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Henry Scheffé was born on April 11, 1907, in New York City. His father and
mother were German, originally from Alsace. He went to elementary school in
New York and graduated from high school in Islip, Long Island in 1924. Following
graduation, he entered the Cooper Union Free Night School for the Advancement
of Science and Art to study electrical engineering, and in 1925 became a student at
the Polytechnic Institute of Brooklyn. There his grades were all A’s except for a D
in mechanical engineering which on reexamination was changed to an E! During
this time he also worked as a technical assistant at the Bell Telephone Laboratories
and took a training course there.

In 1928 he was admitted to the University of Wisconsin with advanced standing
to study mathematics. The record shows but one course related to statistics. It was
“Theories of probabilities (sic) and methods of least squares” given by Warren
Weaver. Scheffé was an intercollegiate wrestler at Wisconsin. (Contrary to
widespread rumor, he acquired his broken nose at the age of three, not in
wrestling.) He received his B.A. with high honors in 1931 and remained at
Wisconsin for graduate study, obtaining his Ph.D. in 1935. His thesis, written under
R. E. Langer, on asymptotic solutions of certain differential equations, was
published in 1936 [S1]".

During the years 1935-1938, Scheffé taught mathematics at the University of
Wisconsin, at Oregon State University, and at Reed College. His first statistical
paper [S3] was written at Oregon State and appeared in the American Mathemati-
cal Monthly in 1942,

At some time in 1940-1941, he decided that the field of mathematical statistics
promised more interesting opportunities for research than analysis. (Harry Goheen
remembers that when Scheffé found that parts of his thesis subject had already
been worked on by Gauss he felt that he should move to less well-travelled paths.)
This resulted in his going to Princeton in 1941 to teach (as Instructor from
1941-1943 and as Lecturer during 1943-1944) and to do research with the statistics
group in the Mathematics Department. In the company of Ted Anderson, George
Brown, Bill Cochran, Will Dixon, Alex Mood, Fred Mosteller, John Tukey, Sam
Wilks and Charlie Winsor it is easy to imagine his growing attachment to statistics.
From 1943 to 1946, he worked as consultant and Senior Mathematics Officer at the
Office of Scientific Research and Development, under a contract of this office with
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The numbers [S1], . . . refer to the list of Scheffé’s publications at the end of the article.
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Princeton University. In this capacity, he wrote a number of reports, which we
have not seen but which describe work carried out under the general heading
“Effects of impact and explosion.”

In 194445 Scheffé taught statistics at Syracuse University and from 1946-1948
served as Associate Professor of Engineering at UCLA. Actually, the first year he
was on leave as a Guggenheim Fellow, part of it in Berkeley where he began his
joint work with E. Lehmann. In 1948 Scheffé moved once more, this time to
Columbia University, where he remained as Associate Professor of Mathematical
Statistics until 1953, serving as executive officer of the department for 1951-1953.

Scheffé joined the faulty of the University of California at Berkeley as Professor
of Statistics and Assistant Director of the Statistical Laboratory in 1953 and
remained there until his retirement in 1974. In 1954 he was President of the
Institute of Mathematical Statistics of which he had been elected Fellow ten years
earlier, and from 1954 to 1956 he was a Vice President of the American Statistical
Association. The year 1962-1963 was spent at the University of London on a
Fulbright Research Award. From 1965 to 1968 he was Chairman of the Berkeley
department. It was a period of great unrest at the University, which put a heavy
strain on him. But in spite of violently conflicting attitudes by different groups of
faculty and students, he managed to hold the department together and keep the
atmosphere within the department pleasant. His fairmindedness was greatly valued
by all members of the department.

Scheffé enjoyed teaching and would recall the better students in his courses for
many years. He preferred not only to correct his own examinations, even when the
classes were rather large, but also to conduct the laboratory sections of his courses
himself without the aid of teaching assistants. He was equally conscientious and
sympathetic as a referee for several journals. An associate editor of one of these
(Technometrics) tells us that of all the refereeing he has seen, Henry’s was the most
patient and helpful.

Along with his teaching and research, Scheffé managed a schedule of daily
bicycling and swimming and he engaged in frequent summer snorkeling and
backpacking. He was a dedicated tourist, especially to Mexico and France, who
often returned with small works of art chosen with a sure and strongly individual
taste. He was sensitive to the beauties of nature and had a particular enthusiam for
desert country. He loved music and as an adult learned to play the recorder and
treasured the opportunity this brought of playing chamber music with friends. A
few months before his death, he had just finished reading all of Trollope’s novels.

In 1974 Scheffé retired from Berkeley and accepted a three-year appoinment as
Professor of Mathematics at the University of Indiana in Bloomington. In June of
1977 he returned to Berkeley, which he considered home and where he was
planning to prepare a new edition of his book. This was not to be—he died on July
5, 1977 from injuries sustained in a bicycle accident earlier that day.
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He is survived by his wife, Miriam, by his daughter Molly, now a mathematician
working near Boston, and by his son Michael, a commericial artist and designer in
Los Angeles. Friends and colleagues all over the world join them in mourning his
loss.

Work in Statistics. Scheffé’s first major statistical investigation was concerned
with two-sided tests and confidence intervals for the ratio of two normal variances.
However, in studying this problem he found that determination of the optimum
procedures he was seeking required first an extension of the Neyman-Pearson
theory of optimum tests. In [9], these authors had developed a theory of uniformly
most powerful (UMP) and (in the presence of nuisance parameters) UMP similar
tests. This theory was successful in dealing with an important class of one-sided
problems but typically was not applicable to two-sided alternatives. To overcome
this difficulty, Neyman and Pearson in [10] introduced the notion of unbiased tests,
but only for one-parameter situations, that is, when there are no nuisance parame-
ters. The main result of Scheffé’s paper [S4] fills in this gap by providing conditions
for UMP unbiased tests in the presence of nuisance parameters.

These results were applied to the problem of obtaining optimum tests for the
hypothesis of equality of two normal variances o® and 7> and corresponding
confidence intervals for their ratio # = 72/0? in the succeeding statistical publica-
tion [S6]. In the first part of this paper it is taken for granted that the hypothesis
will be rejected when the appropiate F-statistic T is either too small or too large, so
that the associated confidence intervals have the form T/B < 8 < T/A, and a
number of choices for 4 and B are considered: (i) minimizing E[log(T/A) —
log(7T/ B)] or equivalently B/ A to obtain the “logarithmically shortest” confidence
intervals; (ii) the reciprocal limits, for which 4 = 1/B; (iii) the limits correspond-
ing to the likeihood ratio test; (iv) those determined by the equal-tails test. In
particular, there is a numerical comparison of (i) with the more convenient limits
@v).

The second part of the paper uses the results of [S4] to show that the test (i) is in
fact UMP among all similar tests that are unbiased. This optimum test is now part
of the classical literature. It is a sign of the times that the paper does not mention
the disastrous sensitivity of the test to the assumption of normality. Many years
later, Scheffé devoted considerable attention to the problem of robustness in his
book [S29].

Having “disposed” of the problem of the equality of variances in the presence of
unknown means, it was natural for Scheffé to turn next to the dual problem of
testing the equality of two normal means when both variances are unknown, the
so-called Behrens-Fisher problem. Unfortunately, the conditions under which he
had derived his optimum tests did not apply in the new situation. Even more
seriously, there was now no obvious statistic corresponding to the F-statistic T in
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the earlier case, which would provide a class of “natural” similar tests of the
hypothesis. In [S7] Scheffé set himself the task of providing such a class. His
starting point was a test mentioned by Neyman and attributed by him to Bartlett,
for the case of equal sample sizes. If the two samples are then denoted by
X, ,X,and Y,,---,Y, and their expectations by £ and 7, the differences
Z, = Y; — X, constitute a sample of n from a normal distribution with mean
¢ = n — ¢ and variance o® + 72. Bartlett’s suggestion was to use Student’s one-
sample #-statistic calculated form the Z’s to test the hypothesis { = 0, i.e., n = &
When the sample sizes are unequal, m < n say, a statistic with a z-distribution can
of course be obtained by discarding n-m of the Y’s. Since this is clearly wasteful,
Scheffé considered a more general class of statistics which under the hypothesis
n = £ have a ¢-distribution and determined the member of this class which leads to
the confidence intervals for n = § with smallest expected length. He compared his
solution with the optimum confidence intervals when the value of § = 72/0” is
known, and showed that there is very little loss of efficiency.

Scheffé’s solution of the Behrens-Fisher problem received some criticism because
of its lack of symmetry, more precisely, because it is not invariant under permuta-
tions of the X’s among themselves and the Y’s among themselves. In the case
m = n for example, the denominator of the r-statistic is proportional to 3(Y; —
X,)?, which is clearly changed by such permutations. Scheffé reacted to this
criticism in a note [S12] in the succeeding volume of the Annals by showing that
there exists no symmetric ¢-statistic with the properties he had postulated.

This note is however not his last word on the subject. In 1970, more than
twenty-five years later, he returned once more to the Behrens-Fisher problem in
[S35] to join his earlier critics and disavow his ¢-solution, which he discussed in a
section entitled “An impractical solution.” Referring to [S7] and [S12], he wrote:
“These articles were written before I had much consulting experience, and since
then I have never recommended the solution in practice. The reason is that the
estimate s, [the estimate of the standard deviation in the denominator of the
t-statistic] requires putting in random order the elements of the larger sample, and
the value of s, and hence the length of the interval depends very much on the result
of this randomization of the data. The effect of this in practice would be deplor-
able.” He then proceeded to discuss some alternative solutions of the problem, in
particular the Welch-Aspin test and Welch’s #-test with estimated degrees of
freedom, neither of which has the similarity property, which earlier had seemed so
essential. The question of the existence of a similar test of reasonable structure,
which was initiated by Scheffé in [S7] and [S12], was answered negatively in the
1960’s by Linnik and his students. (An account of this work is given by Linnik:
“Lecons sur les problemes de statistique analytique.” Gauthier-Villars, Paris, 1967.)

The problem of similar two-sample tests is also the subject of the paper following
[S7], this time in a nonparametric context. If X,---,X, and Y, ---,Y, are
samples from F and G, Scheffé sought in [S8] to determine the totality of level «
tests of the hypothesis F = G when this common distribution is completely
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unknown, except possibly restricted to be continuous or to have a density. Ex-
pressed in modern terminology, his necessary and sufficient condition is essentially
that the conditional rejection probability given the m + n order statistics z,
<+ v+ <Z4y4p of the combined sample is o a.e.

[S8] was Scheffé’s first contribution to nonparametric statistical inference which,
particularly as the result of the recent work of Wald and Wolfowitz, was beginning
to become a “hot” topic. Scheffé himself contributed significantly to the heating up
process by following [S8] by the first comprehensive review of the new field [S9].

The longest section of his review paper is again devoted to the problem of similar
tests. It is pointed out how the structure of these tests, which had been uncovered
in [S8], extends to other nonparametric problems and encompasses the two im-
portant special classes of nonparametric tests to be found in the literature;
randomization tests and rank tests. The paper then goes on to describe the tests in
these classes which had been proposed for problem of randomness, the two-sample
problem, the hypothesis of independence, and the analysis of variance.

The second part of the paper deals with estimation. There is a brief section on
point estimation, which formulates the problem as that of estimating a functional
defined over the nonparametric class of distributions in question, and points out
how the concepts of unbiasedness and consistency continue to apply in this new
setting. The survey then turns to confidence sets and discusses confidence intervals
for a population median or the difference of two medians, and confidence bands
for an unknown distribution function. This second part of the paper concludes with
an account of the work of Wald and Wilks on nonparametric tolerance limits.

The third and last part of the paper is entitled, “Toward a general theory.” It
discusses the consistency criterion and the modified likelihood principle of
Wolfowitz and contains a short description of Wald’s decision theoretic approach
to statistics.

In his introduction to this survey, Scheffé wrote: “Only a very small fraction of
the extensive literature of mathematical statistics is devoted to the nonparametric
case, and most of this is of the last decade. We may expect this branch to be
rapidly explored however: The prospects of a theory freed from specific assump-
tions about the form of the population distribution should excite both the theoreti-
cian and the practitioner since such a theory might combine elegance of structure
with wide applicability. ”

The paper made an important contribution to the burgeoning new field by
providing it with a solid foundation for the spectacular development which Scheffé
had so accurately predicted, but it leaves the present-day reader with the question
of why the author himself did not participate in this development. He saw the
attraction of the new methods, and by detailing what had been accomplished made
clear some of the outstanding gaps. Why did he not try to fill some of them? A
partial answer may be found in his view of the principal task that lay ahead, which
is outlined in the concluding sentences of his paper: “. .. we have in the paramet-
ric case a large body of constructive theory which may be applied in particular
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examples to yield the optimum tests or estimates; thus we have the Fisher theory of
maximum likelihood statistics for point estimation, and the constructive theorems
of the Neyman-Pearson theory for the existence of critical regions of types 4, 4,,B,
B, and the related types of “best” confidence intervals. The contrasting lack of any
constructive general methods challenges us in the nonparametric theory”. This
program probably was not feasible then and in fact has not yet been carried out.
Scheffé himself later came to a quite different view of the needs of statistics. By
that time he no longer thought so highly of nonparametric methods and hence did
not return to that subject. '

During the next few years Scheffé wrote only a few shorter notes, some of which
may have grown out of his war work. Two of the these were his first directed to
applied statisticians. The first of these [S14] shows some of the relations between
control charts, the analysis of variance, and chi-square tests. The latter [S17]
combines an imaginative understanding of the problems of quality control en-
gineers with his typical thoroughness in expounding the operating characteristics of
the usual mean and range charts.

In spite of these more applied concerns, his heart at that time was still in
optimum theory and the problem of similar tests. In these interests he was joined in
1946 by one of us (EL); the collaboration led to a preliminary note [S16] and then
to the papers [S18] and [S24]. This work is concerned with two statistical problems,
determining the totality of similar tests for a given family of distributions and
finding unbiased estimators with uniformly minimum variance. A test represented
by a critical function ¢ is similar at level a with respect to a family %P of
distribution P if

EP¢o(X)=a forallP € P,
while 8 is an unbiased estimator of a real-valued functional g defined over & if
EPS(X) = g(P) forallP € P.

The tool which provides an easy key to the two problems in a large class of cases
is that of a complete family of distributions. If T is a sufficient statistic for %, then
T or more accurately the induced family %7 of distributions of T, is said to be
complete if

EPf(T) =0 forallP € 9 impliesf(r)=0 (ae. P7).
In the presence of such a complete sufficient statistic one easily obtains the results:
(i) A necessary and sufficient condition for ¢ to be similar at level a is that

E[¢(X)[t] = a (ae. P7).
and
(ii) Any functional g which has an unbiased estimator, has an unbiased estimator
with uniformly minimum variance, namely the unique unbiased estimator depend-
ing only on 7.
These results, together with various extensions and ramifications, provide simple
and unified proofs of most of the special results that had been obtained earlier by
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various authors on these two problems. It must however be emphasized that the
basic ideas underlying (i) and (ii) were not really new. In particular, the method (i)
of obtaining all similar tests had been used by Hsu in [5] while the method
underlying (ii) had been employed by Rao in [12], [13] and [14]. The main
contribution appears to be the isolation of the concept of completeness, which
plays an important role in mathematical statistics even beyond its impact through
the results (i) and (ii). Another concept which was introduced and investigated in
the course of this work is that of minimal sufficient statistic. This concept was
introduced independently in the year following the publication of [S18] by Dynkin
[3]. The two concepts are related by the fact that a sufficient statistic cannot be
complete unless it is minimal.

With this series of papers, Scheffé’s concern with similar tests and optimality
theory, which had started with his first major statistical paper in 1942, essentially
came to an end. However, before abandoning the subject, he wrote one final paper
related to the problem of optimum tests, which grew out of the thesis of one of his
Ph.D. students, Stanley Isaacson. Scheffé’s interest had been primarily in the
problem indicated in the title of [S4], testing hypotheses with one constraint, that is,
which specify the value of a single real-valued parameter. Isaacson [6], at Scheffé’s
suggestion, had studied hypotheses specifying the values of two or more parame-
ters. For this purpose, he required an extension of the fundamental lemma of
Neyman and Pearson, and in [6] established sufficient conditions for a solution to
his optimization problem. In [S20], Chernoff and Scheffé generalized Isaacson’s
result, and proved that their condition is not only sufficient but also necessary.

The work described so far, which constitutes the first phase of Scheffé’s research,
was dominated by issues belonging to the domain of mathematical statistics. The
second phase begins with [S21]. It is devoted primarily to problems relating to the
analysis of variance and is concerned with issues belonging to the domain of
statistical methodology. The extent of his change of attitude is indicated by the fact
that in his comprehensive and rigorous book on The Analysis of Variance, the
optimality properties are compressed into five pages. The shift in point of view is
seen perhaps most clearly by an entry in the subject index. Under optimality
properties we find the sub-entry: “Of lesser importance than robustness”. The page
to which this entry refers contains the following footnote: “When I became aware
that the nominal probability of type 1 error for the standard test of the equality of
variances of two populations is invalidated by non-normality to the same order of
magnitude as found in Table 10.2.1, I found little consolation in the optimum
properties someone once established for that test (Scheffé, 1942).”

This development was not due to any relaxation in the intensity, depth or rigor
of his work. It reflected, rather , the growth of a well trained but extremely modest
mathematician into a more self-confident—though still modest—scientist who
wanted to be useful to a wider circle of research workers.

A short expository account for chemical engineers on the background of statisti-
cal methods [S19] was his first effort in the new direction. As a consultant for
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Consumer’s Union he became involved in the problem of “organoleptic” prefer-
ence tests. The resulting paper was on an analysis of variance for paired compari-
sons [S21] which extends the general methods of the analysis of variance to
situations in which only subjective degrees of preference between pairs of samples
are recorded. This becomes an analysis of differences, which is not transformable
into the more familiar partitioning of direct measurements. The designs and
methods of analysis produced have been widely used in many areas ever since.

The next paper, on judging all contrasts in the analysis of variance [S22], was
motivated in large part by the problems of his colleagues in applied statistics. There
are of course many settings in which experimenters—and hence statisticians—are
willing to commit themselves, before the results are in, to a specified set of
comparisons among the results. But there are at least as many other settings in
which the experimenter rightly refuses this restriction. He must see all that the data
tell him, and this may well require him to make comparisons that were not
foreseen.

The problem of multiple comparisons has been a source of concern to statisti-
cians and to others for a long time. It was J. W. Tukey who first devised a method
of simultaneously estimating by confidence intervals all contrasts among a set of
means like those usually produced in a planned experiment, all being independent
with the same variance. The method he chose—called the T-Method by Scheffé—
gives priority to the K(K — 1)/2 pairwise comparisons among K means, using the
critical point of the Studentized range as a multiplier of the standard error of each
mean, to guarantee with predetermined confidence coefficient that all intervals
cover their corresponding parametric values. These intervals are the shortest
possible (in expectation) for the differences between pairs of population means. But
the T-method pays a price for this in requiring larger intervals than need be for
more complex groupings, for example, for the comparison of the average of two
means with the average of a different set of three.

Scheffé set himself the problem of making allowances, which would control the
probability of no errors of coverage at preassigned confidence level, for the
experimenter who reserves the right to make any comparison among the means,
even those suggested by long mulling of data. He saw and proved that the
confidence ellipsoid in (K — 1)-dimensional space is equivalent to the intersection
of the sets between all pairs of parallel tangent hyperplanes that support the
ellipsoid. This proved that the confidence ellipsoid provides a confidence set (at the
same level) for all contrasts among the means (from one line of an analysis of
variance table). The size of the ellipsoid depends only on the value of the F-statistic
at the chosen level of confidence, and on K. Scheffé showed that the (infinite) set
of confidence interval statements given by the S-method for a given set of K means
is equivalent to the usual F-test in the sense that at least one confidence interval on
a contrast among the means fails to cover zero if and only if the F-test is significant
at the a-level. (He later discovered a forerunner of this result in a paper by
Working and Hotelling 1929.)
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The allowance for any observed contrast y = =X ¢, X; (2 ¢; = 0) is the interval
from ¢y — A to y + A where A is a constant times the estimated standard error of
y. The constant is calculated from the F-distribution with K — 1 and » (the degrees
of freedom for error) degrees of freedom. For the case K = 6, » = 18 and a = .05,
for example, the constant is 3.72. This (typical) value is disturbingly large to
statisticians accustomed to using a tabular ¢-value of, say, 2.101 for such cases. The
paper (in Tables 5 and 6) gives some numerical consequences of the latter practice.
Scheffé often said that he consoled himself with the thought that users who did not
mind using the F-test for overall tests of null hypotheses about a set of K means,
should not mind the values produced by the S-method since they were equivalent
to the F-test. He also suggested some relaxation of the size of the critical region by
setting « = .1, which of course results in some shortening of the expected values of
the intervals. In the example just given, the effect is to reduce the constant from
3.72 to 3.32.

One of us (CD) takes pride in the fact that his copy of this paper is inscribed “To
the guy who hounded me into this,” This required listening to long disquistions
throughout more than a year, on how messy the distribution problem was,
climaxed one evening at 11:30 with “Guess what; it’s the F-distribution . ”

Extensions, limitations, alternatives continue to be matters of active research and
controversy. R. G. Miller’s book [7] and recent paper [8] give an excellent overview
and bibliography up to 1977. Judging from the frequency of its citation, the
S-method is one of the most widely used devices in interpreting F-ratios found in
the analysis of variance and in regression.

An objection to the S-method, or at least to one interpretation of it, was raised
by Olshen [11]. Suppose that the S-intervals are reported only when a preliminary
F-test rejects the overall null hypothesis H. Olshen showed that the conditional
coverage probability (given that H has been rejected) which seems then to be the
probability of interest, is at least in some situations always smaller than the stated
confidence probability. The issue is further discussed in a note by Scheffé [S37]
together with a comment by Olshen and a rejoinder by Scheffé.

In this note Scheffé distinguished between two situations. In one only a test of H
is to be carried out, with no further statements in case of rejection. (This is
basically the case in which the parameters being tested are nuisance parameters,
which one hopes to discard). In the other, in which the parameters being tested are
of primary interest, rejection of H is to be followed by some confidence statements
for significant contrasts. Scheffé pointed out that in the latter type of situation, the
S-procedure (interpreted as consisting of an initial statement that H is accepted or
rejected, supplemented in the latter case by more detailed confidence statements)
has an overall probability of a correct statement equal to that claimed by his
method.

Finally, in his rejoinder following Olshen’s comment, Scheffé noted that the
difficulty is shared by many standard statistical procedures, since in fact studies are
usually published only when they report statistically significant results. The debate
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thus joins an important on-going discussion of differences between statistical
theory and practice.

The paper [S22] on the S-method was followed in 1954 by a study of partially
hierarchal (crossed and nested) models in the analysis of variance [S23]. Its purpose
was to describe as compactly as possible the effects of several process variables and
several sources of random variation on the corrosion resistance of sheet steel used
in making tin cans. A companion paper by the experimenter and the applied
statisticians Vaurio and Daniel [16] gave the details of the system and the
experiment. In a later letter to the same journal (see [S23]) Scheffé withdrew the
model he had used in favor of that of Wilk and Kempthorne [17].

His work on mixed and alternative models for analysis of variance resulted in
two papers [S25, S26], both published in 1956. These reflected his efforts to develop
“Model II” which he considered less well understood than “Model I”°, the so-called
fixed effects model. They constituted part of his program for the book The Analysis
of Variance that was taking shape during this period.

The paper on fitting straight lines when one variable is controlled [S27] contains
first a detailed explication of Berkson’s celebrated 1950 paper [1] and then a
generalization to sets of straight lines with possibly different parameters. The paper
solved an industrial consulting problem which he believed to be of frequent
occurrence.

The two papers on experiments with mixtures [S28, S32] were responses to real
problems in chemical and petrochemical industry. The former appears to be the
fundamental work in the field. It is extended, discussed and applied in a large
number of later papers by other authors. Scheffé devised symmetrical designs? for q
mixture components, x;, each at (m + 1) levels, called {q, m} lattices, and gave
symmetrical polynomial fitting equations of degrees 1, 2, and 3. The linear
equation (which contains no constant term) is:

7’=2¥Bixi’ i=1,...,q.
The quadratic equation (which contains no constant or squared terms) is:
n = ZB;x; + ZB;x;x;, withl <i <j<gq.

A canonical cubic equation is also given.

For each fitting equation, simple expressions for the least-squares estimates of
the coefficients are derived in terms of the observed responses, as well as formulas
for their variances. (The coefficient —4/3 in his equation (4.8) should be —12; the
— 3 should be +3.) Extensions to equations of the fourth order, to correspond to
gasoline blending problems, were made by Gorman and Hinman [4]. They also
included a useful explanation of the equations of lower order.

Scheffé’s second paper in mixture designs [S32] was also written in response to
applied problems. It is more difficult to read, even though as G. A. Barnard

20ptimality properties of these designs were established by Kiefer in Ann. Math. Statist. 32 (1961)
298-325.
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complained in the discussion following its presentation, the paper does not con-
form to Royal Statistical Society usage, since “it leaves too few loose ends for
discussants to jump on.” The title does not indicate that the paper handles
experiments with some mixture-variables (constrained by =x; = 1) and some
“process variables (unconstrained).” Perhaps it still awaits a more elementary
exposition to complete the bridge to physical application.

The Analysis of Variance [S29] is Scheffé’s magnum opus. It has established itself
as the basic work on the theory and application of that form of analysis. The
review in the Journal of the Royal Statistical Society [2] by D. R. Cox starts: “The
first adjective that comes to mind to describe this book is professional.” The review
ends:

Altogether this is a most important book, deserving to be widely read.
Statisticians working in fields where the analysis of variance is used extensively

are likely to find the book extremely valuable in consolidating their knowledge
of the theoretical side of the subject.

L. J. Savage, writing in Mathematical Reviews [15], concluded his review:

Whatever may be said in criticism is overshadowed by the merits of this book
which is unique in its field and will be indispensible to all who seriously do,
study, or teach statistics in connection with experimentation.

The long life of the first edition has moreover justified the judgments of the
reviewers. This must be attributed to its combination of thoroughness and general-
ity (e.g., in Chapters 1 and 2) with its intuitive and practical insights (especially in
Chapter 10).

The note on separation of variables [S34] extends a result on transformability to
additivity from the two-variable case given in his book (page 95 ff.) to any number
of independent (continuous) variables. It includes a number of examples, some of
them with surprising outcomes.

In his last major paper “A statistical theory of calibration” Scheffé attacked a
problem of great practical importance. The result was a thirty-four page treatment
of characteristic thoroughness but with no numerical example. (He was working at
the end on an expository paper that was to include several sets of real calibration.)
One of the inhibiting factors to its wide use must be the eleven-page set of tables
(of over 13,000 entries) giving values needed for actual use in calibration. Only two
values from the tables are needed for a single calibration problem. The tables are
extraordinarily condensed in that all entries are one- or two-digit numbers, less
than 18 in the first and less than 7 in the second. He gives a procedure that for
given a and 8, and for every possible sequence of later observations (after the
calibration curve is made), guarantees that the probability is > (1 — &) that the
proportion of true statements about coverage that are made is in the long run
> (1 — a)

Scheffé made path-breaking contributions both to statistical theory and to
methodology. Again and again he showed us that it is possible to solve problems



1160 C. DANIEL AND E. L. LEHMANN

posed by statistical practice on the firm basis of carefully stated assumptions. He
thus served as a model for younger statisticians, and his influence will long be felt
in the statistical world.

We gratefully acknowledge the assistance of the following persons who provided
us with information, and with comments and suggestions about earlier drafts
of this obituary: D. Brunk, C. Eisenhart, K. Green, W. Kruskal, D. Lowry,
F. Mosteller, 1. Olkin, M. Scheffé, S. Stigler, J. Tukey, G. Watson.
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