giving 0 < lim, 0P,/ (@)/s(wy/2 (@) < c0. There is some
difficulty with the efficiency measure (3.5) however since the limit above cannot be
made equal to one. A related concept is that of local asymptotic efficiency and its
limit as a — 0 (see Theorem 4 of Beran (1975a)). If Beran’s Theorem 4 can be
generalized to our distributions, this limit (@ — 0) of the local asymptotic efficiency
of {T,} with respect to { T*} will be [82/n,]/[(6*)?/n*]. This quantity can also be
thought of as the approximate value of lim, ,,p(a)/p*(a) obtained by using first
order approximations to the asymptotic power functions. We have not developed
this since we prefer the inferences from Theorem 2.5 where no approximation was
made to the asymptotic power function.

Consider now the relation of Bahadur to Pitman efficiency and the work of
Wieand (1976). Some notational variance must occur here to accomodate indexing
of null and alternative laws by a parameter . Write Py, (instead of Py,) for a null
hypothesis law and Py, (instead of P,;) for an alternative hypothesis law. For the
product laws write P, and P, instead of P, and P,. Since a particular sequence of
alternatives is not considered write the sample as x;,---,x, instead of
Xn © * s Xnn- Assume all expressions considered retain their meaning with these
substitutions. Contiguous alternatives considered earlier were characterized by a
function 4,; in the present context those same alternatives could be expressed for
example by

Instead of having test statistics 7,(Q) satisfying (3.1) we want (for Bahadur
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efficiency considerations) a so-called standard sequence of tests. Let

(.7) S,(0) =S, = {max(T,, 0)}*
where T, satisfies (3.1). Under the null hypothesis we have
lim,P(S,(Q) <x)=0 ifx <0
=G0) ifx=0

=G(x?) ifx>0
where G is given by (2.2). This limiting distribution has a mass point at zero but is
otherwise continuous, which essentially satisfies one of Bahadur’s conditions for
{S,} to be a standard sequence. Using Lemma 2.4 the other Bahadur conditions
are satisfied with approximate Bahadur slope c¢(8) = [fQ(s, £)dPy; X
Py, /max{\,} if c¢(8) > 0 when 8 + 6,. With (3.6) this becomes

(3.8) c(8) = (8 — 85/ Q(s, )ho()ho(1)dPy; X Py, /max{N,}.

Let c*(8) be the approximate slope of another such test. Then c(8)/c*(#) is the
approximate Bahadur efficiency. Wieand’s result equates the limit (a —0) of
Pitman efficiency to the limiting approximate Bahadur efficiency

() _ J1Q(s, O)ho(s)ho(2)dPyy X Py, /max{), }
c*(0)  [1Q*(s, Dho(s)he(t)dPy, X Py, /max{\}}

zkxk(f ho fdP 001)2/ max{A}
S A (S ho fi¥dPy,,)’ /max{A}}

The notion of Pitman efficiency used there is general and we think would
correspond to (3.3) for our applications but we need not be concerned with details
because of the nature of Wieand’s results: whatever is true as regards Pitman
efficiency considerations, any limiting (a — 0) efficiency notion is captured by the
limiting Bahadur efficiency lim,_, c(8)/c*(9) if the limit exists. Wieand’s principal
condition implying this result is called Condition IIT*. Below is a theorem concern-
ing Condition ITI* when the approximation in (3.1) is exact. Recall the notation
changes we have in the definition of 2. Here P, does not have to be determined
through (3.6).

THEOREM 3.1. For 0 near 8, let x,,* - -, X, represent independent random
variables with £(x;) = Py, i = 1,- - -, n where P, is a probability measure on some
space (k, B). Write the product measure Py = Py, X - - - X Py, n times, and let E,
be expectation under P,. Suppose the test statistics are S,, n=1,2,- - - given by
(3.7) where T, = n“IZ#jQ(xi, Xx;) for some Q € 2. Assume E,Q(x;; Xo) > 0 for
all 9 near 68 + 0,). If

(3.9) limy_, 4

E, Q(x1> X2) Q(X25 X3)

<B
E,Q(x X2)

(3.10) EgQ*x1» X)) <B  and
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for all 0 near 8,, where B is finite then { S, } satisfies Condition III* of Wieand (1976)
1
with b(8) = (] Q(s, )dPyy X Py }3.

Proor. The probability in Condition III* is
Po{(1 — &) < 82/nb*(8) < (1 + €)*}
> P{(1 —¢) <SZ/nb*(0) < (1 + &)}
=1 - P,{|S2/n — b¥(9)| > eb*(8)}
> 1 — P{|T?/n — b*(0)| > eb?*(0)}
—P,{T, <0} > (ife < 1)
1 = 2P,{|T?/n — b*(0)| > b*(0)}

>1- 2E0|n_22i9éjQ(x:'9 Xj) - b2(0)|2/32b4(0)~

The continuation is routine. []

The recommendation (3.4) and the limiting approximate Bahadur efficiency
measure (3.9) give us two ways of comparing tests. Consider now the problem of
finding an optimal test in a class of tests. Let

¢(Q, h) = [1Q(s, ))h(s)h(t)dPyy X Py, / [H°dPy,,
forQ €2 and h € Ly(x, B, P,) with [hdP,, = 0.
It is well known that
max{A,} = sup,e, $(Q, h).
It is easy to see that for Q € 2

max{A,} = sup,ep, jMP,ol-0¢(Q, h).

Given an alternative by € L, with [hydP,, =0 and a class of tests associated with
some 2, C 2, we have
(a) With respect to the recommendation (3.4) an optimal
test is one which (in order) (1) maximizes 82, (2)
(3.11) minimizes », and (3) maximizes L.
(b) With respect to the Bahadur efficiency measure (3.9) an
optimal test is one which maximizes

&(Q, ho)/supser,; fMP,o,-O¢(Q’ h).
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It is not difficult to show that for the class of all quadratic tests (2, = 2) we have

(a) With respect to the recommendation (3.4) an optimal
quadratic test has n, = 1 and f; proportional to .

(3.12) (b) With respect to the Bahadur efficiency measure (3.9) an
optimal quadratic test is one which has an eigenfunc-
tion proportional to h, and corresponding to the largest
eigenvalue.

Observe that in (3.12b) no advantage is given to tests with small n,. However we
will see an example where the optimality question as regards a subclass 20
(Cramér-von Mises tests) can have the same answer using (3.11a) or (3.11b). In this
example specifying any eigenfunction determines the test in 2.

The general impact of (3.12) for power considerations is to focus attention on the
so-called first component of a quadratic test statistic, i.e., the part associated with
the largest eigenvalue. This same general conclusion was stated in Beran (1975a)
relative to a discussion of certain quadratic rank test statistics.

4. Applications. Limiting approximate Bahadur efficiencies will be called sim-
ply Bahadur efficiencies and limiting (a — 0) Pitman efficiencies will be called
simply Pitman efficiencies.

4.1 Tests of Fit: The Simple Hypothesis. Suppose H, specifies a uniform distri-
bution on the unit interval (0, 1), i.e., k = (0, 1) and P, is Lebesgue measure. Refer
to Gregory (1977a) Sections 3 and 6 for a discussion of chi-square and Cramér-von
Mises (CVM) tests. The expressions developed there allow the computation of
Bahadur efficiencies (3.9). Notice that the efficiency measure proposed there would
be the Bahadur measure if {22)\,3}% were replaced by max{\,}. To apply the
comparison of (3.4) it may be necessary to know for a given test the eigen-
function(s) associated with the largest eigenvalue.

Concentrate on the class of CVM kernels (call it 2,) generated by (3.3) of
Gregory (1977a) for all acceptable choices of a positive weight function w(x), 0 < x
< L. “Acceptable” weight functions would be the largest class so that 9, c 2.

Given a kernel with positive weight function w(x), 0 < x < 1, any eigenfunction
f and corresponding positive eigenvalue A satisfy

(4.1) w(x) = A" —f(x)/f5f,0<x <1
(see de Wet and Venter (1973) equation (21)). Conversely, a given function f with
feL,3f=0,
(4.2) f differentiable and
f monotone near 0 and 1

is an eigenfunction corresponding to positive eigenvalue A for the kernel generated
by weight function w of (4.1) if w(x), 0 < x < 1, is positive.
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Suppose there is an alternative sequence characterized by a function hg(s),
0 < s < 1, satisfying (4.2) with f = hy. If a CVM statistic can be found whose
largest eigenvalue (A;) corresponds to an eigenfunction (f,) proportional to A, (it
will be given by w(x) = — hi(x)/[3 ho) this statistic will provide the optimum
CVM test with respect to either (3.11a) or (3.11b). Such a test will also be optimum
among all quadratic tests. If such a CVM statistic cannot be found one can still use
the CVM kernel Q with w(x) = — hy(x)/ [3ho to construct a test which is Bahadur
optimum. Suppose for example that f, = c,h. Then the derived kernel Q(s, £) —
(A, = A, + )fi(s)f1(?) provides a Bahadur optimum test for any 0 <& < A,.

Consider the two examples w(x) =1 and w(x) = 1/x(1 — x). The kernels
involved are treated in de Wet and Venter (1973) (W_1 _1(x) there should be 7?)
with reference to Erdelyi et al. (1953). One finds the following largest eigenvalues
and unique eigenfunctions:

wx) =1 w(x) = 1/x(1 — x)

A=a2 A =271

fis) =2t cosms,  fi(s) =37@2s — 1),

0<s<1 0<s<l

Thus if 4y(s) = (constant)(2s — 1), 0 < s < 1, then the best CVM test uses w(x) =
1/x(1 — x). Two efficiency measures discussed in Section 3 are easy to calculate.
The Bahadur efficiency (3.9) is #2/10 = .98696. The measure (3.5) is 96/ 7t =
.98553. The measure proposed in Gregory (1977a) Section 6 assumes here the
unrelated value .417.

The following theorem gives conditions which guarantee the equivalence of
limiting Pitman and limiting approximate Bahadur efficiencies. The conditions
below imply Q is of trace class, ie., [oQ(s, 5) ds < oo. More work will show the
same result under broader conditions in the spirit of (3.6) of Gregory (1977a).

THeoREM 4.1. Let k = (0, 1) and F, for 0 near 0 represent the cumulative
distributions on (0, 1) in Theorem 3.1. Let Fy(x) = x, 0<x<1 Let

(s, t) = [o{I[s <u] — u}{I[t <u] - u}w(u)du.

If
(1) Fy(u A\ v) — Fy(u)Fy(v) < B{u \ v — w} for all § near 8, B finite,

and
Q) [fiu(l — wyw(u)du <
then (3.10) is satisfied.
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PrROOF. Write F, = F and E, = E. We have
EQ(x1 X2) Q(X2> X3)
= E{EQ(x;, x2)lxz}"
= E{[§(F(u) — w){I[x, <u] — u}w(u)du}2

= [oJo(F(u) = u)(F(») — »){F(u \ ») — vF(u)
—uF(v) + w}w(u)w(v)dudo

= foJo(F(u) — u)(F(») — v){F(u A\ ») — F(u)F(»)
+ (F(u) — u)(F(v) — »)}w(u)w(v)du dv
< Bfofol(F(u) — u)(F(») — v)|(u A\ v — w)w(u)w(v)du dv

+ {SN(F(u) — u)w(u)du)’.
Using (u A v — ur) < [u(l — u)]%[v(l - v)]% and the Cauchy-Schwarz inequality
the proof can be completed. []

Consider now the relative efficiency of chi-square tests to CVM tests. The § for
chi-square tests is given by the first factor of (6.2) of Gregory (1977a) and
approaches, as the number of cells approaches infinity while the maximum cell
width approaches zero, the § for the optimal CVM test. However with respect to a
CVM test which is not optimal, a chi-square test can be found (by taking a
sufficiently large number of cells) which is superefficient according to the recom-
mendation (3.4). With the aid of the formulas in Gregory (1977a) the Bahadur
efficiency (3.9) can be found. For example, let the alternatives be the ones against
which the CVM test with w(x) = 1/x(1 — x) provides the optimal quadratic test.
Then the Bahadur efficiency of the chi-square test using ¢ intervals of equal length,
to this optimal test is 1 — ¢ ~2. It can be shown that condition (3.10) always holds
for chi-square kernels.

In considering chi-square tests one should add the result noted in Gregory
(1977a): for any sequence of alternatives the limiting power of the chi-square test
approaches zero as ¢ (number of cells) — oo. This confusing picture involving the
comparison of chi-square tests to CVM tests points out the need for more work
relating efficiency measures to realistic criteria one would encounter in practice.

4.2 Tests of Fit: The Composite Hypothesis. 1If H, specifies a parametric family,
then a natural procedure is to estimate the parameters and apply a test of fit for a
simple hypothesis. For example, to test that a sample x,, - - * , X, is from a normal
distribution with unknown mean p and variance o2 one can test that x| = (x; —
a/é,- -+, x.=(x, — [1)/6 is a sample from a standard normal distribution using
a CVM statistic. (Of course the percentage points will be different from the simple
hypothesis case.) This latter CVM test is defined relative to the space k =
(— o0, 00) and null hypothesis law P, of the standard normal distribution. In
Gregory (1977a) details are given for such a test applied to xi, - - - , x;. The test
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statistic adjusted by a constant is shown to satisfy (3.1) where the kernel Q has
eigenvalues A, = 1/k and corresponding eigenfunctions f,(x), —co < x < oo,
which are the normalized Hermitian polynomials, k = 3, 4, - - - . The first two
eigenfunctions are “lost” due to estimation.

The test is location and scale invariant so we can assume that the true distribu-
tion under H, is given by the standard normal law P,,. Let alternatives P,
approach Py, according to dP,,/dPy, =1 + n=i .0 Where h, converges to A, in
Ly(x, B, Py;). Location (scale) alternatives correspond to hy(x) = f(x)(fy(x)), the
first (second) Hermitian polynomial. All location and scale invariant test statistics
satisfying (3.1) will have eigenfunctions orthogonal to the first two Hermitian
polynomials.

For the test we are considering the largest eigenvalue corresponds to the third
Hermitian polynomial. Therefore if Ay(x) is proportional to x*> — 3x, —c0 < x <
0, this test is Bahadur optimum in the class

2= {Q(-, )IQ € 2; all eigenvalues are nonnegative;

eigenfunctions corresponding to positive eigenvalues
are a complete system for the subspace of L, orthogo-
nal to the constant function and the first two Hermi-
tian polynomials.}

In Gregory (1977¢) this CVM statistic for the composite hypothesis of normality
is shown to be asymptotically equivalent to a statistic related to the Shapiro-Wilk
W statistic. There a class of statistics called generalized W statistics is defined and
depends on the choice of a weight function. (Actually generalized W statistics is a
misnomer since the original Shapiro-Wilk statistic has not been treated.) This new
class of quadratic tests does not coincide with the class of CVM tests and thus
provides additional choices in any search for an optimal test.

4.3 Tests for Symmetry. Suppose H, is the hypothesis of symmetry about zero.
Distribution free rank tests of the CVM type are discussed in Gregory (1977b).
Without loss of generality assume that the null hypothesis law P, is the uniform
law on the interval k = (—1, 1). The CVM statistics adjusted by a constant satisfy
(3.1), where the associated kernels Q(s, #), —1 <s,¢ < 1, depend on a weight
function w on the interval (0, 1). The kernels for testing symmetry may thus be
made to correspond (through w) to the kernels for testing uniformly on (0, 1). The
following conclusion is reached: (4A; f((1 + 5)/2), —1 < s < 1) is an eigenpair for
the kernel for testing symmetry if and only if (A; f(¥), 0 < u < 1) is an eigenpair
for the kernel for testing uniformity on (0, 1) and (1 + 5)/2), —1 <s < 1 is an
odd function. The other eigenfunctions f for testing uniformity on (0, 1) give
(A + 5)/2), —1 <s < 1, an even function and are related to testing for uniform-
ity on (—1, 1) given symmetry.

Now the conditions of Gregory (1977b) under which a test statistic would satisfy
(3.1), are restrictive; they would imply for example that w is a bounded function.
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We anticipate the same results for a larger class of weight functions including in
particular w(x) = 1/x(1 — x). In any case we are now dealing with kernels but will
speak of the symmetry test using weight function w, for any w that could be used in
Section 4.1.

In the previous manner let hy(s), —1 <s < 1, characterize alternatives ap-
proaching P, (uniformity on (—1, 1)). Logistic location alternatives when trans-
ferred to (—1, 1) give hy(s) = s, —1 < s < 1. From the remarks above and Section
4.1 it can be seen, for the symmetry test using weight function w(x) = 1/x(1 — x),
0 < x < 1, that hy(s) = s, —1 <s < 1, is proportional to the eigenfunction corre-
sponding to the largest eigenvalue. Thus w(x) = 1/x(1 — x) provides the optimum
CVM symmetry test for logistic location alternatives. (This is of course a different
conclusion from that reached in Gregory (1977b) since a different efficiency
measure was used there.)

The logistic location alternatives to symmetry, hy(s) = s, —1 <s < 1, corre-
spond to the transformation to (—1, 1) of the alternatives to uniformity on (0, 1)
used in the example in Section 4.1. We claim for these alternatives and for weight
functions w = 1 and w(x) = 1/x(1 — x), that the relative efficiency measures of
Section 3 are the same for the uniformity test on (0, 1) as for the symmetry test.
The kernels for symmetry are obtained from those for uniformity on (0, 1) by
deleting eigenpairs (A; f). However in the full expressions of (3.9) the terms
corresponding to deleted eigenpairs are seen to be zero using odd-even function
considerations. Therefore using either efficiency measure (3.5) or (3.9) the symme-
try test using w = 1 has efficiency approximately .98 with respect to the best CVM
test against logistic location alternatives.

Hajek and Sidak (1967) discuss the Wilcoxon signed rank test for symmetry. This
test is the optimum linear rank test for logistic location alternatives. The square of
the Wilcoxon statistic can be associated with the first component A, f,(s)f,(#) of the
kernel Q(s, t) of the best CVM test against logistic location alternatives.
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appreciated.

REFERENCES

[1] BerAN, R. (1975a). Local asymptotic power of quadratic rank tests for trend. Ann. Statist. 3
401-412.

[2] BERrAN, R. (1975b). Tail probabilities of noncentral quadratic forms. Ann. Statist. 3 969-974.

[3] DE WET, T. and VENTER, J. H. (1972). Asymptotic distributions of certain test criteria of normality.
South African Statist. J. 6 135-149.

[4] DE WET, T. and VENTER, J. H. (1973). Asymptotic distributions for quadratic forms with applica-
tions to tests of fit. Ann. Statist. 1 380-387.

[5] ERDELYI, A. et al. (1953). Higher Transcendental Functions 2. McGraw-Hill, New York.

[6] GREGORY, G. G. (1977a). Large sample theory for U-statistics and tests of fit. Ann. Statist. §
110-123.



QUADRATIC TESTS 131

[7] GreGORY, G. G. (1977b). Cramer-von Mises type tests for symmetry. South African Statist. J. 11

49-61.
[8] GREGORY, G. G. (1977¢c). Functions of order statistics and tests of fit. South African Statist. J. 11

99-118.
[9] HAJEK, J. AND SIDAK, Z. (1967). Theory of Rank Tests. Academic Press, New York.
[10] HOEFFDING, W. (1964). On a theorem of V. M. Zolotarev. Theory of Probability and Appl. 9 89-91.
[11] WIeAND, H. S. (1976). A condition under which the Pitman and Bahadur approaches to efficiency

coincide. Ann. Statist. 4 1003-1011.
[12] ZoLoTAREY, V. M. (1961). Concerning a certain probability problem. Theor. Probability Appl. 6

201-204.
DEPARTMENT OF MATHEMATICAL SCIENCES

UNIVERSITY OF TEXAS AT EL PAso
EL PAso, TeExAs 79968



