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APPROXIMATE AND LOCAL BAHADUR EFFICIENCY OF
LINEAR RANK TESTS IN THE TWO-SAMPLE PROBLEM.

By ERHARD KREMER
University of Hamburg

For linear rank tests in the two-sample case the concept of approximate
Bahadur efficiency (BE) is developed, and as the main result of this paper the
equality of the approximate and exact local BE is shown. According to a result
of Wieand, local approximate BE equals Pitman efficiency under rather general
conditions and as a consequence these three approaches to efficiency generally
coincide for the class of linear rank tests.

1. Introduction. In 1960/67 Bahadur introduced a concept of approximate
and of exact relative efficiency for the asymptotic comparison of two tests. Since in
the beginning the theory of large deviations (cf. Sethuraman (1970)), forming the
base for the exact concept, was not deeply enough explored, in most examples the
easier approximate concept was initially applied. But examples showed that for
alternatives far from the null hypothesis the approximate and exact efficiency,
though often coinciding locally (cf. Abrahamson (1965, 1967), Bahadur (1967)),
differ to a great extent. Therefore several authors advised to regard the approxi-
mate results with caution (cf. Abrahamson (1965), Bahadur (1967), Gleser (1966)).
The approximate concept received new attention, when in 1976 Wieand extended
certain results of Bahadur (1960a). He proved that the local approximate BE often
equals the limiting Pitman efficiency, a result which enabled him to compute the
limiting Pitman efficiency for certain nonparametric tests, mainly goodness of fit
tests.

Now it will be shown that for the class of linear rank tests the approximate
concept is also useful for treating the exact BE near the null hypothesis by proving
that the approximate local efficiency and the exact local efficiency coincide in
general for all linear rank statistics in the two-sample case (Corollary 4). For proof,
first the existence and the value of the approximate slope will be derived (Theorem
1). Then it is shown as the main result of this paper, that the approximate and exact
slopes of a linear rank statistic are equivalent when approaching the null hypothesis
(Theorem 3). Applying this result, an explicit formula for the exact local efficiency
in some subclasses of alternatives is derived (Corollary 5), and the usefulness of the
approximate approach for proving local optimality of special two-sample tests
demonstrated.
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2. Preliminaries. Let # € O be the parameter for the distribution of a random
variable (rv) X and consider the problem of testing the hypothesis § € H against
6 € K (H + K C 0). Usually the approximate BE of two asymptotic tests ¢ =
{¢}(i =1,2) can be computed by using the fact that the corresponding
sequences of test statistics are standard sequences (for the general definition of
approximate BE see Bahadur (1967) pages 311/312). Bahadur (1960) defined a
sequence {.S,} of real-valued test statistics to be a standard sequence, if there exist

(A) a continuous distribution function (df) F such that

lim, , P,(S, <t)= F(¢),Vt,Vl € H,
(B) a constant A, 0 < A < o0, such that
2-In[1-F@®)]=~h-2-[1+0(1)], ast— o0,
(C) a function 7 on K, 0 < 7 < oo, such that the stochastic limit of
n=12.8  equals (@) for each § € K.
Then c%(@) = h- [1(9)] is called approximate slope and for two tests @, based on
{(S™M,i=1,2, el ,(0) = c{(8)/c5(8) approximate BE of g, relative to ¢, at 4.
Finally we report the main results on exact BE of linear rank tests used in this
paper. Let R, = (R,;,- - -, R,,),n = n; + n, be the vector of the ranks of the
pooled sample X = (X, -+ -, Xy, X3, * * =, Xy, ), Where the X;, are indepen-
dent real rv’s with continuous df F,(i = 1, 2). Write ¥ for the set of continuous df’s

and define ® = ¥ X ¥. Then the two-sample problem may be described by the

hypothesis
H={((F,F):Fe€9%)}
and the alternative

K= {(Fl, F)E®:F, < Fz}.

Let © be furnished with a metric d, generating the topology of convergence in
distribution —q in both components of ¥ X %. In the following sections we
consider simple linear rank statistics

Tn = 2'i'l—an(Izm‘)

such that the function b,(u) = B,(1 + [n-u]) is related to a score-generating
function 5/(0, 1) by

2.1) lim, ., (b, — b)*d\, =0, 0< [b?>d\, < o0,
and the asymptotic sample size ratio determined by
(2.2) lim, , (n,/n) =s, forsomes € (0, 1).

Here A, denotes the Lebesgue-measure on (0, 1).
Woodworth (1970) shows that the stochastic limit #(6, s) = P, — lim,_, (T, /n)
exists and equals

(2.3) t(0,s) = s- [bG dF,
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for§ = (F), F;) € Kand G = 5+ F; + (1 — 5) - F,. Now write
(2.49) L ()y=r-t+s-Inz— [In((1 —s) + s-exp(r-b)-z)d\,

for ¢ € (4(b, 5), (b, s)) with
t(b,s) = s- [bd\,

t(b,s) =sup{s- [b-gd\|g €[0,s7"], fgdA, = 1};

where z and r are the unique solutions of the integral equations:

_ exp(r-b)-z _
(2:5) V(z’r)_f(l—s)+s-exp(r~b)~z ar =1
(2.6) W(z,r)=fs-b- exp(r-b) 2 d\, =t

(1—s)+s-exp(r-b)y-z

(cf. Woodworth (1970) page 259).

Let ¢ = {¢}(i = 1, 2) be asymptotic upper rank tests based on linear rank
statistics, satisfying the conditions (2.1)~(2.2) for some score-generating functions b;
and (0, s) € ((b;, ), t_(b,-, 5)). Then the exact BE of ¢, relative to ¢, at § equals
(cf. Woodworth (1970) page 263)

e, 2(0,5) = c(8,5)/cx(, 5)
with the exact slopes of tests g,
2.7 c(0,5) =21, (4(8,5)), i=12.

3. Main results and proofs. We begin by proving the existence of the ap-
proximate slope

THEOREM 1. Let @ be a rank test based on a linear rank statistic satisfying
1(8, s) > (b, 5). Then the approximate slope of ¢ at § = (F,, F,) € K exists and is
given by

(3.1) c(0,s)=(s-(1—s)"". ( 19, S)o'zb;. F'(b))

with
u(b) = [bd,, o*(b) = [(b — u(b))’ dA,.
Proor. First we normalize the scores of the tests statistic according to
~ B,(i) — B,
Bn(i) = - 1/2. 1 n(') = — 27172’
(mm) ™ [(n = D)7 21,(B,() - B, )"]”

F,.. = n_l ' 2’;-1Bn(i)'
Then Theorem 2.1 in Behnen (1972) implies that

Tn =n" 172, 2’:.- lﬁn(Rm')’ bemg

equivalent to T,, has asymptotic standard normal distribution for each § € H and
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according to (2.3) the stochastic limit #(8, s) of n=1/2. T under 6 equals

18, 5) = (s (1 = )™ (1(8, 5) — 1(b, 5))/0(b).
Therefore (A)-(C) are satisfied for the sequence {f’,,}, h=1landr=r1. 1|

ExaMPLE. Theorem 1 yields for the median test (b(u) = sign(u — 1/2)) the
approximate slope cz(0, s) = (s/(1 — 5)) - [2 - F,(G~'(1/2)) — 1%, for the Wil-
coxon test (b(u) = u — 1/2) cjy(0,5)=3-s-(1 —s5)- (2 [F,dF, — 1)* and for
the normal scores test (b(u) = ®~!(u),® denotes the standard normal df) cy(0, 5)
=(s/(1 — s)) - (J®'(G) dF,)*. For the subclass of normal shift alternatives with
Fi(») =9(y — w)/0), F,(y) = ®(y/0) and fixed o > 0 we get the approximate
efficiency curves presented in figure 1.

Comparison with figure 1 in Woodworth (1970) shows that also for linear rank
tests the approximate efficiency yields incorrect results for alternatives far from the
null hypothesis. The equality of the limit of the exact and approximate efficiency
for u/e — 0 will be proved in general in the following Theorem 3. We need for
this:

LEMMA 2. Suppose the score-generating function b is nondecreasing and {6}isa
sequence of alternatives 8, € K satisfying
32) 6, —,0,  forsomeb, € H.
Then
lim, ., (8, s) = 1(b, ).

Proor. Write 6, = (F, F;)), G, ;=5 F; + (1 —5) Fy. Since G; is continu-

ous, we have for the distributions P corresponding to the dfs F = F (Gj_'), i=
,2: s- P +(1 -3 sz =A,.So there exists a A, densnyflj of F with:

(3.3) s-flj <1,

and from (2.3)

(34) 10, 5) =s- [b-f; d\,

follows. For fixed ¢ > 0 we can choose 8 > 0 such that for M = {|b| < B} :
(3:5) JemlbldAy < e/(2 - (1 + 3)).

Since (3.2) entails: Flj —¢ A, and as b- I, is bounded, A,-a.e. continuous, we
have:

(3.6) |f4bdFy; — [ybd\)| <€/ (2-5),Vj > N, say.
Now (3.3)—(3.6) imply:
|1(8;, s) — (b, )| <+ |[pbdFy; — [pb dN| + 5 [cprlb] AN,

+fcmlb| - (s-fy) dN <e, VWj > N. 0
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egyn: approximate efficiency of the median test relative to the normal scores test for normal shift
alternatives ‘

ejn: approximate efficiency of the Wilcoxon test relative to the normal scores test for normal shift
alternatives

Now the main result of this paper is as follows

THEOREM 3.  Let in addition to the conditions of Lemma 2 b? be A,-integrable and
1(0;, 5) € (1(b, 5), (b, 5)), Vj. Then the approximate and exact slopes c°(8;, s), c(6;, 5)
of the test @ based on {T,} are equivalent in the sense:

lim, , . (c(8,5)/c%(8,, s)) = 1.
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Proor. Without loss of generality assume u(b) =0 and let z = z(r) be a
solution of (2.5). Then W(r) = W(z(r), r) is strictly monotone increasing and
continuous in r > 0 (cf. Woodworth (1970) Lemma 4, 5). Consequently the unique
solution r = r(¢) > 0 of (2.6) satisfies

3.7 lim, o+r(?) =0,
yielding after some manipulation (compare (2.5))
(3.8) - lim,_y+z(¢) = 1, for z(¢) = z(r(¢)).

In order to get an asymptotic expression of [, (#) for t >0%, we expand the
formulas (2.4)-(2.6) in a two-dimensional Taylor series in (z, r) at the point
(29 ro) = (1, 0). This results in the following asymptotic equations:

(3.9)

Viz,r)=1+(z—=1)-(1=s)+ (r?/2)-[(1 = 5)- (1 = 25)- 6*(b) + o(1)]
+r-(z=1D-01)=(z=1%(s- (1 =5)+ o(1)) =1
(3.10)
W(z,r)=s-(1—5)-6*b)-r+(r*/2)-[s- (1= s)- (1= 25)-n(b) + o(1)]
+r-(z=1-[s-(1=29)-(1=25)-6%b) + o(1)] + ((z - 1)*/2) - o(1)

={, forz—>1,r—-0,

with n(b) = [° dA,, and
@A) L (=r-t+(r*/2)-[o(1) = s- (1 = 5)-6%(])]

+r(z=1)-0(1) = ((z = 1)*/2) - [s- (1 — 5) + o())].
Then (3.7)-(3.9) entail for t >0 :

(2:1)-(1—S)—Lz_r—l)-(s-(l-—s)+o(1))=,,(1),

from which after some routine calculations z — 1 = o(r) for t —»0* follows. By
substituting this into (3.10) we get s- (1 — s) - 6%(b) - r + o(r) = t. So we have
shown r(¢) = t/(s- (1 — s) - 6%(b)) + o(?), z(t) = 1 + o(¢), for t — 0*. Then (3.11)
may be rewritten as
2

(3.12) L ()=Q2-s-(1—- )~ ——t—) + o(#?), fort —0*.

' a(b)
According to Lemma 2 we have: lim,_,, #(§;, s) = 0, which yields with (3.12) and
Q.7):

—>00

9., s)\?
(b s)= (s (1= 5)" (i?b)_)) + o8, 5)),) > 0.

Since we have from Theorem 1, that the first term of the right-hand side equals the
approximate slope c“(8}, s), the theorem follows at once. []
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ReMARK 1. The expression (3.12) corresponds to an expansion of Woodworth
(1970 page 262). But our conditions of Theorem 3 are more suitable for application
than the assumption of Woodworth (p. 261), i.e. z can be developed in a Taylor
series in r. In the special case of the Wilcoxon test (3.12) is already developed in a
paper of Hoadley ((1965) pages 72-75).

In analogy to Bahadur (1960a, 1967) for a sequence {6} of K with (3.2) the value
E, ,({6,},s) = lim inf,_, _ e, 5(6; s)

J—> 0

with the exact efficiency e, , shall be called exact and with the approximate
efficiency ef , the limit

E7((6),5) = lim inf,, ef (0, 5)

approximate local BE under the sequence {0;}.
Theorem 3 immediately implies:

COROLLARY 4. Under conditions of Theorem 3 for @, i =1, 2:

E, 2({0/}’ s) = EY 2({01}’ 5)-

REMARK 2. Now a theorem of Wieand (1976, page 1005) about the equality of
approximate local BE and Pitman efficiency can be applied to show that the
concepts of Pitman efficiency, approximate and exact local BE generally coincide
for linear rank tests. According to a lemma of Wieand (1976, page 1007) this
equality holds, if in addition to our conditions the distribution of a suitable
standardisation of the linear rank statistic converges to a normal distribution under
fixed alternatives and the rate of convergence is uniform in a neighborhood of the
null-hypothesis. Sufficient conditions for uniform asymptotic normality of linear
rank statistics are given, e.g., by Chernoff, Savage (1958), Hajek (1968) and Pyke,
Shorack (1968).

4. Applications. Corollary 4 enables one to compute the exact local efficiency
using the approximate approach. Under some regularity conditions an explicit
formula for the exact efficiency is derived in

COROLLARY 5. Let score-generating functions b(i = 1, 2) be given, satisfying the
conditions of Theorem 3 and being continuously differentiable in (0, 1). For F € &
denote by K= {(Fa, F):A € (0, A)} some subclass of K with t((Fy F),s) €
(t(b,, s), 1(b,, 5)), VA € (0, A), and

4.1) F,—qF, for A—O.
(4.2) The derivative f, = 9F,/93A exists and satisfies for some function f:

im,_ fy =f F—ae, V{A} withlim; A =0.
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(4.3) There are F-integrable functions h(i = 1, 2) such that for the derivative b; of
band Gy, =s-Fy,+ (1 —s)F:

|B/(Gy) - fal <h, F—ae, VAE(@A),i=12.

(4.4) [b/(F)-fdF # 0,  for at least one i.
Then the exact local BE of @, relative to ¢, equals

: by(F)-fdF]* o*(b,
@5) E({(Fy, F)}, ) =“ng1¢§-de} 'ozzbli

Proor. Here (2.3) is simply: 4((Fy, F), s) = w(b,) — (1 — s) - [b(G,)dF. From
Lemma 2 we know lim, t,.((FAI, F), s) = s- (b, and (4.1)—(4.3) entail

a¢,
limj—> P ( — (( ‘Fg‘,A_F‘)_, S_)

Using ’Hopital’s rule, we get from (3.1), (4.4) and Corollary 4 the above statement.
0

,V{A,} with lim, ., & = 0.
)IA-A, =5 (s—1)- JB{(F)-fdF,i=1,2.

ReMARK 3. Under a stronger set of regularity conditions, Chernoff and Savage
(1958) derived (4.5) as an expression for Pitman efficiency. This correspondence is
a direct consequence of our remark 2.

Except for simplifying the computation of the exact local BE one can use
Theorem 3 for proving the optimality of tests with regard to the local BE. The test
¢, shall be called local B-optimal (cf. Bahadur (1960b, 1967)) for K C K, if for
each other test ¢, and each sequence {6} of K with (3.2) E, ,({6},5s) > Vs €
(0, 1) holds. Let 8, = (Fy;, F) and §;, = (G;, G)) with G; = s-F; + (1 — s5) - Fy,.
For proving the local B-optimality of a test ¢ it is sufficient to show (see Bahadur
and Raghavachari (1970, 1972)): lim;_, [c(6;, 5)/(2 - K*(6;, 0:-))] = 1 and under the
conditions of Theorem 3:

(4.6) lim, [ c*(8;, 5)/ (2 - K*(8, 6))] = 1.
Here K* denotes the Kullback-Leibler-information number (cf. Bahadur and
Raghavachari (1970, 1972)) for the two-sample case, i.e.

K*(8,8) = s+ [ In(f,) dF,; + (1 = 5)- [ In(fy,) dFy,

where f; are the densities of Fi(i = 1, 2) w.r. to G,.

ExaMPLE. For the subclass K C K of Lehmann alternatives 8 = (F,, F) with
F€ % and Fy, = (1 — A) - F + A - F? one obtains the approximate slope of the
Wilcoxon test:

(A, s) =s-(1 —5)- A2/3,
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and the Kullback-Leibler-Information number with § = (G,, G,):
K*(6,0) =(1-5)/2+ (s/(4-4))-[(1 + A In(1 + A) — (1 — A)*- In(1 - 4)]
+(@-s-8)7"[(1 =58 In(1 —s5-4)
—(1+s-8)% In(1 +5-4)]

Using ’Hospital’s rule we get by direct calculation (4.6), i.e. the local B-optimality
of the Wilcoxon test for the subclass K.

Similarly the local B-optimality of the normal scores test for the subclass of
normal shift alternatives and of the median test for double-exponential shift
alternatives can be derived. Since in these special cases the uniform asymptotic
normality of the test statistics can be proved, we get from Remark 2, that the local
B-optimality in the above examples is nothing else than the optimality in the sense
of Pitman efficiency.
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