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NONPARAMETRIC ESTIMATION OF MARKOV TRANSITION
FUNCTIONS!

By SIDNEY YAKOWITZ
University of Arizona

Let {X,} be a Markov chain having a stationary transition function and
assume that the state set is an arbitrary set in a Euclidean space. The state
transition law of the chain is given by a function F(y|x) = P[X,,, < y|X, =
x], which is assumed defined and continuous for all x. In this paper we give a
statistical procedure for determining a function F,(y|x) on the basis of the
sample {X;}",_;,n=1,2,---, and prove that if the chain is irreducible,
aperiodic, and possesses a limiting distribution #, then with probability 1,
sup, | F,(y|x) — F(y|x)| —,0 for every x such that any open sphere containing x
has positive 7 probability. This result improves upon a study by Roussas which
gives only weak convergence. We demonstrate that a certain clustering algo-
rithm is useful for obtaining efficient versions of our estimates. The potential
value of our methods is illustrated by computer studies using simulated data.

1. Introduction. Let {X,},,, be a vector-valued, irreducible, aperiodic
Markov chain which has a limiting distribution # and a continuous, time-invariant
state transition function F. F governs the process in the sense that for every n > 0,
every vector y, and x

P[X, 1 < y|X, = x] = F(y|x).

The text [1] is adequate background for the terminology and ideas used in this
paper. Feller [4, page 264-266] gives a useful sufficient condition for a chain to
have limiting distribution. According to [1], the distribution function = is a /imiting
distribution for { X} if for every y,

P[X,<y]-7[B(y)] as n— oo,

where B(y) = {x : x < y}. Let S(x, €) denote the sphere of radius e centered at x.
We define

X = {x:7[S(x, e)] > 0for every e > 0}.

The purpose of the present work is to give the construction of a function F,(y|x)
from the sample {X,},,<, and subsequently demonstrate that F, is a consistent
estimator for F in the sense that, with probability 1,

sup, | F,(y|x) = F(y|x)| —,0

for every x € %X. We then discuss a numerical study as well as efficient construc-
tions of our estimator.
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The only related result known to us is a study by Roussas [9] which gives a
slightly different construction and proves only weak convergence, and this under
somewhat more restrictive conditions (the state space must be a linear set, the
transition function must be differentiable, and = must dominate Lebesgue measure
over the entire real line). It is not clear that this construction extends to higher
dimensional state spaces. Roussas [9] asserts that a proof of strong convergence
“would be desirable”.

The search for statistical methods for inference of a Markov chain transition
function was motivated by our attempts to model and predict daily river flow, and
is part of a continuing effort in this direction [10, 11, 12, 16, 17]. Some of the
hydrologic implications of the present study were presented in [14], and a compan-
ion paper [16] for a hydrologic journal is being readied. A somewhat related
nonparametric method for groundwater analysis was described in [13].

2. Construction of a consistent transition function estimator. Let {¢;} be a
sequence of vectors which are dense in a Euclidean space, which is presumed to be
the state space for the Markov chain. [a] will denote the integer part of the real
number a. X; denotes the ith state of a Markov chain {X;},-,. Let n be some fixed
positive integer. The construction of the estimate F, depends on certain objects
defined below.

Sy.={X:1<i<nand|X,— ¢l <IIX, - ¢l 1 <k <n?}.

Jon

C, = {cj : 1 < j < n7 such that S; , has > [n%] elements};

n
¢,(x) = ¢, where ¢, is element of least index in C, such that
lleo = xIl < llex = x|, all ¢, € G,
For reasons which will become clearer when we describe the efficient application of
the algorithm to follow, the ¢’s will sometimes be referred to as representative

states. We will let G, . (y) be the empirical distribution function constructed from
the successor elements to those in S, ,. Thus

2.1) G, (y) = A(v,y)/ B(v)

where A(v, y) is the number of X;’s in S, , such that X;,, < y and B(v) is the total
number of X;’s in S, ,. We say that X,,, < y if each coordinate of the vector X, ,
is less than or equal to the corresponding coordinate of y. We will have occasion to
use formula (2.1) only in cases in which S, , is not empty. For arbitrary vectors x
and y, we define F, by

(22) Fn(ylx) = Gn, c,,(x)(y)'

THEOREM 1. Let {X;},5o be an irreducible, aperiodic Markov chain with
stationary transition function F(y|x) which for every y is continuous in x. Suppose
further that {X;} has a limiting distribution, =, which for each x, dominates the
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measure associated with F(y|x). Then, with probability 1,
sup,|F,,(y|x) — F(y|x)| 0.

Proor. From the analysis to follow, it will be seen that for any fixed y, F,(y|x)
— F(y|x), with probability 1. But this implies the asserted uniform convergence, as
one may confirm (as noted in [9]) by looking at the details of the proof of the
Glivenko-Cantelli theorem.

Under the assumption that the initial state X, is distributed as the limiting
distribution =, {X;} is a stationary stochastic process and is readily seen to be
ergodic (see [1] for definitions and discussion) with respect to the time shift
operation. For that reason, the ergodic theorem implies that for any Borel set A,
with probability 1,

(2.3) 1/nZ cicala(X;) = 7(4),

where 1,(-) denotes the indicator function for the event A. Our first step in the
proof will be to use this fact to show that for any x € %X, with probability 1,
(24 ¢, (x) = x.

Let 4 denote any sphere centered at x. We will affirm (2.4) by demonstrating that,
with probability 1, there is some random time N such that ¢,(x) € 4 for every
n>N. Let M be an integer large enough that ¢; is in 4’ for some j <M. 4’
denotes the sphere centered at x which has half the radius of 4. We will assume
henceforth that n is larger than M. Since m(4’) > 0, by (2.3), with probability 1,
for some random N, and for some a > 0,

Zicnly (X)) >an, all n>N,

and of course, eventually, n3 < an. These facts imply that for some N,, C, N 4 is
not empty for n > N,. This fact establishes (2.4), inasmuch as 4 was an arbitrary
sphere centered at x.

We next establish that for any fixed vector y, with probability 1, as n — o,
(25) 1F,(y]%) = F(y|e,(x))| =0,
which, when we recall the assumed continuity of F in x, in conjunction with
equation (2.4), implies the theorem.

Let £ be an arbitrary positive number and for each n > 1, E, is defined to be the
event that

|F,(y|x) = F(yle,(x))| > e.

Let A, be a sphere centered at x such that if x’, x” € 4,, then |F(y|x") — F(y|x")|
<¢/2, and let N, be the least (random) time such that c,(x) € 4, for all n > N,.

Toward bounding P[E,], n > N,, we employ a large deviation result (associated
with the Laplace-DeMoivre theorem) given in [5]. Let S(n) denote Se.(x), n- B(n) is
the number of elements in S(n). Assume, for the moment, that F(y|X)) = F(y|x)
= p for every X; € S(n). We put superscript p on F to remind ourselves of this
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assumption and for later convenience of notation. ¢ =1 — p. Let B denote the
sequence of numbers { B(n)}. Then

P[E,[B, N,] = P[(B(n)/pq)*|F2(»|x) — p| > e(B(n)/pq)*|B, N,]

1 1 1
< P[(B(n)/pq)*|F2(y|x) = p| > eB(n)/ (pg):[B, N, ].
One may verify that B(n)FZ(y|x) is the sum of B(n) independent Bernoulli trials
1
having parameter p and consequently (B(n)/pq)z(F?(y|x) — p) is identically the
variable S, defined in connectlon w1th the theorem on page 193 in Feller [5].
Further, we may identify eB(n)10 10 /( pq)z with the quantity xp, of that theorem. It

may be seen that the condition that (x,,(,,))3 / B(n)2 converge to 0 with increasing
B(n) holds, and consequently, by virtue of equatlon (6.7) of that theorem, for B(n)
large enough,

P[ ,,IB N < exp[—B(n)%ez/pq].

By construction, B(n) > n3 , and hence

2 snP[EJB, Ni] < 1§ exp(—e¥%)dy < co.
Consequently, the Borel-Cantelli lemmzi-implies
(2.6) P[|F2(y]x) = F?(yle,(x))| > O0[B, N,] = 1.
The result (2.6) holds regardless of the values of the conditioning variables B and
N, and so, by taking the marginal distribution with respect to these quantities, we
may conclude that (2.5) holds for the case in which F(y|x) = p.

To account for the variability of F(y|X)) with X; € S(n), we note that if x is an
interior point of %X, then it is evident that, with probability 1, the diameter S(n)
goes to 0 with increasing n. In any event, if we define S(n) to be that (1 — n‘%)
proportion of the points in S(n) which lie closest to ¢,(x) and if én is then defined
to be the empirical distribution function constructed from the successors to the
points in S(n), then, with probability 1, the diameter of $(n) converges to 0 and
also é,,( »y) — F,(y|x) = 0. For these reasons, our conclusions to follow will remain
valid if we make the (technically faulty) assumption that for 4, and N, as used
earlier in this proof,

|F(»1X;) — F(y|X,)| <e/2

for every Xj, X, € S(n), n > Ny. Thus for n > N,, if p; = min, 4 F(y|x), p, =
max, ¢ 4 F( y| x), then by our earlier argument

P[E,(ylx) = F(y|c,(x)) > ¢[B, Ni] < P[Ff(y|x) — p, >¢[B, N,]
= P[F}(y|x) — p, > &+ py — pofB, N, ]
< P[Fi(y|x) — p, > ¢/2[B, N]
< exp[ - 1/2(82/4)3(7‘1)%].
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The same bound pertains to P[F,(y|x) — F(y|c,(x)) < — ¢/B, N;] and these
bounds allow us to apply an earlier argument to conclude that (2.5) holds in the
general case.

If {X,} is aperiodic and for each x, # dominates the measure associated with
F(y|x), then the conclusion of the theorem is valid for any initial probability for
X,. For the proof of the theorem depends on X, ~ 7 only in order to conclude
that, with probability 1, equation (2.3) holds. For any event B in the field of events
of the process {X;}, let P,(B) and P (B) denote, respectively, the probability of B
under the assumption that X; ~ = and under the assumption that X, = x. Under
the above assumptions, Theorem 7.18 and Proposition 7.12 of [1] imply that for any
tail event B, and for any x,

P,(B) = P(B),

and thus if G is any initial distribution function for X, since the event (2.3) is a tail
event, we have 1 = P, (lim,1/n37_,1,(X,) = m(4)) = [P, (lim 1/n31 (X)) =
7(A))dG(x). Although the results of [1] which we have just employed are cited for
one-dimension, they are based on developments in [3] which hold for an arbitrary
state space.

3. Numerical applications. Our first study consisted of analysis of the Markov
chain in which X, ,|X, = x is normally distributed, with mean and variance
depending on x. Specifically,

3.1) X, 1il(X, = x) ~ N(sign(x)|x|%, 025/ (1 + exp(x))).

In (3.1), sign(x) is 1 or —1 according to whether x is positive or negative. A chain
segment of 10,000 samples was simulated according to the transition function
determined by (3.1) and used as the observed sample input to the transition
function estimation algorithm. The normal observations were simulated by the
Box-Muller algorithm (described, for example, in [15]). The set of representative
states ¢;, 1 < j < 100, was the evenly spaced grid given by

where X, and X, are respectively the maximum and the minimum of the input
sample. The distributions G, ; in (2.2) were taken to be normal (rather than the
empirical distribution function as per the formal description of the algorithm) with
mean and variance being the sample mean and variance of S; ,os. For those sets
S; 10+ having fewer than 10 members, we arbitrarily set G,y ; to be normal with
mean ¢; and a variance of 1/2. In our experimental studies assessing the effective-
ness of various statistical procedures for Markov chains, we have found the
pragmatic expedient of just comparing computer plots of simulated time series and
their approximations more satisfying than various conceivable measures of “good-
ness of fit” for time series. Thus in Figure 1, we have presented for the reader’s
comparison plots of the simulated process associated with (3.1) and a simulation of
its approximation obtained by using F, constructed as above as the Markov
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F16. 1. Comparison of a Markov chain (top) and its approximation (bottom).

transition function. As an additional comparison Table 1 gives the sample means
and variances of successors to S; o+, 50 < j < 100 and j a multiple of 5, and
compares these with their theoretlcal values (namely sign(c)|¢;|*® and 0.25/(1 +
exp(¢;)), respectively). Also in this table, we have compared the number of X,
observations in the simulated realizations of the actual and approximated Markov
chains which lie closest to our tabulated values of G-

An autoregressive (AR) process is a very specialized Markov chain having the
structure
(33) Xpe1=20aX,_,+ N,
where the {N,} sequence is taken to be some noise process (usually uncorrelated)
which is assumed independent of the X,’s, i < n. For example, the autoregressive
moving average time series (analyzed at length in [2]) is, subsequent to its exploita-
tion in [6], the most popular model for streamflow, although there seems to be
scant physical motivation for the linear difference equation part of (3.3). (In fact,
the dynamic equations of channel flow are nonlinear [8]).

Our opinion is that there are many other instances where the ARMA model is
applied to patently nonlinear phenomena, such application stemming from the lack
of availability- of alternative methods. We are hopeful that techniques such as given
in the present paper will lead to more appropriate statistical methodology for
nonlinear stochastic systems.

In order to display the potential advantage of our nonparametric method over a
misapplied parametric technique, we compared the predictive powers of our model
against autoregressive models of various orders. Specifically, we sought to compare
the performance of a minimum square error predictor for an AR model (discussed
in [2]) with the least square predictor associated with our nonparametric method.
One may readily see that our least square predictor of X, ,|X, = x is given by the
sample mean of the elements in S; ,, where j is the index such that ¢; is the closest



677

ESTIMATION OF TRANSITION FUNCTIONS

w50

LEO IST'1 6ST'1 I [4 el S6
S50 L o1l 8SI'l 81 Ll 8Tl 06
650° LSO SET'l (340 91 CLl owri c8
90 190 9L0'1 LLO'T |£37 90v 960'1 08
990° 90 910'L 910'1 1239 96§ 120'1 SL
690 0oLo 956 096 [X44 ILY S4) oL
€L 180° 168" L88’ 81C (44 698° <9
LLO 9L0° €8 978’ L6 74! €6L 09
180° 880 LoL LoL 8T LE 8IL 9
980° 760 1oL veL A4 8 wy 0s

G)dog)/szo)  ulswmsmms  (3o(9)(5) uSis) ugusoyels  ureyo xoidde ureyo emoe srels
% 0) 10ss900TS JO “TEA 03 SI0SSA0OMS % 0y 10ss9000S 0} $10853000S wHsereou W Hysoresu  saneuessidas
Teonaiody L JeA o[dure§  JO UeOWI ONOIOAY]  JO ueow djdweg s/ Jo "oN s/x Jo 'oN b I

supy) Suyvuiixosddy puv jpnpy fo
SousSyDIS pu sid1upivg o uosioduwo) y

19719VL



678 SIDNEY YAKOWITZ

representative state to x. In this study, we chose as the transition function for the
underlying Markov chain the (highly nonlinear) rule

(34 X, 1l(X, = x) = sin(wx) + N,

where the N,’s are independent and identically distributed.

With probability 0.8, N, = 0 and with probability 0.2, N, is chosen uniformly
from the interval [—1/2, 1/2]. We note that with this process, nothing is to be
gained by using an autoregressive moving average approximation in place of the
purely AR process, since the noise actually is uncorrelated. The AR parameters
and the approximating transition function F, of our procedure were both inferred
from the same 20,000 points of a simulated chain. An additional 1,500 observations
of the underlying chain were simulated and for each time » and for each predictor,
the quantity (X, ,; — )?,,H)2 was calculated, and the root mean square (rms) error
CoXper — X, 2/ 1500)2 tabulated. X, was the observed value of the n + 1st
Markov state, and )?,,“ was the predicted value based on observations X,, or, in
the case of an rth order AR process, )?,,H depended on the r-tuple
(X,, - - -, X,_,41) of observed states. The representative vectors ¢;, 1 < j < 100,
for our transition function approximation; were again chosen by rule (3.2).

The optimum one step predictor for this process is, of course,

‘fn+l = Sin(ﬂXn)‘

For this predictor, the square root of the expected error is (£ [N,,2])% =(0.2/ 12)% =
0.129. The observed rms error for this optimum predictor calculated from the 1500
observation periods of the chain was 0.132. For the predictor based on our
nonparametric transition function estimate, the rms error was 0.135. The AR
predictor of order N = 1, 2 and 3 (calibrated according to the standard methods
described, for example, in [2]) gave rms errors of, respectively, 0.534, 0.526 and
0.522.

4. Efficient multivariate estimation. Let us suppose that we have decided to
use M representative vectors {c,,- - - , ¢, } for inferring F, from the observed
multivariate Markov chain segment {X, - - - , X, }. We describe in this section a
largely heuristic principle which we have found useful in our computer studies. To
motivate this principle, suppose that for some fixed y we are trying to minimize
F(y|x) — F,(y|x). We may intuitively anticipate that the smaller the magnitude of
|lx — ¢,(x)||, the closer will be our approximation. Thus in keeping with this
principle, ideally one would like to choose {c;, - - -, ¢)} to minimize E[|| X —
¢,(X)|*], where X is the 7-distributed random vector. By the ergodicity of the
chain, 7 may be approximated by H,, where H, is the empirical distribution
function constructed from the chain segment {X;}, ¢, <,- A reasonable procedure is,
therefore, to minimize the expectation E[||X — c,(X)||*] with the expectation
associated with H, instead of . This procedure is equivalent to minimizing
expression

(4.1) J(cy -+ ea) = Ziay(Xs — (X))
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It turns out that for even moderately large values of M and n, it is not
computationally feasible to find the minimizing set {c,, - - -, ¢, }. However,
K-means algorithm, which is described in Chapter 4 of Hartigan’s book [7], is
designed to provide a computationally feasible approximation to the set
{c1, €5+ -, c)} Of representative states which minimize J. In [14, 16] we found
the K-means algorithm to be useful for computing representative vectors in our
analysis of daily flow of the Cheyenne River. We refer the reader to [16] for a
discussion of the many details of this application.
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