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DIFFERENTIAL RELATIONS, IN THE ORIGINAL PARAMETERS,
WHICH DETERMINE THE FIRST TWO MOMENTS OF THE
MULTIPARAMETER EXPONENTIAL FAMILY'

By RICHARD A. JOHNSON, J. LADALLA AND S. T. Liu
University of Wisconsin, Madison

We study general multiparameter exponential families of distribution and
obtain differential equations relating the first two moments of the sufficient
statistics to the normalization constant. Another result illuminates the structure
of both the second order partial derivatives of the likelihood and their expected
values.

1. Introduction. It is well known (cf. Lehmann (1959), page 58), that the first
two moments of a natural parameter exponential distribution can be expressed as
derivatives of the normalization constant. More generally, any moment of an
exponential family can be represented by taking further derivatives of the normali-
zation constant (see Bildikar and Patil (1968)). So far, however, these relations
seem to be well known only for the natural parameter families and the correspond-
ing general relationship has been overlooked. These relationships, of the first two
moments to the derivatives of the normalization constant, are given below in terms
of the original parameter space. This latter formulation usually has a more explicit
connection to the statistical inference problem of interest. Although in most
instances it may be easier to convert to the natural parameters in order to find the
covariances of the sufficient statistics, it can still be instructive to learn of the exact
relationship between moments and derivatives in terms of the original parameters.

Our representations have partially or implicitly appeared several times in previ-
ous literature on exponential families. Neyman (1941), in his study of similar
regions, derived differential equations of a form similar to (6) below, except his are
for the log likelihood function. However, he did not specify the relation to
moments. Lehmann (1947) further indicated that the relation presented by Neyman
could be used as a characterization of the exponential family. Efron (1975), in his
study of the statistical curvature, also obtained a formula in the log likelihood
function similar to (6), for a single parameter exponential family.

The main relationship between second moments is presented as Theorem 2 and
Section 3 presents a result related to curvature of the likelihood. The explicit
relations (6) and (7) below for second moments and derivatives have proved
especially valuable in the study of the asymptotic behavior of posterior distribu-
tions by Ladalla (1976) and in a study of sequential conditional probability ratio
tests by Liu (1976).
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2. Main results. A general parameter exponential family has a pdf of the form

o) f(y10) = exp{Z7_,w/(0)y; — x(0)}

2 = exp{«(0)y’ — «(0)}

where w(0) = (w,(0), - - - , w,,(8)) and the dominating measure »(-) is some o-finite
measure on R”. Here Y = (Y,, Y,, - - -, Y,,) takes valués in R” and the A-dimen-

sional parameter § ranges in a subset
0 c O(v) = {0 : k(0) = log [ exp{w(B)y'} dv(y) < 0}.

Here x(0) depends on 0 through w, so k(0) = y(«(0)) for some (measurable) Y(-).
The natural parameter family results from setting w; = w(@), or
(©) f(ylw) = exp{wy — ¥(w)}
where

» € Q= {o:Y(w) =log [ exp(wy’) dr(y) < oo} C R™
and ) is the natural parameter space.

To simplify our presentation of relationships between moments and derivatives,
we let one dot on the top of a scalar or matrix valued function of @ represent the
operation of taking the derivative d/d@ (cf.. MacRae (1974) for this and related
definitions). Two dots represent taking the second derivative d2/d0 d@'.

The result relating first moments and derivatives of k(@) follows immediately
upon an application of the chain rule of differentiation.

THEOREM 1. In the general exponential family (2), if «(0) is differentiable with
respect to 0, then

@ i0) = 29 _ )£y
where
o) - 20 - (D)
J hXm

REMARK. In the natural parameter case m = h and w/(0) = 6;, so &(0) = I, and
relation (4) reduces to k() = EpY’ as in Lehmann (1959).

In order to obtain a matrix expression for the second order relationship, we let
* be the star product defined by MacRae (1974) as

©) (pxq) (psxqt) (sX1)
Ax*B =73 2_9,B;
where B is partitioned into blocks as B = (B;;),i=1,---,pandj=1-"-"-,q.

Entry by entry chain rule differentiation of (4) followed by a collection of terms,
according to the product (5), yields

THEOREM 2. Assume that (0) has second order derivatives. Let K(0) =
d’k(0)/d0 d& and DY) be the covariance matrix of Y under 0. Then

(6) i(0) = 6(0) Dy(Y)ix(8)' + EgY * é(0).
Here é(0) is partitioned as (dw,(0)/d0d0), k = 1,2, - -, m.
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REMARK. For «(0) = 0, the natural parameter case, &(8) = 0 and &(@) = 1, so
we obtain the well-known result £(0) = Dy(Y).

REMARK. For computational purposes, the following component form of (6)
may be more convenient:

3%(0) _ 09cx(0)

(0’
) 36, 06, 96,

)

0%w(0)
a0, 06,

Dy(Y) + EY

3. Expected derivatives of the log likelihood function. In Efron (1975), expecta-
tions of the first and second derivatives of a single parameter log likelihood
function are computed in order to define statistical curvature. Here we generalize
part of his computation to the multivariate case. Let Y, Y,,- - - , Y, be n + 1 i.i.d.
observations from the distribution defined in (2), and let

(®) L;(6) = log f(Y,|0)
= w(0)Y, — (6).

Then, the average log likelihood /(0) is given by

) 10) = +31_,1,(0)

= w(0)Y’ — «(0)
where

Y=(7, %, L)=13y,

Then from (4) and (9),
(10) 1(6) = &(0)(Y — EpY),
and from (6)
(11) 1(8) = (Y — E,Y) * i(6) — io(8) Dg(Y)c(8)'.

THEOREM 3. Let i(0) be defined as in (9) for a sample of size n, and assume that
«(0) has second order derivatives. Then

E[1(8)] = 0, E[1(8)] = —ix(8) Dy(¥)io(6)

S|— x|=

Var[/(8) ] = — x(8) Dg(Y)éo(B)

E[1(0)(6)] = 5 Do(Y) * [a(6)(8)] +[x(6) Do(¥)io(6) T,

and

E[1(6) 9)] = - DoY) + [(0Y6(0)
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where &(0)'&(0) is partitioned as

%0 (0) d*a(6) )
(dOdof‘dodo,) for i,j=1,-++,m

and

o d%0(0) de(0) .
w(0)w(0) as (WW} for 1,]—1,2,'~~,m

in the definition of the = product (5).
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