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ADMISSIBLE AND MINIMAX ESTIMATION FOR THE
MULTINOMIAL DISTRIBUTION AND FOR K INDEPENDENT
BINOMIAL DISTRIBUTIONS

By INGRAM OLKIN AND MILTON SOBEL
Stanford University and University of California, Santa Barbara

Admissible and minimax estimation is discussed for estimating the parame-
ters in the (a) multinomial distribution and in (b) k& independent binomial
distributions. In (a) the loss function is Z3[8,(x) — 6,2/6;, where 8, . . . , 6,(Z6;
= 1) are the parameters in the multinomial distribution, and the estimators are
restricted to 2£8,(x) = 1. In (b) the loss functions considered are the weighted
sum of quadratic losses. The method of proof is based on a multivariate analog
of the Cramer-Rao inequality, and uses the divergence theorem in a novel way.

1. Introduction. The following results are obtained.

Model I. Let X = (X, X, . . . , X;) have a multinomial distribution with parame-
ters 1,00, 0y, ..., 80,6, >0(i=0,1,...,k), S¢0, = 1, ZEX; = n. The estimator

X, =X,
8,(X)=—;’,i=1,...,k,8o(X)=1——‘——'

is admissible and minimax for the loss function
(L1)  L(8(X),8) =(8(X) — 9)="'(8(X) — 0),0<6, < 1,3k, < 1,
= 0 otherwise,
where 8(X) = (86,(X), ..., (X)), 0 =(0,,...,8), 2= (0,0, =6 —8),
~08G#)ij=1,... .k
Note that = = D, — 0’0, where D, = diag(4,, ..., §,) so that =~' = D, ' +
e’e/8,, where e = (1, ..., 1). Hence an alternative expression for (1.1) is

2/(; (SI(X)gl— 9:')

1

L(5(X), 8) = ,0<8,<1,i=0,1,...,k

0 otherwise,
where T&6,(X) = 1.

Model 1I. let X = (X,, ..., X,) be k independent binomial random variables
with parameters n, 8, i = 1, . . ., k. The estimator
X, +3m2
8,(X) = — i=1...,k
n+ n2
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is admissible and minimax for the loss function
L(8(X), 6) = SK(3,(x) — 6)".

Model 11I. Let X = (X, ..., X,) be k independent binomial random variables
with parameters n, 6,(0 < 6, < 1),i = 1, ..., k. The estimator
8(X) = X;/n, i=1,...,k
is admissible and minimax for the loss function
2
L(3(X)0)=2§%’(2—;)%,0<0i<1, i=1...,k
= 0 otherwise.

Results for the univariate case (k = 1) in Model II were obtained by Hodges and
Lehmann (1951). They developed a general procedure based on the Cramér-Rao
inequality that yields admissibility results for a variety of univariate models.

Minimax estimators for the multinomial distribution with loss functions of the
form Z&c,(8,(X) — 6,)%, where the ¢; are constants and 3X5,(X) = 1, were obtained
by Steinhaus (1957), by Trybula (1958), and by Rutkowska (1977). Johnson (1971)
shows that §(X) = X,/n,i =0, 1, ..., nis admissible (with squared error loss) for
the multinomial distribution; an alternative proof is given by Alam (1978). Johnson
(1971) also discusses Model II in a more global setting.

The present approach is through a multivariate extension of the Hodges-Leh-
mann (1951) procedure. An analog of the Cramér-Rao inequality is developed that
is a direct extension of the development in Lehmann (1950). Multivariate versions
of the Cramér-Rao inequality also appear in Stein (1955, 1973) in connection with
estimating the mean of a normal distribution.

The present work was actually completed in 1961. At that time there was not the
interest in these problems as there is today, and the work remained unpublished.
There is another aspect of the proofs in this paper that may be of interest, namely,
the use of the divergence theorem in proving admissibility. Recently Stein (1973)
and Haff (1977a, b) and Hudson (1978) make a different type of use of the
divergence theorem in the context of unbiased estimators of the risk.

2. Preliminaries. The extension of the Cramér-Rao inequality is based on the
fact that if
8:;8)=(y.--,6,8,...,8)
is a random vector with covariance matrix
(Cov(&, 8) Cov(s, S)) _ ( M N)
Cov(S, 8) Cov(S, S) N AJ
then M — NA~ !N’ is positive semidefinite. Consequently, for any positive semidef-

inite matrix 4 we have
(2.1) tr AM > tr ANA™'N'.
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The loss function
(22) L(8(X), 0) = (8(X) — 0)A(8(X) — 8)
defines the 4 matrix in each of the three separate problems described above.
Hence, in all three cases the risk function is
(2.3)
r5(0) = EL(8(X), )
= E(8(X) — E8(X))A(8(X) — ES(X)) + (ES(X) — 0)A(ES(X) — 0)
= tr 4 Cov(8, §) + bAb’,
where b, = b(0,, ...,0) =E@G(X)—8),i=1,...,1 Let §;, =
dlog L(X, 0)/30, N = (v)),i,j = 1,...,1, then

v; = §; + 0b,(0)/90, Lj=1,...,1,
where §; is the Kronecker delta. Equivalently,
(2.49) N=1I+Q,
where Q = g, g; = 3b,(8)/06,. Then (2.3), (2.1) and (2.4) yield
(2.5) rs(8) = tr AM + bAb'

> tr ANAT'N' + bAY
=trA(I + Q)A™'(I + Q) + bAb'.
If 6* is an estimator for which equality in (2.5) is achieved, and if for every bias

vector b(9),
(2.6)

tr AL+ Q)A™'(I + Q) + bAb < tr A(I + Q*)A™'(I + Q*) + b*Ab*
for all # implies that b(#) = b*, then 8* is admissible. Note that A = Cov(S, §) is
independent of 8. If, in addition to admissibility, the risk is constant, then §* is
minimax.

REMARK. We have defined S; = [L(X, N 'IL(X, 6)/ 06,. However, higher de-
rivatives, [L(X, 8)]7'0™L(X, 8)/ 06", can also be used to yield a multivariate
version of the Bhattacharya inequalities. Hence if 8 has ¢ components and S has /
components we can take / > g in some of our models. However, in the present
discussion the use of first derivatives with g = / suffices.

3. Multinomial distribution-Model I. Under Model I the loss function is
L(8(X), 8) = (8(X) — )="(8(X) — Y, so that the matrix A of (2.2) is =~ '. The
evaluation of A = () is straightforward and follows from A; = Var(S)) = n(9,”!
+0N,i=1,...,k0,=1-326,\ =Cov(S, S) =nb; ',i#j, so that A =
n(D,~' + e’e/8,), where e = (1, ..., 1). Since = = D, — 8’0, it follows that A =
n=~L

ReMARK. In this development we restrict our attention to estimators §(X) of
the form 3X8(X) =1, so that §,(X) is determined from (8,(X),. .., 8(X)).
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Consequently, in what follows only §,(X), ..., §,(X) appear. This also has the
advantage that the k£ X k covariance matrix X is nonsingular. An alternative
approach is to use the complete vector §y(X), 8,(X), ..., 6,(X) with a singular
(k + 1) X (k + 1) covariance matrix and then use a generalized inverse.

With §*(X) = (X, /n, ..., X, /n), (2.6) becomes

=

(1) n®) =1t ST+ Q)S( + Q) + b2 < Q)

We need to show that (3.1) for all 0<§,i=1,...,k 3%, < 1, implies that
b)) =0.
Since b=~ 5" > 0, (3.1) implies that

1 2 1 1 -k
—_— —_ —_ ,<—
ntrlk+ntrQ+ntr§‘. Q20 p

so that

2r Q +tr 271920’ < 0.
The second term is nonnegative, which implies that

(32) wg=st aa

We now show that 3%3b,/36, = 0. To accomplish this we make use of the
divergence theorem. Equation (5.1) implies that

(33) bty = i 2y (BB %

<
1 00

in the interior of @ ={0:0<86,i=1,...,k 3k, < 1}. Consequently, b? <
6;k/n,i=1,...,k, and (Z¥b,)* < B,k /n, so that as we approach any point on the
boundary B of Q, the corresponding b-component(s) must approach zero, i.e.,

b(0) =0 when 0, =0, i=1,...,k,
Sk,(0) =0 when 6,=0 (ie, =%, =1).

(3.4)

Consider the region © with boundary % . By the divergence theorem

(3.5) fa(Zb;(0)cos ;) do = IQ(EI 3, )

From (3.4) and the fact that cos a(i = 0, 1, ..., k) is O on the boundary points
where §,(j # i) is 0 or 1, the left-hand side of (3 5) is 0. Hence

which, together with (3.2), implies that tr Q = 2’,‘ db; /96, = 0. Consequently, for all
points in the interior of £, (3.1) reduces to

(3.6) b="lp + —’l,-tr =-1030’ < 0.
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Since the second term in (3.6) is nonnegative, (3.6) implies that
3.7 b= <0,

and hence b(f) = 0 throughout the interior (as well as on the boundary) of £,
which completes the proof.

4. k Independent binomial distributions. Under Models II and III the loss
functions are L(8(X), #) = ZX(8,(X) — 0)* and Z*n(8,(X) — 6)*/6,(1 — 8), re-
spectively. When k = 1 the estimator 8, is unique Bayes with respect to a beta prior
(with appropriate values for the parameters of that prior). By independence and the
form of the loss function, the estimator §(X) is therefore unique Bayes with respect
to a product of such priors. Therefore §(X) is adrms51ble Further, since 8(X) has
constant risk, it is minimax.

From the above argument, the results on admlss1b111ty and minimax can be
regarded as known. However, we note that proofs based on the multivariate
Cramér-Rao inequality can also be constructed for these two models, and we give a
sketch of the details.

4.1. Model II. With 8*(X) = (X, + Ln2)/(n + n2),i = 1,..., k, (2.6) becomes

@1)  r0) =t(I+ Q)D,(I+ Q) + b < — K = 1.,(9),

41 + n%)2

where D, = diag(ay, . .., a),

a =10 (1—0)]‘,1—1 , k. We need to show
that (3.1), holding for all 0 <0, <1,i

1, , k, 1mp11es that
(4.2) b(0) = (3 - 8)/ (1 + n2), i=1...,k
It is easily checked that 6* has the bias given in (4.2).
To prove (4.2) note that
tl'(] + Q)Da(I + Q)/ = 2,lcai + 221qxxa + zquxax + zt;équz'qp
which implies that
9 2
(4.3) 2"{b2 —(—n——l[l ao]}<—ll——.
J 4(1 + nz)’

The left-hand side is the mean of k positive terms and, hence, at least one of the
terms (say the first) must be less than or equal to the right-hand side. That is,

- 2

(4.4) bf.,.Ml.,_%l_ <___1_, 0<0,<1.
n 94, 132
4(1 + n2)

By the univariate binomial result of Hodges and Lehmann (1951), (4.4) implies that
1
by(9) = (3 — 6,)/(1 + nZ) for which equality in (4.4) is achieved. Consequently,
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(4.3) becomes
01— 9, b, 12
;2126 b?+M1+__‘ <__1—_
k-1 ! n a9, 1.2
4(1 + n2)
A repetitive argument then yields (4.2), which completes the proof.
42 Model III. With §* = X,/n;, (2.6) becomes
(4.5) r5(0) = tr D,"\(I + Q)D,(I + Q) + bD,” " < k = r;,(8).
We need to show that (4.5) forall 0 <, < 1,i=1,...,k implies that b(4) = 0.
To prove that 5(#) = 0, note that (4.5) implies that
tr D,(I+ Q)D, I+ Q) =trI, +2tr Q + tr D,OD,;'Q" < k,
so that
2trQ +trD,OD, Q0" <0

Since the second term is nonnegative, we must have that
(4.6) trQ=3k—L<0.

We wish to show that 3%9b, /06, = 0. To accomplish this we use the divergence
theorem (3.5). Equation (4.5) implies that
1 b?
7 D~ 'p’ _—

47 PP = Ty <

0<4<li=1,...,k
As any 6, approaches the boundary, the denominator goes to zero, so that b, must
go to zero. Consequently,

b0 ..., 0_1,0,6,1,...,6)=05(0...,0_,1, Orp...,0)=0,
i=1...,k

Using (4.7) and the fact that cos o, is 0 on the boundary for which 8 )(J # i) is 0 or
1, the left-hand side of (3.5) is 0. Hence by the divergence theorem

(4.8) 0= fQ(Z, 30, )

which together with (4.6) implies that tr Q = 3%3b,/36, = 0.
Consequently, (4.5) reduces to

[50)7"

6,(1—-86) &

Each term on the left-hand side is nonnegative, so that each term must be zero.

Thus, () =0,i=1,...,k in the interior of ©, which, together with (4.7),

completes the proof.

(4.9) tr D,0D,'Q" + Sk——"=_p <0, 0<0 <1
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