NOTE ON A RESULT OF SEEGER IN PARTITIONING NORMAL POPULATIONS

By GWENDA J. CANE

University of New England

The problem of partitioning a set of normal populations by their locations with respect to a control was investigated by Tong, and Seeger considered an extension of this to a comparison with 2 controls. This note points out that the main result in the latter paper is in error, and provides a table for use in the application of Seeger's procedure.

The problem of partitioning a set of k normal populations with respect to one control is considered by Tong [3]. The partitioning is according to the means, and the k+1 populations are assumed to have a common variance σ^2 . Seeger [2] examines the case of partitioning with respect to 2 or more controls, and the reader is referred to the notation and classification procedure in Sections 1 and 2 of [2]. The purpose of this note is to point out that Seeger's use of Tong's Table 1 is in error, and to provide an appropriate table.

Seeger's procedure R, based on samples of size n from each of the k+2 populations is such that the probability of a correct decision is not less than a prescribed value P^* , i.e.,

(1) $P(CD | \mu, \sigma^2; R) \ge P^*$ for every vector μ in a preference zone.

He requires values of $r_1, r_2 \ (0 \le r_1 + r_2 \le k)$ which minimize

(2)
$$P(Y_s \leq b; s = 1, 2, \cdots, 2k - r_1 - r_2) = H_{2k-r_1-r_2}^{\Sigma}(b),$$

where $(Y_1, \dots, Y_{2k-r_1-r_2})$ has a multivariate normal distribution with mean vector 0 and covariance matrix Σ . For this (r_1, r_2) , the solution of

(3)
$$H_{2k-r,-r}^{\Sigma}(b) = P^*$$

for b is then required, and the common sample size n determined from $(a/\sigma)(n/2)^{\frac{1}{2}} = b$ where a is a prescribed constant.

Because of the complicated nature of Σ , Seeger makes use of Tong's Theorem 1.2 from which it follows that $h = h(k, P^*; r_1, r_2)$ as a solution of

(4)
$$H_{k-r_2}^{\Sigma_1}(h) + H_{k-r_1}^{\Sigma_2}(h) = 1 + P^*$$

may be used to obtain a conservative value of n since $h \ge b$. Let

$$\Phi_+ = \Phi(y + 2^{\frac{1}{2}}h), \ \Phi_- = \Phi(-y + 2^{\frac{1}{2}}h)$$

917

Received August 1974; revised April 1978.

AMS 1970 subject classification. Primary 62F07.

Key words and phrases. Partitioning normal populations, comparison with controls, probability of correct decision.

and

$$S(r_1, r_2) = \int_{-\infty}^{\infty} \Phi_{-}^{r_1} \Phi_{+}^{k-r_1-r_2} d\Phi(y).$$

Then the left hand side of (4) can be written as

(5)
$$T(r_1, r_2) = S(r_1, r_2) + S(r_2, r_1)$$
$$= \int_{-\infty}^{\infty} \Phi_+^{k-r_1-r_2} (\Phi_-^{r_1} + \Phi_-^{r_2}) d\Phi(y).$$

The problem is to find integers r_1 , r_2 $(0 \le r_1 + r_2 \le k)$ which minimize T for all h > 0. Define

(6)
$$\eta(m) = (m/2)$$
 for m even;
= $(m-1)/2$ or $(m+1)/2$ for m odd.

Now Tong [3] shows that for $0 \le r \le k'$

(7)
$$\beta(r) = \int_{-\infty}^{\infty} \Phi_{+}^{k'-r} \Phi_{-}^{r} d\Phi(y)$$

is minimized for given k' by $r = \eta(k')$. Seeger [2] applies this result to $T(r_1, r_2)$ by identifying $S(r_1, r_2)$ with $\beta(r)$ of (7) where $k' = k - r_2$. He claims $S(r_1, r_2)$ is minimized by $r_1 = \eta(k - r_2)$ and $S(r_2, r_1)$ minimized by $r_2 = \eta(k - r_1)$ and hence the sum is minimized by the simultaneous solution of $r_1 = \eta(k - r_2)$ and $r_2 = \eta(k - r_1)$; i.e., $r_1 = r_2 = \lfloor k/3 \rfloor$. This is incorrect as the minimization is not w.r.t. r_1 and r_2 but only w.r.t. $r_1(r_2)$ for $r_2(r_1)$ constant. Clearly $S(r_1, r_2)$ is an increasing function of r_2 and is minimized by

(8)
$$r_2 = 0$$
 and $r_1 = \eta(k)$.

Likewise $S(r_2, r_1)$ is minimized by

(9)
$$r_1 = 0$$
 and $r_2 = \eta(k)$.

Now (8) and (9) cannot hold simultaneously so the minimum value of T cannot be found by minimizing the two terms in the sum separately.

So that the left-hand side of (4) is not less than $1 + P^*$ for all r_1 , r_2 we require

(10)
$$h^* = \sup_{r_1, r_2} h(k, P^*; r_1, r_2).$$

Now, for given $c = r_1 + r_2$, $T(r_1, r_2)$ is minimized when r_1 and r_2 are as close together as possible since $\Phi^r(-y + 2^{\frac{1}{2}}h)$ is a convex function of r for every fixed y, h. So, restricting consideration to values of r_1 , r_2 satisfying $|r_1 - r_2| \le 1$, $0 \le r_1 + r_2 \le k$, (4) was solved numerically, first expressing it in the form (5). Values of h^* (to 5D) were found for $P^* = 0.75$, 0.90, 0.95, 0.975, 0.99 and k = 2(1)12(2)20, and the required sample size n is the smallest integer exceeding $2h^{*2}\sigma^2/a^2$. When h^* corresponds to $(r_1, r_2) = (0, 0)$, the problem reduces to finding equicoordinate $50(1 + P^*)$ percentage points of a standardized k-variate normal distribution with correlations 1/2. Such a solution is given, e.g., by Gupta [1] with values of h^* to 3D. Table 1 gives values of h^* for the P^* and k above in the cases where $(r_1, r_2) \ne (0, 0)$. [Note that for $P^* = 0.95$, 0.975 and 0.99, $r_1 = r_2 = 0$ for all the k values considered.]

Table 1 Values of h^* satisfying (4) and (10) and the corresponding $(r_1, r_2) \neq (0, 0)$

k	$P^* = 0.75$	k	$P^* = 0.75$	k	$P^* = 0.90$
5	1.80303(1, 0)	11	2.07990(1, 1)		
6	1.86996(1, 0)	12	2.10841(2, 1)	12	2.50229(1, 0)
7	1.92625(1, 1)	14	2.15897(2, 2)	14	2.54792(1, 1)
8	1.97389(1, 1)	16	2.20111(2, 2)	16	2.58670(1, 1)
9	2.01422(1, 1)	18	2.23747(3, 2)	18	2.62015(1, 1)
10	2.04914(1, 1)	20	2.27029(3, 3)	20	2.64976(2, 1)

REFERENCES

- [1] GUPTA, S. S. (1963). Probability integrals of multivariate normal and multivariate t. Ann. Math. Statist. 34 792-828.
- [2] SEEGER, P. (1972). A note on partitioning a set of normal populations by their locations with respect to two controls. *Ann. Math. Statist.* 43 2019-2023.
- [3] Tong, Y. L. (1969). On partitioning a set of normal populations with respect to a control. Ann. Math. Statist. 40 1300-1324.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF NEW ENGLAND ARMIDALE, N.S.W. 2351 AUSTRALIA