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ASYMPTOTIC OPTIMALITY OF CERTAIN
SEQUENTIAL ESTIMATORS'

By Y. VARDI
Bell Laboratories

We give a decision-theoretic justification of a heuristic principle suggested
by Robbins. Suppose a sequence X,, X, - - - of independent random variables
can be observed; they are known to be identically distributed with unknown
mean and variance u, o%(u) respectively. We assume further that the common
distribution is of exponential type, so that the sample mean X is a sufficient
statistic. The problem is to estimate u taking into account the cost of sampling,
which is assumed to be linear in the sample size, n.

For the case of a fixed-size sample, with squared-error loss function, the
minimum risk (expected loss) is obtained, after rescaling if necessary, as
min, E(n + A(X — u)?) = min,(n + Ao*(u)/n) = 24 %0(u), and is attained at
ny = A %o(u). Since u is unknown, this optimum value is not available; and for
any fixed n, if o(u) is unbounded, the risk n + 4o%(u)/n can be much larger
than 24 3o (u).

For calibration of the performance of sequential stopping rules, Robbins
advocated consideration of the “regret”

E(n + AX -u)’) — dio(u),
and several authors have constructed procedures with uniformly bounded
regret.

Two questions arise, which we settle here (in a certain asymptotic sense, and
after making certain smoothness assumptions). First, can any procedure have
strictly negative regret, for all 4? Second, if a procedure has uniformly bounded
regret, is it necessarily close to being optimum, in the sense that for each
(suitably smooth) sequence of prior distributions on , is it only boundedly
worse than the corresponding sequence of Bayes procedures? Our answers are
no, and yes, respectively.

Several examples are discussed, and analogies pointed out with the fixed-sam-
ple-size concepts of the asymptotic optimality of maximum-likelihood estimates,
and the super-efficiency phenomenon.

1. Introduction. Let X, X, X,, - - -+ be a sequence of i.i.d. rv’s with density
belonging to a one parameter Koopman-Darmois family ¥. Excluding only trivial
cases, and reparametrizing ¥ if necessary, one can write: ¥ = {f,(); f.(x) =
exp[q(u)x — G(u)], u € U} where all the densities f,( ) are w.r.t. the same measure,

v(x) say;
(1.1)

EX = u;

o*(u) = Var, X = [Eu(%logfu(x))z]"l _ 1

q'(u)

>0,
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for all u € U; U is an interval (maybe unbounded). We consider the problem of
estimating u, with squared error loss and linear sampling cost. Specifically, we
investigate the optimality of procedures that use X, = 37X,/n for estimating u,
whenever n observations are available. This reduces our problem to that of finding
a good stopping time (ST). The restriction to the above class of procedures is
justified by our showing below, that certain (unrestricted) Bayes procedures cannot
be much better.
For fixed n we have

(1.2) (a) Theloss = L, EA(X’:, - u)2 + n, A > 0 known.
(b) Therisk = R, =E, L, = AoX(u)/n + n.
We refer to the n that minimizes (1.2)(b) as the best fixed stopping time (BFST)
even though, usually, it depends on « and thus is not available to the experimenter.
To determine the BFST we treat n as a continuous variable; this does not alter
the results that follow. From (1.2)(b) the BFST is thus n*(u) = 4 %o(u) and
R,. = 2450(u).
Assuming that o(«) Z const. it is clear that no fixed ST (i.e., nonrandom ST) can

realize 24 Iia(u) as its risk function. Consequently, the statistician may be interested
in finding a (random) ST, 75 say, for which

(1.3) supu(EuLﬂ - 2A%o(u)) < o0.

The interesting case is, obviously, the one where sup,o(u) = oo.

H. Robbins (1959) coined the term ‘regret’ (of using m rather than n*(w)) for
(E,L, — R,.), and using this terminology we can summarize the approach by
saying that the statistician is interested in finding a ST with a uniformly bounded
regret. The above considerations give rise to the following two interesting ques-
tions.

(a) Since the quantity 24 %o(u) evolved from restricting ourselves to the sample
mean as a terminal decision and considering fixed ST’s only, is it possible to have a
statistical procedure, (1, 8(X}, - - -, X,)) say, such that

supu{Eu[A(é‘(X,, LX) - u)’ + 'q] - 2A%o(u)} <0?

If this were the case, the whole ‘bounded regret approach’ would be questionable.

(b) What optimum properties may a procedure (7, )?,,) possess, if it has uni-
formly bounded regret?

In answering (b) we prove that bounded regret procedures are asymptotically
Bayes relative to any sequence of a priori densities {y;} which spread their mass in
a smooth manner. The answer to (a) is no, provided certain conditions are satisfied.
More details are given after the proof of Theorem 2.

The above questions are of special interest for the cases a(u) = u? and o(u) =u
(The exponential and Poisson families, respectively) for which uniformly bounded
regret procedures are known to exist (Starr and Woodroofe (1972), and Vardi
(1978)).
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2. Results. A theorem of M. Alvo (1977) is the tool for obtaining our results.
Observing that his proof is independent of the actual parametrization of ¥ and
choosing g(u) = u, we get the following

THEOREM 1 (M. Alvo). Let  be an a priori density (w.r.t. Lebesgue measure) for
u, supported by an interval J C U. Let a, and a, be the lower and upper end points of
J (£ o0 are not excluded). Denote by (N*, 8*(X|, - - -, Xy.)) the sequential Bayes
procedure, assumed to observe at least one observation, and assume that conditions
I-1V below are satisfied. Then

2.1) SAEJAB* Xy, - -, Xye) = )’ + N*])o(w) du
> 247 Eo(u) — b},

where

22) b = 1,9°0)] ;108 o(9(1) ] () .

The conditions are
L [,u’(u) du < oo.
IL lim,_,[uo(u)y(w)] = 0, lim,_, [a(u)p(u)] = 0;  i=1,2.
I, :—l;’%p‘k((;—;;uz,&(y)xp(y) HE=00) a5 ulay.
o(u)y(u)
L Ee(y)(y) By

Addressing question (b) of the introduction first, our purpose is to show that
uniformly bounded regret procedures are asymptotically Bayes in the sense de-
scribed by Theorem 2.

Let {y;} be a sequence of a priori densities for u. We denote by r* the Bayes risk
of the Bayes procedure (assumed to observe at least one observation) and by
r(n, X ») the Bayes risk of the statistical procedure (n, X, »)- Then we have

2’ (OW(») d1r=01) as ula,

THEOREM 2. Let (7, X,,) be a statistical procedure with uniformly bounded regret;
that is,

(2.3) supu(EuL,, - ZA%o(u)) <M, forsome M < co.

Suppose {\;} is any sequence of a priori densities satisfying
(1) for each i, y; satisfies conditions I-1V of Theorem 1.
(i) Bim, .. fo(u)y,(x) du = oo.

(iii) lim sup, b7 < M,  for some M < .

Then
(A) lim,_, r* =
(B) lim sup,_,{r(n, X;) = r*] < M + M.

Proor. Conditions (ii) and (iii) combine with (2.1) to prove (A), while condi-
tion (2.3) and condition (iii) combine with (2.1) to prove (B).
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Thus the result that answers our question (b) is simple in principle; it is the
verification of the conditions in the specific examples where the work lies.

Focusing attention on question (a) of the introduction, it is not difficult to verify
that if there exists a sequence {y;}, of a priori densities, satisfying I-IV of Alvo’s
theorem and such that bfi 10, then for any statistical procedure (N, &
(X, -+, Xy), we have

supu{Eu[A(S(X,, Ce L Xy) —u)t N] - 2A%o(u)} >0

Therefore (1.5) is impossible, and the bounded regret approach is justified in that
sense too.

DiscussioN. In the applications considered here, as .in Robbins (1959), Starr
and Woodroofe (1969, 1972) and Vardi (1978), the interest is in optimality as
o(u)oo; this is reflected in condition (ii) of Theorem 2. To illustrate our point,
assume that U = (0, o0) and o(u)Too as ufoo; then our procedure is “asymptoti-
cally optimal” as ufoo. This last statement means that our procedure is asymptoti-
cally Bayes w.r.t. any sequence of a priori densities {y;} that tend to spread their
mass on (0, o) in a suitably smooth manner: Elaborating further we see that if the
Y;’s satisfy

(24) P,(u > o)l as ifeo  forall ¢ < oo,

then condition (ii) is immediately satisfied, and by adjusting (if necessary) the tails
of the y;’s, condition (i) is also satisfied. At this stage one might be tempted to think
that Theorem 2 can be strengthened and bounded regret procedures would be
asymptotically Bayes w.r.t. the sequence {y;} if the y;’s satisfy (2.4) alone. This is
by no means the case. It is possible to choose a monotone sequence {4} such that
0<wu and u;,— oo, and a sequential procedure, specifically tailored to this
sequence, w1th risk function R(u) satisfying:

(2.5) lim,_, o( R(%) — 2470(1)) = —co.

It is now clear that if the y;’s would concentrate their mass along the sequence {u;}
then procedures with risk function 24 2o(u) + O(u) cannot be asymptotically Bayes
war.t. {{;}. It is for this very reason that only smooth y,’s are candidates for
fulfilling the condition of the theorem; these smoothness conditions are (implicitly)
imposed by condition (iii).

An actual example of a sequential procedure satisfying (2.5) is given in Vardi
(1977). This type of procedure can be considered as a sequential analogue of the
“super-efficient” sequence of estimators, introduced by Hodges (see LeCam
(1953)). Though they do not have much value from a practical viewpoint they are
important in showing that one should not expect a significantly stronger optimum
result than the one described in Theorem 2.

Two more points are worth mentioning:

(a) The surprising fact that a heuristically derived procedure, (9, Xn), is asymp-
totically Bayes w.r.t. any sequence of a priori laws, satisfying some smoothness
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conditions, resembles the asymptotic optimum property of the maximum likelihood
estimators (MLE’s) for nonsequential procedures, as the sample size approaches co.
This similarity should not be overemphasized at this stage because it holds only for
the squared error loss function, while the MLE’s optimum property is not restricted
to this loss function alone.

(b) Another motivation for the optimality of sequential procedures, which is
different than the one we present here, is to consider the risk as the cost of
observation (1/A4 in our case) approaches 0. Examples can be found, among other
places, in Bickel and Yahav (1968) and Wald (1951), for point estimation problems,
and in Schwartz (1962) and Kiefer and Sacks (1963), for hypotheses testing
problems.

ExampLE. This example will include all families ¥ for which U = (0, o0) and
o(u) = cu’ for some ¢ € (0, 1] and ¢ > 0. Note that the case ¢t = 1 includes the
gamma family with known index; if ¢ = 1 we get the exponential family. The case
t =3, ¢ = 1 includes the Poisson family. Let

(2.6) Ve, p)(4) = I’[(;:) u"le7h  ifu>0

=0 otherwise,
where B > 0 and a > 2(1 — ).

We then get
2.7 CE(,, pyu’ = cT(a + t)/B'T(a),
(2.8) bl gy = B "IT(a + 2t — 2)(* + a — 1) /T(a).

For the case ¢t < 1 we hold « fixed and let 8 approach 0, while for the case ¢t = 1
we let @ and B approach O in such a way that a/B81c. In both cases, (2.7)
approaches oo while (2.8) approaches 0. The conditions of Theorem 2 are satisfied
and bounded regret procedures (when they exist) are asymptotically Bayes.

3. Concluding remarks.

1. Even though the normal distribution with unknown mean and unknown
variance is not an ¥ of the type we have considered, a conditioning argument
shows that a bounded regret procedure (see Starr and Woodroofe (1969) for such a
procedure) is asymptotically Bayes. The actual computations are easily derived
from Alvo’s paper and hence will be omitted.

2. While Theorem 2 justifies the use of bounded regret procedures, the question
of existence of such procedures has not yet been answered satisfactorily. In the
cases where ¥ is a gamma family (with known index), or a Poisson family,
bounded regret procedures are known to exist (Starr and Woodroofe (1972) and
Vardi (1978)); similar results for other %’s (and for classes of %’s) are yet to be
derived.
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