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A STEPWISE BAYESIAN PROCEDURE

By Francis C. HsuAN
Temple University

Ordinarily a Bayesian estimation procedure uses one prior distribution to
obtain a unique estimation rule (its Bayes rule). From the decision theoretical
point of view, this procedure can be regarded as a convenient way to obtain
admissible decision rules. However, many intuitively appealing, admissible
‘estimation rules cannot be obtained directly in this way. We propose a new
mechanism, called the Stepwise Bayesian Procedure (SBP). When the parameter
space contains only finitely-many points and the loss function is strictly convex,
this SBP can be used to obtain every admissible estimation rule. A relationship
between SBP and the limiting Bayes rules is given.

1. Introduction. There are many ways to classify a prior distribution in deci-
sion theory. We introduce the following classifications. (1) A prior distribution is
said to be regular if it is supported on the entire parameter space (not to be
confused with a regular measure); otherwise it is said to be nonregular. (2) A prior
distribution is said to be of #ype I if its corresponding Bayes rule is unique up to the
equivalence of risk function (see Ferguson, 1967, for the definition of such
equivalence); otherwise it is said to be of type I1. While a regular prior distribution
must be of type I, a nonregular prior may or may not be of type II.

The type I priors (usually the regular ones), coupled with the Bayesian proce-
dure, are widely used by statisticians as a tool to obtain admissible estimation rules
(the Bayes estimators). Presumably no type II prior is used for this purpose because
it is unable to pinpoint a particular estimation rule. Nevertheless, from the
viewpoint of the decision theory a type II prior is just as important as a type I prior
in that the Bayes rules with respect to all the type I priors alone do not form a
complete class. Often an intuitively appealing, admissible estimator is Bayes only
with respect to a type II prior. For example, in the usual binomial estimation
problem with the squared error loss function, the maximum likelihood estimator is
Bayes with respect to a prior distribution # if and only if = puts positive probability
at each of 0 and 1, and none anywhere else (Johnson, 1971). This # can be shown
as a type II prior. As a second example, consider the hypergeometric estimation
problem discussed in Example 1 of Section 2. The moment estimator, the maxi-
mum likelihood estimator, and many nonrandomized admissible estimators share a
common property that they are Bayes only with respect to a type II prior.

Of course, the reason that in practice no type II prior is used in Bayesian
estimation is that it yields a collection of decision rules (its Bayes rules), rather than
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just a single decision rule. Furthermore, this collection is usually a mixture of
admissible as well as inadmissible decision rules. Thus it is desirable to have a
mechanism by which the admissible rules can be extracted out of that collection.
We now propose such a mechanism, called the Stepwise Bayesian Procedure (SBP).
The idea is to apply the Bayesian procedure in a stepwise manner: at each step the
Bayesian procedure is used to extract a subcollection from a collection of decision
rules which was obtained in the earlier step. The procedure terminates when at a
step the SBP results in a collection consisting of a single decision rule. It is shown
that such a decision rule must be admissible (Theorem 1).

A general theory on the SBP is yet to be developed. But we shall show that in a
decision problem with finite parameter space and strictly convex loss function,
every admissible rule can be obtained by SBP in finitely many steps (Theorem 2).
In a sense it is a constructive characterization of the minimal complete class (see
Example 4).

The ordinary Bayesian procedure utilizes only one (type I) prior distribution in
order to obtain a unique decision rule (its Bayes rule). But the SBP calls for a
number of (type II) priors in order to obtain a unique decision rule (one prior is
used at each step). A philosophical interpretation (in the context of empirical
Bayesian approaches) of having more than one prior distribution may not be
palpable, but the following mathematical result seems to provide some guidelines
toward its usage. Consider a decision problem with a finite parameter space and a
strictly convex loss function. Let {,} be a sequence of regular priors. Then there
exists a set of finitely many priors (usually of type II) such that the limiting Bayes
rule (assume the existence) of {,} is identical with the unique decision rule
obtained from SBP by using the finite set of priors stepwisely (Theorem 3). In a
sense it means that a set of finitely many type II priors is, in effect, equivalent to a
set of countably many regular priors.

There are three main theorems and seven examples in this paper. Most tech-
niques used in the proof of the theorems are commonly known, therefore only the
ideas of proof are given for each theorem. The examples are an integral part of the
whole work. Some of them contain new results that are interesting in themselves. A
summary of these results follows.

1. We prove that the moment estimator in a hypergeometric distribution is
admissible under the squared error loss function (Example 2).

2. A characterization of the minimal complete class, when the parameter space
has finitely many points and the loss function is strictly convex, is given (Example
4).

3. We present an example to show that an explicit characterization (i.e., in terms
of the values of decision functions) of the minimal complete class is sometimes
possible (Example 6).

2. Assumptions and definitions. We follow the same notation as in Ferguson
(1967). Consider a statistical decision problem that satisfies the following three
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conditions:
(Al) The parameter space ® is a discrete set consisting of finitely many points.
(A2) The action space 4 is a compact and convex set in the Euclidean space.
(A3) For each § € O, the loss function a — L(6, a) is strictly convex over A.
As a practical example where (A1)-(A3) might hold, consider the problem of
estimating the proportion of defective items () in a batch of N items coming off
an assembly line. Assume that a thorough inspection on every item is economically
infeasible. Instead, a sample of n items is randomly drawn and the number of
defectives found in the sample, X, is recorded. It is desired to estimate 8 based on
the observation of X. In this problem the parameter space is discrete, and has
finitely many points (§ =0,1/N,---,(N — 1)/N, 1). Since we are trying to
estimate a proportion, it is reasonable to allow an estimator to take values between
0 and 1; and the marginal loss due to an imprecise estimation may be assumed to
be an increasing function of the absolute difference between the true proportion
and the estimate (e.g., a squared error loss function). Then (A1)-(A3) are satisfied.
We make the following definitions.

DEFINITION 1. Let D be a collection of decision rules. An element d € D is said
to be Bayes within D with respect to = if, for the prior distribution =, the decision
rule d minimizes the Bayes risk r(«, d’) over all d’ in D.

DEeFINITION 2. Let (7, - - -, m,) be an ordered set of prior distributions that are
mutually singular (i.e., with mutually exclusive supports). The Bayes class with
respect to (my,* - -, m), which will be denoted as D(w,, - - -, m), is defined
inductively as follows: for k = 1, D(w,) is the collection of all Bayes rules with
respect to m; for k> 1, D(w,- - -,m) is the set of all Bayes rules within
D(my, - - -, m_,) with respect to .

DeriNiTION 3. Let D(7, - - -, m) be the Bayes class with respect to
(my, -+ -, m). A decision rule in D(7, - - - , m,) is called a stepwise Bayes rule with
respect to (wy, - - -, m). If D(m, - - -, m,) consists of only one decision rule (up to
the equivalence of risk functions), then this rule is called a unique stepwise Bayes
rule.

Notice that ordinary Bayes rules can be treated as a special class of stepwise
Bayes rules where k = 1. A few possible misconceptions about the stepwise Bayes
rules are listed below. Example 1 serves to clarify these points. It also illustrates the
kind of computations involved in deriving stepwise Bayes rules. We shall call this
process the Stepwise Bayesian Procedure (SBP).

REMARK 1. A Bayes class is defined in terms of an ordered set of priors. A
different ordering of these priors often results in a different Bayes class.

REMARK 2. A stepwise Bayes rule with respect to (m, - - - , 7,) is necessarily a
Bayes rule with respect to =,. But it need not be Bayes with respect to T
i=2,--- k.
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REMARK 3. Let the support of 7, be w, i =1, - -, k. Then the fact that
UX. @ = @ s a sufficient, but not necessary, condition to have the stepwise Bayes

rule with respect to (7, - - -, m,) unique.

ExampLE 1. Consider the foregoing estimation problem about the proportion of
defective items coming off an assembly line. For illustration purposes we assume
that N =3 and n = 2. The number of defectives in the sample, X, follows the
hypergeometric distribution with population size N = 3, subpopulation size M =
30 (where 6 stands for the proportion of defectives), and sample size n = 2. Thus
the sample space X = {0, 1,2}, and the parameter space © = {O, 3 3, 1}.
Assume that A = [0, 1], and the loss function is L(, a) = ( — a)*. A decision rule
d : X — A is a 3-dimensional vector (dj, d,, 4,) in the Euclidean space, where d, is
the estimated value of § when x = i. (We note that in this example it doesn’t seem
reasonable to allow 4, to take values other than 0, %, % or 1. However, as the size of
N gets large the parameter space becomes nearly continuous, and the assignment

= [0, 1] might then be acceptable. Here we let N = 3 only for the matter of
illustration).

Assume that 7, is a prior distribution on ® with probability % at § = 0, and at
= 3. We shall denote it by 7, = (3, 3, 0, 0). Then it is straightforward to show

that any decision rule 4 such that d; = 712— and d, =3 is Bayes with respect to 7,.

3
Hence D(m) = {d : dy =3, d, =1)}. The risk function of a decision rule d in
D(m,) is found to be

1

Rd(0) = "H if 0 =0
1 1
R if 8= -3‘

2 1 2
27*3( ) it =3
=(1-4d) if 0=1.

Let w, = (0, 0, 1, 0). Then the Bayes rule within D(w,) with respect to =, is the
decision rule in D(7,)-that minimizes the Bayes risk r(w,, d') = + — d,)* over
all d’ in D(m,). Thus the Bayes class D(w,, 7,) contains only one dec1sxon rule
d* = (53, 3, ). This d* is the unique stepwise Bayes rule with respect to (7, 7,).
Observe the following facts (and their implications):
(1) The union of the supports of 7, and =, is not ® (Remark 3).
(2) The decision rule d* is not Bayes with respect to m,, thus D(w,, m,) #
D(m,, m;) (Remarks 1 and 2).
(3) There exists no 7 such that d* is the unique Bayes rule with respect to . (It
stands out only if more than one prior is used in a stepwise manner).
(4) Compare d* with the decision rule d° = (55, 3, 0). Both are Bayes with
respect to =, but one appears reasonable while the other is not. (The
ordinary Bayesian procedure fails to discriminate one from the other).
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Consider the moment estimator 8 = (0, 1, 1), the M.L.E. 6, = (0, 3, 1) and
b, = (0, 2. 1), and other reasonable estimators such as § = (G, 2, 1,03, %), etc. It
is straightforward to show that none of these estimators is a unique Bayes rule in
the ordinary sense (i.e., with respect to a type I prior); but all of them can be

proved to be unique stepwise Bayes rules, and they are admissible (see Example 6).

3. Unique stepwise Bayes rules and admissible rules. We now state and prove
some optimal properties of SBP.

THEokEM 1. A unique stepwise Bayes rule is admissible.

PROOF. Let d be the unique decision rule in a Bayes class D(7, - - - , m,). If d
is not admissible, then there exists d’ such that R(#, d’) < R(f, d) for all § € .
This d” must be in D(m,), since r(w, d’) < r(m,, d). But then this d’ is also in
D(my, m,), since d’ € D(m,) and r(m,, d’) < r(m,, d). Repeat this argument. Then
this d’ is in D(m,, - - - , ), which is a contradiction. []

Notice that the validity of Theorem 1 is not contingent on assumptions about the
parameter space or about the loss function. It offers a new technique to check the
admissibility of a given decision rule. The following Example 2 illustrates this
technique. It is interesting to compare this example with the argument given by
Johnson (1971) to justify the admissibility of M.L.E. in binomial estimation
problem. There is a close resemblance.

ExaMPLE 2. Let X be hypergeometrically distributed with parameters N (the
population size), M (the subpopulation size) and »n (the sample size). Let § =
M/ N, the unknown proportion of the subpopulation. Thus © = {0, 1/N,- - -, (N
—1)/N, 1} and X = {0, - -, n}. Take 4 = [0, 1] and L(0, a) = (6 — a)*. Then
the moment estimator f(x) = x /n is admissible, since it is the unique stepwise
Bayes rule with respect to (,, 7,), where

7, (0) = if =01

1
2
0

otherwise;
and .
7,(0) =0 if =01
=c/{6(1 - 0)} otherwise.
(Here the value c is so chosen to make 7, a probability distribution). A sketch of

the proof follows.
First, by expanding in binomial series both sides of the following identity

oo (htk+D) X i _ —(h+k+1) _ _ —(h+k+2)
(3.1 (1-x) + PEY S 1-x) (1-x) ,
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and by collecting all the corresponding coefficients of x‘, we can establish the
following equality

h+i k+j)=h+k+t+1 (h+i—1)(k+j)
62 s,("} )( R ! Ll o),

where the summation is over all nonnegative integers i, j such that i + j = ¢.
Now a straightforward calculation shows that D(w) = {d:dy=0,d, =1},
where d, is the decision when X = i. The Bayes rule within D(w,) with respect to ,
can then be shown as d:
X/ (mY[N—m—1 r[m—=1(N—m-—1
s (%2 )
x Nz'”(X) n—x-—1 /Zm x—=1/\n—-x-1
where x = 1,- - - , n — 1. Here the summationisoverallm = x,- - - , (N — n) +
x.
Seti=m—-—x,j=N—-n—m+x,t=N—-—-nh=xandk=n—x—11in
equation (3.2), we can show that

s (m\(N-m—-1\_N ,(m—l)(N—m—l)
2’"()‘)(n—x—l) nz'”x—l n—x-1/)
Hence the Bayes rule within D(a;) with respect to 7, is thend :d, = x/N-N/n

= x/n, which is the moment estimator. By Theorem 1 it is admissible.
A very desirable property about SBP is stated in the following theorem.

THEOREM 2. In a decision problem that satisfies (A1)—(A3), every admissible rule
is unique stepwise Bayes.

LeEMMA 2.1. Assume (A1)—(A3). Let w be a prior distribution and w C © be the
support of w. If d,, d, are both Bayes with respect to m, then R\(0) = R,(0) for all
0 € w. (Here R(-) is the risk function of d)).

PrOOF. Let T = {x : f(x; §) > 0 for some § € w}. Then we can write R(f) as
the sum of R(8) = E[L(#, d(X))I(X)] and R(8) = E[L(8, d(X))I(X)], where
I(x) is the index function of 7 and I7(x) = 1 — I{x). By definition f(x; 8) = 0
for all x € T° and € w. Thus R,,(0) = R,,(8) for all # € w. Due to the strict
convexity of loss function it follows that d,(x) = d,(x) for almost every x € T.
Hence R,;(8) = R,,(8) for all 8 € ©. Therefore R,(8) = R,(0) forall § € w. ]

PrOOF OF THEOREM 2. Assume that d is admissible. Then there exists a prior
distribution #; such that 4 is Bayes with respect to ;. Assume, without loss of
generality, that the support of #, is w, ={8,---,6,}, and that ® =
{6,,---,0,}, where m < n.Let I' C R” be the risk set of D(w,) and X € T be the
risk point corresponding to the decision rule d. Then Lemma 2.1 implies that for
every y € T, we have y, = x; fori = 1, - - - , m. Thus it is convenient to consider
the reduced risk set I'* = {(z,,- - -, z,_,,): For some y €T, z, =y, for all
i=1---,n— m}. This I'* is closed and convex. Since 4 is admissible, the
reduced risk point z of d must be on the lower boundary of I'*. According to the
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supporting hyperplane theorem there exists a prior distribution ,, with support
w, C wf, such that d is Bayes within D(7r;) with respect to 7,. Repeat this argument
until 4 is the only one decision rule within a Bayes class D(w,, - - - , m;). The value
of k must not exceed n since m,, - - - , m, are mutually singular and the parameter
space has only n points. Thus 4 is a unique stepwise Bayes rule. []

COROLLARY 2.1. In a decision problem that satisfies (A1)-(A3), the set of all
unique stepwise Bayes rules is the minimal complete class.

This corollary is related to a characterization theorem due to Wald and Wolfo-
witz (1951, Theorem 1). But the assumption of strict convexity of the loss function
has made our approach more natural, and our results are more general.

A natural desire at this point is to ask for a sufficient condition on a set of
mutually singular priors 7, - - - , m, so as to yield an unique stepwise Bayes rule.
Assume a finite parameter space and a strictly convex loss function. Let the sample
space be provided with a o-finite measure » with respect to which the density
functions {f(x; #), § € O} exist. Furthermore we assume this » has the smallest
possible support, so that P,(4) = O for all # € O implies »(4) = 0, where 4 is any
Borel set in the sample space. (For example, one could take »(4) = ZA,Py(A4), with
A >0 and 3N, = 1). Then the unique stepwise Bayes rule with respect to
(my, - - -, m,) exists if and only if for almost every (») sample point x there exists a
posterior distribution with respect to some prior in 7, - - - , m,. Let the supports of
7, be w, i=1,---,k, and w= U,w. Then a posterior distribution exists at
almost every point x if

(3.3) v{x:f(x;0) =0foralld € w} =0.

Notice that this condition (3.3) is imposed on the w,’s rather than on the #;’s per se.
The following two examples illustrate the use of condition (3.3).

ExampLE 3. Consider the hypergeometric estimation problem in Example 2
with N > 2n. Let #; and 7, be two priors with supports w; = {0, 1}, and w, =
{n/N,- - -, (N — n)/N} respectively. Then there is a unique stepwise Bayes rule
with respect to (7, 7,), even though w; U w, # ©.

EXAMPLE 4. Assume (Al), (A2) and L(#, a) = (§ — a)*. Let (7, - - ,m) bea
set of mutually singular priors that satisfy condition (3.3). For every x € X, let
i(x) = min{j : f(x; §) # 0 for some § € w;, 1 < j < k}. Condition (3.3) assures
the existence of such i(x) for almost every x in %X. Let E(8|x, =) be the mean of
the posterior distribution defined at point x and with respect to the prior distribu-
tion 7, i.e., E(|x, m) = Z,0f(x; 8)m(0)/Z of(x; 8)m(#). Then it can be shown that
the unique stepwise Bayes rule with respect to (7, - - - , ) is

34) d:d, = E(0|x, m,,) for almost every (»)x in X.

Thus the minimal complete class consists of all such decision rules (3.4) with
respect to all possible (7, - - - , m,)’s that satisfy condition (3.3).
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4. Unique stepwise Bayes rules and limiting Bayes rules. Let {7,} be a
sequence of regular priors defined on a finite parameter space. From {=,} an
ordered set of priors (7., * - - , 7.;) can be constructed inductively as follows:

(1) When i = 1, the prior #., is an accumulation point of {z,}.

(2) When i > 1, the prior =.; is an accumulation point of a sequence of priors
{7.}, where 7,(8)=0 if 7.,(6,) >0 for somer=1,- - - ,i—1,and 7,(6) = c,7,(6)
otherwise. Here the constant ¢, is defined so that 7, is a probability measure on the
parameter space 0.

(3) The process terminates when there is no §;, € © such that 7.,(6,) = 0 for all
1<r<k.

Since there are only finitely many s in © and all the 7.,’s are mutually singular,
the number k must not exceed the total number of parameters in ©. In a sense the
prior m.; is an “ith order” accumulation point of {=,}; as illustrated by the
following example.

EXAMPLE 5. Assume that the parameter space consists of four points. Let
7, = ¢,(.7n, 3n, 6n3, 4n7), where ¢, = 1/(n + nZ). Then 7., = (.7, .3, 0, 0) and
e, = (0, 0, .6, .4).

Clearly the priors ., - * - , 7., thus defined are mutually singular and satisfy
condition (3.3). Therefore the stepwise Bayes rule with respect to m.;, - - - , 7., is
unique. Let it be d*. Then 4* is related to {d,}, the Bayes rules with respect to
{m,}, as described in the following theorem.

THEOREM 3. Assume (A1)—(A3). Then d*(x) is an accumulation point of {d,(x)}.

THE IDEA OF PROOF. Let the posterior distribution with respect to m, be denoted
as m,(+|x). Let x be a sample point and i(x) be the smallest integer j such that
f(x, 8) # 0 for some § € w;. Then

Zpeoflx; )7 (0) =0 if j <i(x);
>0 if j=i(x).
Thus, there is a subsequence {,,(+|x)} of {m,(-|x)} such that 7, (8|x) — 7.,,(8]x)
for every 8§ € 0.

Let h,(a) = Z,L(0, a)7,,(0]|x) and h(a) = Z,L(0, a)7.,,,(0|x). Both functions
are strictly convex. By the definition of Bayes rules, d,,(x) (or d*(x)) is the unique
point at which A, (or A) attains its minimum. Under assumptions (A1)-(A3), the
sequence of functions {4, } converges uniformly to the function 4. Thus d,,(x) -

d*(x). [

COROLLARY 3.1. If the sequence of Bayes rules {d,} is pointwisely convergent,
then it converges to d*.

COROLLARY 3.2. Assume (A1)—(A3). Let D be the set of all (unique) Bayes rules
with respect to the regular priors. Then the closure (under the topology of pointwise
convergence) of D is the minimal complete class.
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Brown (1973, Theorem 9.3) has shown that under assumptions (Al) and (A2),
the set of all risk points of D (as defined in Corollary 3.2) is dense (relative to the
weak topology) in the set of all bounded admissible risk points. Our assumption
(A3) has made Corollary 3.2 a stronger result.

ExaMPLE 6. Consider the decision problem discussed in Example 1. Let 7 =
(Po> P1» P2, P5) be a regular prior distribution. Then the Bayes rule with respect to «
is 1
d:dy= ‘§P1/ (Bpo + ),

1
dy=3(p1+2p)/(p1 +py), and

1
d, = 3(21’2 + 9P3)/ (Pz + 3p;).

It is easy to see that D can be characterized as {d : 1i <d, <3(i + 1),i =0, 1, 2}.
Therefore the minimal complete class is CI(D) = {d: 3i<d <3(i+1),i=
0, 1,2}).

5. Conclusion. We introduce the idea of stepwise Bayesian procedure. In case
of a finite parameter space and a strictly convex loss function, it leads to many
fruitful results. In some occasions the condition of finiteness on the parameter
space can be relaxed (see Hsuan, 1974, for examples). However, it should be
pointed out that the usage of SBP becomes much more intricate when the
parameter space is infinite than it would be otherwise. A general theory on this
SBP is yet to be developed.

Part of the results in this paper is a reformulation of the work contained in the
author’s Ph.D. dissertation. The result in Section 4 is new. The author wishes to
thank Professor L. D. Brown and Professor Lionel Weiss.
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