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ON A SCREENING PROBLEM'

BY JOSEPH A. YAHAV
The Hebrew University, Jerusalem

Fisher considered the problem of constructing sequentially a “better” finite
population from a given infinite one. The purpose of this paper is to prove the
optimality of Fisher’s procedure.

1. Introduction. Fisher, in his paper on sequential experimentation [1], consid-
ered a problem of sequential screening. In this problem one is interested in
selecting a finite number of female mice which have a specific genetic trait. Fisher
stated the problem and prescribed a sequential probability ratio test as a solution.
It is the purpose of this paper to prove the optimality of Fisher’s procedure and to
explain and generalize his ideas.

We consider a dichotomized infinite population. The proportion of 4-elements is
II and the proportion of A-elements is 1 — II. Given an element, we are not able to
tell if it is an A-element or an A-element. However, we can test the element, with a
given test procedure, so that we get a positive or a negative result, where

(1.1) P(+|d)=a,  P(+]|4)=8.

We assume II, @ and 8 to be known and B8 < a. Furthermore, we assume that an
element can be tested repeatedly with independent and identically distributed
results, conditional on being 4 or 4, satisfying (1.1).

Our target is to construct a finite population, of size N, consisting of elements
from the original population so that the proportion of 4-elements in the new
population exceeds IT*, where IT* > II.

As is easily seen, this condition can never be satisfied with a finite number of
tests unless « = 1 and B8 = 0. Hence we reduce our standard somewhat, and ask
that, for any element in the newly constructed population, the conditional probabil-
ity of the element being an A-element (given that the element was selected) is
greater or equal to II*.

The selection takes place in a sequential manner. There is a fixed cost C (C > 0)
for each test; there are no additional costs in the process. The objective is to
minimize the expected cost, subject to satisfying the standard.

Fisher prescribed the following procedure: take an element from the original
population, keep testing it so long as

(1.2) IT < P(A|the results on testing) < II*,
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and stop the first time the inequality in (1.2) is violated. If P(A|the results on
testing) > II*, then select this element. If P(A|the results on testing) < II, then
reject this element. Continue the testing until N elements are selected.

2. The case N = 1. For N = 1 we have to select one element subject to

(2.1) P(A|the element was selected) > IT*.

We restrict ourselves at this stage to procedures that do not permit recall of an
element that was tested and rejected. Thus, we test elements ¢, €, - - - until an
element satisfying (2.1) is selected. A sequential selection procedure is defined by a
sequence of bivariate random variables (T, 1), (T,, 1), - - - , (T, Ix). Where T,
is a stopping time for tests on element ¢ and
(2.2) L =1 if element i is selected

=0 if element i is rejected.
Hence, if ¢ is selected, K is a stopping time we have

(2.3) I =0, i=1,2---,K—1; I,=1
The total cost is then given by )
(2.49) Cost = C- X1,
where C > 0 is the cost per test.
Our objective is to find stopping times T, T,, - - -, and K so that the expected
cost is minimized subject to
(2.5) P(ey is an A-element|[, = 1) > II*.

Since the problem can be formulated as a negative dynamic programming
problem, it is enough to consider stationary procedures. For stationary procedures
we have (T}, 1) are i.i.d., so that

(2:6) E[=K.\T,] = E[T,].E[K].

Since E[T,] = o or E[K] = oo implies E[SX_|T;] = oo, it is enough to exhibit a
stationary procedure for which E[T;] < oo and E[K] < oo in order to conclude
that an optimal stationary procedure (if it exists) satisfies (2.6).
Since the I, are Bernoulli variables, K is geometrically distributed and we have
1
P(I,=1)

Let X/(g;) denote the result on the jth test of the ith element:

@7) | E[K] =

(2.8) X(g) =1 if the result on test j with element i is positive
=0 if the result on test j with element i is negative.
Let S,(g) = Z7_,X;(¢). Suppose T, = n, and Sy, = m. Then (2.5) is equivalent to
a™(1 - a)"""II S
a™(1—a)" ™I+ B™(1 - B)""".(1-1I)

*

(2.9)
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or
(2.10) LR (s) = (%)"’( : = ;)"""’ S %(*-1(1_—}[%—

LR, (g) is the likelihood ratio for ¢ after n tests.

We can conclude now that whenever we have n trials on element ¢ with m
positive results, so that (2.10) is satisfied, then there is no need for additional
testing and i = K.

We can therefore identify the stopping and selection region as follows: stop and
select ¢ whenever LR, (¢;) > II*(1 — II)/II(1 — II*). That is,

II*(1 — 1)
(1 — 1I*) } ’

It still remains to identify the stopping and rejection region. Consider the
problem of testing the hypothesis H,: “¢, is an A-element” versus the alternative
H,: “g, is an A-element.”

(T=ni=1) = LR (:) >

LeEMMA 2.1.  Using a Bayesian framework with P(H,) = I1, we have that Py (ac-
cepting Ho) = (v/(1 — ID)1 — II*) and Py(rejecting Hp) =1 — (I1*/TDy are
equivalent to P(Hg|accepting Hy) = I1* and P(accepting Hy) = v.

PrROOF. P(accepting H,) = I1Py (accepting Hp) + (1 — IT) Py (accepting Hy)
and
P(H,) - Py (accepting Hp)

P(accepting H,)

P(H|accepting H,) =

Let (T, I) denote the variables for any stationary procedure in our original
problems and let y = P(I; = 1). Consider a W.S.P.R.T. with P(type I error) = 1 —
(I1* /II)y and P(type II error) = y(1 — II*/1 — II). Applying Lemma 2.1 to this
test, we have P(H,/accepting H,) > II* and P(rejecting H,) = y. Let T* be the
W.S.PR.T. stopping time. Then we have E[T*] < E[T] and so E[T*]/y <
E[T]/y. We can conclude that for any stationary procedure that satisfies (2.9)
there is a W.S.P.R.T. which satisfies (2.9) and which does at least as well in terms
of expected cost.

The W.S.P.R.T. is defined by two constants, say By, B,, B, < 1 < B,; sampling
is continued so long as

(2.11) ‘ B, < LR, < B,.

We have already identified the upper bound as
_Ira -1

(2.12) Bl_l’[(l—l‘["‘)'

To identify B, we need two lemmas.

LeMMA 2.2. For the WS.P.RT., Ey[T], E4[T), and E[T] are nonincreasing
Junctions of B,
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Proofr. Immediate.

LeMMA 2.3.  For the W.S.P.R.T., P(accepting Hy|LR,) is a nondecreasing function
of LR,.

Proor. Note first that we have defined LR, as the likelihood under H,, divided
by the likelihood under H;, and that the acceptance region of H, was {LR, > B,}.
Given LR,, the continuation region can be viewed as a new W.S.R.R.T. with
boundaries B,/ LR,, B,/ LR, for observations n + 1,n + 2, - - - . Since both new
boundaries are decreasing functions of LR, the probability of exiting through the
upper boundary is an increasing function of LR,. For LR, < B, or LR, > B, the
result is immediate.

THEOREM 2.1. Among all procedures satisfying (2.5) the W.S.P.R.T. with B, = 1
and B, = (I1*(1 — IT)/TI(1 — II*)) minimizes E[T)/ P(selecting e,).

ProOF. Follows from Lemmas 2.1, 2.2 and 2.3.

3. N>2 For N >2 we have (Ty, I}), (Typ Iy, - -+, (Tikp Iig);
(To1s 1)), (T Iy, » -+ 5 (Taky Lrx)s (T In ) (T In)s - - - (T, Iyg,). Our
expected cost is E[C - 0 _ 55T, ].

Our problem is to minimize the expected cost subject to (2.5) for each of the N
elements. Since N is a constant, we have an N-times repeated problem of choosing
one element at a time, minimizing E [Eﬁ,ij] subject to (2.5). If we use a weaker
criterion, namely that (2.5) is to be satisfied on the average, then due to overshoot
over the boundaries we can economize and adjust the upper boundary B, accord-
ing to the accumulated average odds.

4. Remarks. It is clear from the analysis that the results are general enough to
include the case for which the test response is a random variable with a distribution
which depends on 4 and on A. If tests are not conditionally independent the
theory may fail.
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