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ADAPTIVE MULTIVARIATE RIDGE REGRESSION

By P. J. BROWN AND J. V. ZIDEK
Imperial College, London and University of British Columbia

A multivariate version of the Hoerl-Kennard ridge regression rule is
introduced. The choice from among a large class of possible generalizations is
guided by Bayesian considerations; the result is implicitly in the work of
Lindley and Smith although not actually derived there. The proposed rule, in a
variety of equivalent forms is discussed and the choice of its ridge matrix
considered. As well, adaptive multivariate ridge rules and closely related empiri-
cal Bayes procedures are presented, these being for the most part formal
extensions of certain univariate rules. Included is the Efron-Morris multivariate
version of the James-Stein estimator. By means of an appropriate generalization
of a result of Morris (see Thisted) the mean square error of these adaptive and
empirical Bayes rules are compared.

1. Introduction. Consider a multivariate problem with ¢ responses and n
observations, Y, assumed to satisfy the standard multivariate linear regression
model

(1.1) Y=XB+e

with X a (n X p) matrix whose elements are treated as fixed known constants (see
Brown and Zidek, 1978, page 5.5 for discussion) and B a (p X g) matrix of
unknown coefficients. With e = (e!, - - - , &), the usual assumptions on the error
are

(1.2) E( &)= 0Cov(ee’) = yl,
Jl=1,-+ -, q when the least squares estimator of B8 (Rao, 1965, section 8c.2) is
(1.3) B = (X7X)" X7y

This has the additional property of being maximum likelihood when normality of
the error distribution is assumed. Writing 8 = (B!, - - , B9),Y = (Y, - -, Y9 s0
that Y/(n X 1) and B’ pertain to the jth of the g responses, (1.3) asserts equivalently
that ‘

(1.4) B/ = (XTX)"'XTY/.

This familiar univariate result for the multiple regression of ¥ on X is perhaps
unsatisfactory, as Sclove (1971) argues, in that (1.4) takes no account of I' = (y;),
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the between regressions covariance matrix. We will investigate estimators which
utilize information across all ¢ equations in order to estimate B’.

The focus for the method of estimation adopted lies in the record of fs
shortcomings; if X 7X is nearly singular B is unstable, i.e. for even relatively small
changesin k > 0

(1.5) B(k) = (X7X + kL) ~'XTY/

may vary dramatically. This fact provided the major stimulus for the rapid
development of the theory of univariate ridge regression following the papers of
Hoerl and Kennard (1970) whose progress is traced and well documented in
Thisted (1976). Although conceived in the context of an ill-conditioned design
matrix, the ridge regression estimator’s Bayesian roots (Lindley and Smith, 1972)
suggest that it is useful even when X is well conditioned (columns of X near
orthogonal).

The estimator given in equation (1.5) with a suitably chosen value of & is
adopted by Brown and Payne (1975) in the multivariate case ¢ > 1 where it proves
effective in “election night forecasting”. However, whilst this estimator is free of
the second of f’s shortcomings, it retains the first in that it does not take any
account of the covariance structure I' between responses. We propose as our
candidate for the role of multivariate ridge rule the estimator 8°(K) where

(1.6) B(K) = (XTX®L +1, ®K) '(X’X®L)p

where K(g X q) > 0 is the ridge matrix. Here ® denotes the usual Kronecker
product and B8’ (K) are (pg X 1) vectors of estimators of B = By, BP)T
where B, - -, B, are each (1 X gq) row vectors of B. Furthermore B is the
maximum likelihood estimator of B corresponding to K = 0.

This choice is justified in Section 2. There a Bayesian model is shown to yield
(1.6) as its Bayes estimator. These Bayesian roots are of primary importance for
they establish within the broad sphere of model formulation when the rule
proposed here is applicable. Furthermore they determine K and suggest how it
might be chosen in practical applications.

By letting K depend on the data, we obtain the adaptive rules referred to in the
title. In Section 4, the mean-square error performances of two such rules are
assessed, along with those of two of their empirical Bayes counterparts. This
assessment is carried out by means of Condition 3.4 derived in Section 3 as an
extension of a result of Thisted (1976) and gives a sufficient condition for a class of
estimators to be minimax with respect to various weighted or unweighted quadratic
loss functions and a fortiori to dominate the maximum likelihood estimator. These
examples are included to show that the domain of applicability of our results
encompass special cases of particular interest, namely, natural generalisations of
some distinguished univariate rules.

The results in this article are given for I' known. Usually we retain T in the
sequel even though we could, without loss of generality, let I' = . This is done to
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clarify its role and facilitate its estimation if unknown. Sometimes we will assume
T = I,. This obtains from transforming Y into YI‘"%, noting B transforms similarly
and therefore a different quadratic loss function applies. Berger et al. (1977)
investigate minimax properties of a class of estimators with I' unknown but their
class of estimators does not include our ridge class (taken in conjunction with the
loss we shall use). Whilst a Bayes rule ignores the weighting in a quadratic loss, we
shall see that dominance of the maximum likelihood estimator depends critically
on the particular quadratic loss involved (see also Bunke, 1975 and L.D. Brown,
1975), maximum likelihood being the only rule that retains minimaxity with respect
to all quadratic losses.

2. Deriving a class of multivariate rules. As with univariate ridge regression,
the canonical form of model (1.1) allows properties to be readily perceived.
Accordingly let

X=QAP , A=diag{A, - ,A,} , A, > - >N >0

where the (p X p) orthogonal matrix P is such that PX”XP” = A and the n X P
1

matrix Q equals XPTA~Z so that Q’Q = L. Now the model (1.1) may be

expressed as

(2.1) Z=Aa+e

with Z = QY, a = PB and " = Q”e. Note that Q just provides a linear reduction
from n to p observations within each of the g responses. With T’ known this
reduction retains the sufficient statistics for the (p X ¢) unknown matrix 8. It
results in the loss of a Wishart variable with (n — p) degrees of freedom. Naturally,
the Wishart variable’s distribution involves T and this variable would be used to
estimate T were it unknown. Writing e" = (¢’,- - - , &%) we have that (1.2)
transforms to

(22) E(eY) =0 , Cov(e”e")=vl,; jl=1--,q

so that the covariance structure is unchanged. In addition normality is assumed so
that amongst other things zero covariances imply independence.
Formally transforming X, B, Y as above, the analogous estimator to (1.6) satisfies

(2.3) @K)=(A®L+1® K)'A®1)a

where &, &'(K) are (pg X 1) vectors of estimators of a and a = (a;, - * -, @,)7 is
the (pg X 1) vector formed by stringing out a row-by-row as a column vector.
Generally, we will find it convenient to deal with row vectors (indexed by a suffix
rather than a superfix) in what is to follow.

Equation (2.3) is equivalent to

(2.4) ar(K) = aA (I, + K) 7}, i=1---,p
or

&;(K) = &1, - B(K)], i=1---,p

1



ADAPTIVE MULTIVARIATE RIDGE REGRESSION 67

where B,(K) = KL, + K)~! and is a matrix shrinkage factor. These shrinkage
matrices satisfy the inequalities

(2.5) Bl<"' <Bp

where A < B means B — A is a nonegative definite matrix.

Many estimators other than &*(K) of (2.3) satisfy (2.5). In selecting (2.3) from

amongst many contenders we were guided by two further requirements:
(i) &' (K) should be a Bayes rule for fixed known K.

(ii) For a suitably chosen estimator K of K, in the special case of equal
information (X”X = L), d'(ﬁ) should correspond to the Efron and Morris (1972)
multivariate extension of the James and Stein (1961) estimator.

Whilst requirements (i) and (ii) in conjunction with condition (2.5) by no means
uniquely specify our class of estimators, they do summarize important features of
them. Indeed appropriate prior assumptions yielding (2.3) satisfying (i), (i) and
(2.5) can be perceived from Efron and Morris (1972), and Lindley and Smith (1972)
as a;(/ X g) independently distributed such that

£(a;mi,IY) = Nq(mf,,l“;)
and if Z(p X q) = (Z], - - - , Z])" so that Z, is the ith row of Z, then
1 .
(2.6) £(Zla) = £(Z)]a;) = leq()\i2 a;, P).

Here £(Z;|a) denotes the conditional distribution of Z; given a. A straightforward
calculation shows

@) £(Z;, @) = Nysaq([N mi, mi ], 35,
where

1
r +l>\1r:.x )\izpa

“olanor

Furthermore
(2.8) £(z,) = Nqu(Xiimfx’ T +ATL,).
Combining equations (2.7) and (2.8) gives

. 1 e T
(29) R(@]Z;) = Ny (ml + (Z, — A7mi)(T + AT%) T'TiA?,

I, - ALL(T + AL) L)

In conclusion
(2.10) E(a)Z,) = mi, + (& — m')(K; + A1) 'A,

where K; = T%)"'T and &, = A 3IZ,. denotes the least squares estimator of a;.
To obtain equation (1.6) from (2.10) we specialize the above model, taking
K; = K, m/, = 0 for all i and setting

(2.11) &) (K) = E(a,|Z,) = 6,(K + AL) '\,
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Then with & represented by (&,, - - -, &p)T, and &'(K) correspondingly “stretched
out” as a pg X I vector,

&' (K) = diag{(I, + \['K) - -+, (I, + A, 'K) ' a

-1
= diag {I, + \['K, - - -, I, + AJ 'K }&.
Thus, since in general (A ® B) ® (C ® D) = AC ® BD
&K)=(,®L +A'®K) 'a
=(ARL +I,®K) (A®I)a.
Since (A ® L)d = A3QTY = PXTY,'(K) = P’a’(K) and PA®I, + L ®
K)~'P” = XX ® I, + I, ® K)~', equation (1.6) obtains.
REMARK 2.1. The Brown-Payne ridge rule. For I' = k~'T, it follows that
K; = K = kI, so (K; + AL)™'A, = A\, + k)7'I. Under these conditions then the
ridge rule of Brown and Payne (1975) is obtained.

REMARK 2.2. Efron-Morris estimator. With XTX = L, ie, A, =1alliIl=
L, T, =T, mi =0 alli, equation (2.8) implies

(2.12) £(&) = Ny, (0,1, +T,).
Equation (2.11) is, equivalently
(2.13) & = a1, - B],

where B = (I, + I,)~". The Efron-Morris(1972) estimator is obtained by replacing
B in (2.13) by its natural estimator B given by

A AT~ \—1

(2.14) B=(p—-qg-1)(-8a) .
REMARK 2.3.  Implied prior for B. The prior assumptions m{, = m, I, =T,, i =
1, - -+, p which lead to estimator (2.10) translate to the same prior assumptions on

the original parameter B. More generally, if X”X has a block diagonal structure,
then it is easy to see that provided the priors on coefficients B; for variables i in the
same block are identical, then a will have the same prior structure as B.

REMARK 2.4. Known dependent variable singularities. For example, suppose
that for each of the n observations 27_,Y, were constant, that is, in the notation of
Section 1, Ye] = ce] where Y is n X g, e,, e, are (1 X q), (1 X n) vectors of ones
and c is the scalar constant. This would be the case if the ¢ dependent variables
were proportions. We leave aside here the added question as to whether the linear
model is appropriate, assuming it to be, at least over the range of the data. Now, of
course, of the ¢ dependent variables one may be removed but for reasons of
symmetry, this may not be desirable. If this constraint applies, then it is sufficient
that e,8” = (c,0,_,) where 0,_, isa 1 X (p — 1) vector of zeros and Var(eeT) = 0.
The constraint on B translates to the same constraint on a (provided each of the
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(p — 1) explanatory variables have been centered). Thus appropriate prior assump-
tions might be

i T P = . 1,7
mee =0,i=2,---,p;me; =c

elel =elel =0, i=1---,p.
These conditions ensure that the estimator (2.10) with generalised inverses, gives
rise to predicted g vector responses which satisfy the constraint of this remark.
Finally, if the constraint was thought to hold only approximately then the prior
assumptions could be modified accordingly with e, I'e], e,Tel small rather than
zero.

3. LS estimator dominators. The natural, multivariate extensions in Section 3
of univariate empirical Bayes and adaptive ridge rules have a common form,
namely,

@3.1) & =q[L, —B],i=1---,p

where & denotes the LS estimators in the canonical case, & = (&, - -, &),
A . R |

(3.2 B, = row/(c], + 2o wjdla,)

7> 0,¢, > 0, w/ > 0 are arbitrary scalars and v; = A" !for all i. When g = 1, the
form proposed by Morris (see Thisted, 1976) results. Conditions are derived below
generalizing those of Morris and of Thisted (see Thisted, 1976) to the case ¢ > 1,
which, if satisfied by &;, imply for prespecified scalars L, > 0, all i,

(33) ESL(& — a)(&] — «)" < ESL(&; — )@ — a)".

Note that if L, = 1 all i, the right hand side of inequality (3.3) is Etr(@ — a)(a@ —
)T = Etr(B — B)(B — B)” since & = PB, a = PB. Another case of particular inter-
est is that in which L, = A, for all i as Dempster (1973) points out, this case arises
when the mean of the sum of squares of prediction errors at the n design points
Etr(Y — XB)(Y — XP)7, is used to measure the performance of f. Quadratic
prediction loss at m future points has been adopted by Goldstein and Brown (1978)
following Brown (1974). Different m point designs lead to different L,i =
1, - ,p, where L, may be zero (inevifably so when m < p). Prediction at the
design points, L, = A, favours estimators which only slightly shrink the poorly
estimated coefficients (small A)).

Our derivation of the required sufficient conditions follows that of Thisted (1976)
which in turn depends on the method of unbiased risk estimation proposed by
Stein (1973). Consider firstly, the case I' =1, and the estimator in (3.1) for
arbitrary differentiable functions {B,}. Let

R,(a;) = E(a; — a;)(d&; — a,.)T, i=1---,p.
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Then, as is easily shown
(34) Rx(‘i:) — R(&) = A~ IE[Ziﬁiﬁi ZiT - 2Ziﬁi{ziT - }‘l%arT}]
Write
B, =B, --,B9,2=(2, --,Z), i=1,---,p.
Then integration by parts yields
SL[R(&) - R(&)] = EZZ_ N\ 'L[ZBATZ] - 223_,9(2B/)/32Z]].

Thus if

ConprrioN 3.1. 2\~ 'L{Z.B,ATZT — 232_,8(Z,B))/9Z]] < 0 holds with probabil-
ity one, & is a superior alternative to a.

Condition 3.1 is not very useful for picking a specific alternative to a. Successive

and more useful refinements are given below in Conditions 3.2-3.4.
Set B, = [C,(Z)]"';0(Z,B})/9Z] may now be computed. The result is

o(zB,)/32] = ¢C7(2) — 2,C7'(3C,/9Z})C;!
where dA(x)/9x in general denotes the elementwise matrix of derivatives w.r.t. the
real variable x and e;:1 X g is the vector whose elements are 0 except the jth, it
being 1. Thus
5,0(z,8])/07] = u{[azB)/92)]", - - - , [0z B) /02717 )
= trC; ! — trD;

where
(35) D, =D,2) = {[Z2,7'(3C,/9Z))C ], - - -, [Z,C71(3C,/929)C T}

These calculations may be summarized as follows. If
(3.6) é; = &I, - ¢7(2)], C, >0,
and

ConpITION 3.2. 37\ 'L[Z,C;7?ZT — 2trC[ ! + 2trD;] < 0 holds with proba-

bility one when D; is given in equation (3.5), then &" dominates @.

Finally, suppose C(Z) = (r,w/0)~ '[c1, + Zf_,w/&]a}], 7,, ¢, w/ > O being arbi-
trary constants and v; = A,”!. Then 9C,;/3Z; = (t,w/v) 'S wiv,0(ZTZ,)/0Z] =
77 '[efZ, + Z[e)]. It follows that trD, = 7,”'[trA, + trB,] where the jth rows of A,
and B, are, respectively, Z,C; 'e/Z,C; ' and Z,C['Z]e,C] . Since Z,C'e] and
Z,C;'Z] are scalars, trA; = (Z,C; e[, - - -, Z,C; "e])Z,C; "] = Z,C*Z] and trB,
=Z,C;7'Z;'trC;". Thus

(3.7) D, = 77\ [Z,C7 2] + (wC)Z,C7'ZT).
From Condition 3.2 we deduce for this choice of C; that &’dominates & if

ConprITION 3.3. 3P\ LofZ,C72ZT(1 + 277"} — 2uC;7 {1 — 7,7 'Z,C7 2T} <

i=1
0, holds.
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To complete the analysis we give a generalization for ¢ > 1 of an important
special case (r = 1) of Thisted’s Corollary 5.9 (1976, page 55). Set
"f,'i =w, Q= Lio}w,

and let F = diag{F,,- -, F,} where F; >F,> - - > F, denote the eigen-
values of ijdf&j. The orthogonal matrix, O(q X q) is chosen to satisfy OFO’ =
3P ,wa&; so that F = 37_,wUU, where U; = &0. Condition 3.3 may then
alternatively be written

(3.8)

0 >3, iT,-[w,-{U,.(c,.Iq + F)°UT (7, + 2) + 2tr(c], + F) 7' Uy(gl, + F)7'UT)
—2teel, + F]7'].
The right hand side of this last inequality is, with H¥ the jth diagonal element of
H;:=(¢I, + F)™'-wUTU,
[t=,0m[ (r + D(cl, + B +23,.(q + F) 'L |H,] - 23,2,0(c; + F) ™'
= S,{Zi0n[(; + E)7\(r, + 4) + 23,4, + F,) "' |8}
-23,3,0m(c, + E)™'
=3,{Sde; + F)7'[Qr(r, + HHI + 2073, H™ ]
-23,0m(c; + F)~'}
< E{max,.Q,.T,.(v-,. + 4)(c, + F})_' + 2(q — )max;Q;7,(¢; + F})"
—23,0:7(c; + F})_l}
since I, — S,;H; > 0. It follows that @ dominates & if

ConDITION 3.4. max,Q,7,(t; + 4)(¢; + H! + 2(¢ — Dmax,Q;7(c; + £)™' <
23Qi1(c; + )1, ¢t > 0 holds.

This last condition reduces to Thisted’s (1976, page 55) when g = 1 and his
function r, satisfies r(¢) = ¢.

REMARK. When T # I, &, etc. are computed with Y replaced by YI'™3.

4. Adaptive multivariate rules. A number of existing empirical Bayes [cf.
Subsections 4.1, 4.2] and adaptive ridge [cf. Subsections 4.3, 4.4] rules for g = 1
have formal extensions to the case ¢ > 1. In this section these rules are presented
along with sufficient conditions derived from Condition 3.4 for their dominance of
the LS estimator. As the works of Stein (1960), Sclove (1971), Efron and Morris
(1972), Baranchik (1973), and Zidek (1976) would suggest, dominance over the LS
estimator is increasingly harder to achieve as ¢ — p. This is reflected in Condition
3.4 by the increasing size of the second term, 2(¢ — I)max, ;¢ , Qim(¢; + fH~!so
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that as ¢ — p the inequality of that condition is increasingly difficult to satisfy.
Finding estimators which dominate the LS estimators is also made increasingly
more difficult as the breadth of the spectrum of X”X increases (Thisted, 1976).
Work relevant to these considerations is found in Berger (1978).

Many regression procedures have been proposed; we will confine our considera-
tions to the following notable examples, estimators suggested by the works of (i)
Berger (1975) and Hudson (1974) (see Thisted, 1976, page 75), (i) Efron and
Morris (1972) and James and Stein (1961), (iii) Hoerl, Kennard and Baldwin (1975)
and (iv) Sclove (1973). For some other methods of estimating K see Brown and
Zidek (1978).

In the following examples L, =1,i=1,---,p and p—qg—1>0 are
assumed.

4.1, Hudson-Berger rule. Here
a2 = a[1, - 70 - 4 - D(z747a)”
is suggested so, comparing this with equation (3.6) and the work immediately
following,
G=0w=0v" r=(p-q—1),0 =1lali.
Condition 3.4 becomes in this case,
(P—qg-Dp-g+3)+2q-D(p-g—-1)<2p(p-q~1)
ie. p—qg—1>0.

A

CoNcLusION. & #B dominates & providedp — ¢ — 1 > 0.
4.2. Modified James-Stein, Efron-Morris rule. In this case
(42.1) &M = a1, - (p5 - (q+ v,)" (247d) "]
$O
¢=0w=17=(po—(¢g+ l)v,,)+ o7, 0=10 al |

where (x)* = max(0,x) all x. This obtains from Section 2.2 by replacingp — ¢ — 1
by po — (¢ + 1)u, when the latter is positive. It is straightforward to show that this
results in an improved estimator and that Condition 3.4 is automatically satisfied.
This estimator, @, dominates & if v, = 1 and p > g + 1 thus proving anew the
main results of James and Stein (1961) and Efron and Morris (1972). The positivity
of po — (¢ + 1)v, implies this dominance of & will persist until the spectrum of
X7X becomes too widely dispersed.

4.3. Modified Hoerl-Kennard- Baldwin rule.
(43.1) &8 = &1 — (p— g— Dof(p — ¢ — Dol, + S,é7a)” ']

Thus
¢=(pP-q—-Dy,w=Lnr=(p—qg—1),0 =0} forall i



ADAPTIVE MULTIVARIATE RIDGE REGRESSION 73

Now Condition 3.4 is

gr+q+1)([p-q-1]o,+1) <2Z([p-q-1]g+ 1)
which is implied by
(43.2) Rp+qg+1)<2p0?

where v? = Sv?/p. Thus if (4.3.2) holds @M#XE dominates &; in particular if v, = 1
for all i, this dominance is assured by p > g + 1.

4.4. Sclove’s rule.

A ~ _ J— —1aTA~ )1
& =a[L - o(p — g = D5 {o(p — g - D5, + . 07'd7a,) )
where 5! = S0~ /p.
Thus

¢=@P-q¢-D5"v,w,=v ,r,=(p—gq—1ov'v,Q =0 forall i

Now Condition 3.4 is implied by
(44.1) (p—q- 1)Fu;,*—2[p?—(q+ )2 <0

where v? = Sv?/p. Thus if (4.4.1) holds & dominates . Indeed (4.4.1) indicates
that this will be so provided the eigenvalue spectrum of X7X is not too broad.
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