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MONOTONE REGRESSION AND COVARIANCE STRUCTURE

BY GERALD SHEA
The University of Texas at Austin

The monotone regression of a variable X on another variable Y is of
particular interest when Y cannot be directly observed. The correlation of X
and Y can be tested if at least high and low values of Y can be recognized. If all
the components of a random vector have monotone regression on a variable Y,
and if they are all uncorrelated given Y, then an inequality due to Chebyshev
shows that marginal zero covariances imply that all but at most one of the
components are uncorrelated with Y. Cases are examined where marginal
uncorrelatedness of attributes implies their independence. Applications to con-
taminated experiments and to discriminant analysis are noted.

1. Imtroduction. Lehmann (1966) considered several progressively stronger
forms of bivariate dependence. The most general forms were “positive quadrant
dependence” where random variables X and Y have P[X <x,Y <y] >
P[X < x]P[Y < y] for all x, y and “negative quadrant dependence” where the
inequality between the probabilities is reversed. Such cases are implied by “regres-
sion dependence”, say, of X on Y, where P[X < x|Y = y] is monotone in y.
Regression dependence also implies an intuitively appealing relationship between X
and Y, namely that the expected value of X given Y = y is monotone in y; we say
that X has monotone regression on Y. Monotone regression is an intuitively
attractive model for the relationship between an unobservable condition Y and a
sign X that reflects changes in Y. This paper generalizes results presented in [8]
where the symptoms X, are regression dependent upon the stage Y of a disease. As
noted there, the assumptions that the X; are conditionally uncorrelated or indepen-
dent given Y, investigated here in Section 3, are motivated by certain discrimina-
tion procedures in statistical diagnosis.

2. Monotone regression. Let F(x|y) = P[X < x|Y = y], the conditional dis-
tribution function of X given Y = y. Suppose that X is regression dependent on Y,
that is, F(x|y) is monotone in y in the same direction for all x. Lehmann (1966)
notes that X and Y are then quadrant dependent; yet at the same time, the identity

E[X|Y =y] = ({1 — F(x|y)} dx — [% ,F(x|y) dx
shows that E[X|Y = y] is monotone in y.

DEerINITION 2.1. Let G denote the marginal distribution function of Y, and let S
denote the support of G. Suppose for all y in S that E[X|Y = y] exists. If
E[X|Y = y] is nondecreasing (nonincreasing) for all y in S, we say that the
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regression of X on Y is nondecreasing (nonincreasing). If either case holds, X is
said to have monotone regression on Y.

REMARK 2.1. As shown in the appendix, monotone regression neither implies
nor is implied by quadrant dependence. Also, monotone regression and quadrant
dependence together do not imply regression dependence.

LemMmA 2.1. Suppose that EXY, EX and EY exist. If the regression of X on Y is
nondecreasing, EXY > (EX)(EY); the inequality is reversed if the regression is
nonincreasing. Equality holds if and only if E[X|Y = y] = EX for ally in S.

PRrOOF.
EXY = [yE[X|Y = y] dF(y)
and
(EX)EY) = [sE[X|Y = y] dF(y)[sy dF().

Therefore the first part is immediate from the Chebyshev inequalities (a) and (b) in
the appendix. If S is a singleton set, the equality is trivial; otherwise, the equality
follows from part (c) of the Chebyshev lemma given in the Appendix since y is
strictly increasing in S.

REMARK 2.2. In certain applications, Y may not be directly observable although
low and high cases may be recognizable; for example Y may be the stage of a
chronic disease. If X is to be used to discern Y, it may be supposed that the

regression of X on Y is monotone; the following theorem and remark allow one to
determine whether or not a potential sign X actually presents information about Y.

THEOREM 2.1. Suppose that the regression of X on Y is monotone and that EXY,
EX and EY exist. Then X and Y are uncorrelated if and only if there exists some
Y yain S,y < y,and 0 < G(y)), G(y,) < 1 such that

2.1) E[X|Y < y,] = E[X|Y >),]
Proor. Equality (2.1) implies that
(1/P[Y < y1 ] nE[ X|Y = ] dG(y)
= (I/P[ Y >)’2])f(yz. oo)E[le =y]dG(»).

Since these are weighted averages of the monotone regression of X on Y, the
equality holds if and only if E[X|Y = y] is constant for all y in S. Lemma 2.1 then
completes the proof.

ReEMARK 2.3. Lehmann (1966) has shown that if X and Y are quadrant
dependent, then X and Y are independent if and only if they are uncorrelated. The
theorem demonstrates that if the physical relationship between X and Y can be
expressed by monotone regression and quadrant dependence, then equal means for
extreme cases of Y indicates that X offers no information about Y.
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3. Multivariate results. Sometimes a number of variates of attributes are
observed in order to learn about an underlying process that is itself unobservable.
For example X;, X,, - - - , Xx may be K distinct signs of a progressive structural
weakness or biological disease denoted by Y. Such signs are of value because they
simultaneously reflect the progress of Y; we assume that X, - - -, X; all have
monotone regression on Y. Further if there are no spurious correlations between
pairs (X;, X;) other than common dependence on Y, we assume that (X;, X)) are
conditionally uncorrelated given Y. :

In some applications it is possible to separate cases where Y = 0 from those with
Y > 0 although it is not possible to identify positive Y values. For instance, if Y is
the stage of a disease, Y = 0 corresponds to a state of health and ¥ >0 to a
diseased state. Therefore a necessary condition for conditional uncorrelatedness is
that X; and X; be uncorrelated given the healthy state. *

THEOREM 3.1. If X,,- - -, Xx all have monotone regression on Y, if the condi-
tional and marginal expectations of all products X,X; exist, and if all X;, X; are
pairwise uncorrelated given Y, then X,, - - - , Xy are uncorrelated if and only if at
most one X, is correlated with Y. '

PROOF. Chebyshev’s lemma and Lemma 2.1 show that if X; and X; are both
correlated with Y, then their marginal covariances are nonzero.

REMARK 3.1. Jogdeo (1968) showed that if X, X,, X; have

(3.1) P[X; < X1, X, < X5 X3 < x3] > B\ P[ X, < x],
3.2 EXX, = (EX,)(EX)) forall i#},

and

(33) E[X.X;|X,] = E[ X|X,]E[ X|X,]

for some k, 1 < k < 3, and i, j # k, i #j, then X, X, and X, are independent. In
some cases, there may be no apparent reason for assuming (3.3) although each X;
has monotone regression on an underlying condition Y. By Theorem 3.1, (3.2)
shows that at most one, say X, (Y), is correlated with Y. If @ priori Y is the only
physical link among X, X,, X, then

(3.3) E[X.X|X(Y)] = E[X|X(V) ] E[ X|X(V)]
may be assumed. The following theorem gives another set of conditions where

uncorrelatedness implies independence.

THEOREM 3.2. Suppose that X,, - - - , Xx are all conditionally independent given
Y, and each has monotone regression and is quadrant dependent on Y. Then
Xy, + - -, X are independent if they are uncorrelated.

ProOF. By Theorem 3.1, at most one X, say X, is correlated with Y. Therefore
quadrant dependence implies that X,, X5, - - -, X, are all independent of Y.
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Finally the distribution function of X, - - - , X
F(xp, -+, xg) = E[F(xv T ’xKIY)]
= E[Hf_lF(x,]Y)]
= I}, F(x) E[ F(x,|Y)]
= HﬁlF (:)-
ReMARK 3.2. Jogdeo (1977) considered an experiment where independent re-
sponses were contaminated by an outside variate. If each obsérvation has mono-
tone regression and is quadrant dependent on the possible contaminator, then

Theorem 3.2 shows that if the observations are uncorrelated, they are uncon-
taminated.

ReEMARK 3.3. Discrimination procedures based on an assumption of indepen-
dent attributes or clusters of attributes within each population have been reported
to be relatively successful [2, 7]. This may be due to the use of marginal distribu-
tions that fit the data well [1] or to the variability of multivariate estimates drawn
from small samples [8]. In fact, if the variates are independent, the product of
marginal estimates will have a lower convex loss than a multivariate estimate. In
cases where the procedure attempts to discriminate among intervals on a con-
tinuum, such a high versus low risk, the concepts of monotone regression, quadrant
dependence, and conditional independence may be applicable. In such cases,
Theorem 3.2 allows correlation to be used to determine independence as in [7].

APPENDIX

Al. Quadrant dependence does not imply monotone regression. In Table 1,
P[X < x,Y < y] > P[X < x]P[Y < y] but E[X|Y = y] is not monotone in y.

TABLE |
Positively quadrant dependent joint probabilities.
Y
X
2 3
1 .10 .02 .30
30 .08 .20

A2. Monotone regression does not imply quadrant dependence. In Table 2,
E[X|Y = y] is trivially monotone, but P[X < 0,Y < 1] <P[X < 0]P[Y < 1]
while P[X < 1, Y < 1] > P[X < 0]P[Y < 1}.

TABLE 2
Joint probabilities with monotone regression of X on Y.
Y
X
1
2 .02

45
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A3. Monotone regression and quadrant dependence do not imply regression
dependence. In Table 3, P[X < x, Y < y] > P[X < x]P[Y < y]and E[X|Y = y]
is trivially monotone but P[X < 0|Y = y] is strictly increasing in y while P[X <
1|Y = y] is strictly decreasing in y.

TABLE 3

Positively quadrant dependent joint probabilities
with monotone regression of X on Y.

Y
X
1 2
2 0 5
1 2 0
0 1 2

A4. A version of an inequality due to Chevyshev: suppose that ¥ and v are
monotone real-valued functions defined on a totally ordered set R and that u, v,
and wv are integrable with respect to some positive measure g such that u(R) < oo.

(a) If u and v are both nonincreasing or both nondecreasing in R, then

(A1) W(R)[guv dp > [t dpf g0 dp.

(b) If one of u and v is nonincreasing and the other is nondecreasing, then the
inequality in (A.1) is reversed.

(c¢) Equality holds in (A.1) if and only if # or v is constant a.e. (). The proof is
based on the identity due to Franklin (1885):

Sr[S&{[#(x) = u(»)][o(x) — ©()]} w(dx) ] m(dp)
= 2[ w(R)fguv dp — [gu dpfgo dl"]-
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