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ON OPTIMAL MEDIAN UNBIASED ESTIMATORS IN THE
PRESENCE OF NUISANCE PARAMETERS

By J. PFANZAGL
University of Cologne
For exponential families with density
x = C(6, )h(x)exp[a(9) T(x) + Z2..,a,8, n)Si(x)),
9, €EOX H,OCR,

a increasing and continuous, there exists for every sample size an estimator for
0 which is—in the class of all median unbiased estimators—of minimal risk for
any monotone loss function.

.

Introduction. Let (X,&) be a measurable space and P, ,|@, (6,1) € © X H
with ® C R a family of p-measures. We are interested in estimators for 6.

The following result of Lehmann and Scheffé (1950, page 321, Theorem 5.1) is
well known: if an unbiased estimator can be expressed as a function of a complete
sufficient statistic, then it is —among all unbiased estimators—of minimal risk for
any convex loss function.

Since unbiasedness is not a very persuasive property, and since any realistic loss
function will be bounded and therefore never convex, this result is not entirely
satisfactory. It therefore seems worthwhile to show that the same tools (i.e.,
sufficiency and completeness) can be used to establish that under comparable
conditions median unbiased estimators exist which are—among all median unbi-
ased estimators—of minimal risk for any monotone loss function. (By a monotone
loss function we mean one which assumes its minimum if the estimate agrees with
the parameter, and is nondecreasing as the estimate moves away from the parame-
ter in either direction. Convex loss functions are necessarily monotone.)

We remark that our result implies the existence of a median unbiased estimator of
minimal monotone risk also for arbitrary monotone functions of the parameter 0,
whereas unbiased estimators exist for one of these functions only, and convex loss
functions may cease to be convex under monotone transformations.

The theorem. Let % denote the Borel-field of R. In the following we shall
consider randomized estimators for §, which are represented by a Markov kernel
k|X x % with the following interpretation: After x has been observed, the
estimate is determined by a random experiment, governed by the p-measure
k(x,*)|®. (The consideration of randomized estimators seems to be inevitable,
since for p-measures with atoms nonrandomized median unbiased estimators do
not exist in general.)
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For any Markov kernel M|X X B and any p-measure Q|@ let Q o M denote
the p-measure over ® defined by Q o M(B) := [M(x, B)Q(dx), B € B. For a
measure » and a function f, let »(f) denote the v-integral of f, and »  f the induced
measure, defined by » * f(4) = »(f~'4).

An estimator k is median unbiased for @ in the family P, ,, (6, 7) € © X H, if for
every (f,m) € © X H, 0 is a median of P, , ° k.

THEOREM. Let © be an interval, possibly infinite. Assume that Py, has, with
respect to some o-finite measure p, a density of the type

(1 C(6, n)h(x)H(T(x), 0)G(S(x), 8, m)

with T: X >Rand S: X - Y.

To avoid technicalities we assume that I = {t € R: "H(¢t, 8) > 0} is an interval
independent of 6, and that G(y,0,m) > 0 for ally € Y.

Assume that the function H, defined on I X ©, has the following properties:

(1) 8 —> H(t, 9) is continuous on © for every t € I
(i) 6 — H(t,, 0)/ H(t,, 0) is nondecreasing on © for every pair t,t, € I with
tl < tz. .

Moreover, assume that the family P, ., + S, 1 € H, is complete for every § € ©.

Then the median unbiased estimator k, defined by (16) (see (12) and (14)) is
maximally concentrated in the following sense: for each (8,m) € ©® X H, let u—
L, (u) be a loss function which assumes its minimal value for u =90, and is
nondecreasing as u moves away from 0 in either direction. (L, , is not necessarily
bounded from above.) If k is any median unbiased estimator for 0, then

Py, o ko(Ly,) <Py, ok(Ly,) foral (8,7m)€0XH.

For the case without nuisance parameter, i.e., for families P, with p-density
C(0)h(x)H(T(x), 8), a corresponding result was obtained by Lehmann (1959, page
83) under the additional assumption that the distribution P, * T is nonatomic, and
by Pfanzagl (1970, page 33, Theorem 1.12) for the general case. For the special case
of an exponential family a related result was obtained independently by Brown,
Cohen and Strawderman (1976, page 719, Corollary 4.1).

REMARK 1. The estimator k, is not necessarily strict (i.e, the measure
ko((T(x), S(x)),*)|® may assign positive probability to @ — © for some x € X).
If ® is an interval with boundary points a, b, we have ky(7(x), S(x)), [a, b]) = 1
for all x € X.

REMARK 2. The most important application of the theorem is to exponential
families with p-density

() C(6, n)h(x)exp [a(0) T(x) + 2%-,a,6, ) S(x)],
which fulfill the assumptions of the theorem for every sample size if 8 — a(@) is
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increasing and continuous, and if {(a,(8, 1), - -, a,(8,m)): n € H} has a non-
empty interior for every § € ©. (For the last condition see Lehmann (1959), page
132, Theorem 1.)

PrOOF oF THE THEOREM. Since S is sufficient for the family P, ., m € H, for
each fixed § € O, the nuisance parameter disappears if we consider the family of
conditional distributions, given S. Since these families have monotone likelihood
ratios, a randomized estimator k(7 y) exists which is optimal median unbiased on
the partition S = y. Hence k(T, S) is an estimator which is median unbiased on
the whole for all values of the nuisance parameter. To prove its optimality, one has
to show that an arbitrary median unbiased estimator is also median unbiased on
the partition S = y, hence inferior on the partition S = yx for all y, hence inferior
on the whole.

(i) The first part of the proof collects a few auxiliary results on the conditional

distribution, given S.

Let »|@ be the measure defined by »(4) := [,h(x)u(dx). We remark that » is
o-finite, and that P, , has v-density ,
3) x — C(0, n)H(T(x), 0)G(S(x), 0, 1).

Since T is real valued, there exists a regular conditional probability of » * T|B,
given S, i.e., a Markov kernel 7|Y X % such that for all B € % and all D €
D={DcCcY:S'DeR)

4) W(T7(B) () S7YD)) = [p7(», B)v » S(d).
(See, e.g., Breiman (1968), page 78, Theorem 4.30. Breiman’s theorem refers to the

case that v is a p-measure. The proof for an arbitrary o-finite measure » is the
same.) (4) implies in particular

(5) v* T(B) = [#(y, B)v = S(dy).
With

(6) Hy(y, 0) = [H(z, 0)7(y, dr)

we obtain that

is a density of Py, * S with respect to » = S.

For technical reasons we need a few results on H,.

Since {t € R: H(t,0) > 0} does not depend on 8, the same holds true for
Yo:={y €Y: Hy(y,0) > 0}.

Since 7 is a Markov kernel, it follows from (6) that y — Hy(y, ) is ) -measur-
able for every § € ©.

Moreover, 8 — Hy(y, 6) is continuous for » * § — a.a. y € Y. Since (7) is the
density of a p-measure and G(y, 8, n) > 0 for all y € Y, there exists a » * S-null
set Ny such that Hy(y, §) < oo fory & N,. Let N, == U {N,: § € ©,}, where 0, is
a countable dense subset of ©. Because of assumption (i) continuity of Hy(y, *)
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follows from (6) by the bounded convergence theorem: for 7/, 7/ € ©, with 7’ < 7"
and ¢, € I we obtain from (ii) for every 8 € (7', 7"’)

H(t,, 0
0< H(t,0)<H(t, 1) ﬁ'r—,; for 1<y
(13
H(t,,0)
< s T ) 2 1.
H(, T )H(to, ) for t >4,

Since 6 — H(ty, #) is continuous and ¢ — H(z, 7) is #(y,*)-integrable for 7 € 0,
andy € Y, := Y, — N, this entails the existence of a #(y, *)-integrable bound of
t — H(t, 9) which holds uniformly for 8 € (v, 7"), if y € Y,. Hence § — Hy(y, 0)
is continuous on B° for y € Y,.

It is easy to check that

(®) My(y, B) = Hy(y,0) ' [3H(1,0)7(y,dr) yE Y, BED

= »(y, B) yEY,BE®D
defines a Markov kernel My|Y X %, and that this Markov kernel is a regular
conditional probability of Py ,*T, given S, and that § — M,(y, B) is continuous on

O°foreveryy € Yo, B € B.
For later use we remark that for any measurable function f: R X Y - R

9 AT (x), S(x)) Py, (dx) = [(Jf(t, y) My(y, dD)) Py, * S(dy).

Relation (8) makes explicit what was obvious from the beginning: that versions
of the conditional probability of P, , * T, given S, exist which do not depend on 1,
because for each § € © the statistic S is sufficient for the family P, ,, n € H. We
need, however, the explicit representation (8) which shows that for each y € Y the
family M,(y, *)|B, € ©, has monotone likelihood ratios, a consequence of
assumption (ii). ‘

(ii) Now we construct a randomized estimator which is optimal median unbi-
ased under the condition S = y, and combine the estimators obtained for different
partitions S = y to an estimator on the whole.

Since M,(y, *)|®, # € O, has monotone likelihood ratios for each y € Y, we
obtain from Theorem 1.12 in Pfanzagl (1970), page 33, the existence of a median
unbiased estimator k,|R X B such that My(y, *) © k, is of minimal monotone risk
among all median unbiased estimators for the family My(y, ), § € ©. Since we
have to combine the estimators for different y to an estimator on the whole, certain
measurability questions occur, the solution of which requires knowing &, explicitly.

If the distribution function of My(y, *)|® is continuous and increasing for every
# €0, y €Y, then there exists c(f,y) such that My(y, (— oo, c(d, y)]) =3, and,
since the family My(y, *), # € O, has m.L.r., the function § — ¢(6, y) is increasing.
If m(+,y) is the inverse function (i.e., m(c(0, y), y) =8), then t — m(¢, y) is the
desired median unbiased estimator. In the general case, more care is needed in
defining this estimator. In particular: if M,(y, *) has atoms, then randomization is
needed to achieve median unbiasedness.
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In the general case, an estimator k, can be defined as follows (see Pfanzagl

(1970), 1.8, page 32/3): let

(10) c(8,y) = inf{r € R: My(y, (=0, 1]) >3 )
and
E(t,0) =1 if t<c(8,y)
(11) =rg, if t=c,y)
=0 if t>c¢0,y)
where
ron =0 if My, {c(8,y)}) =0

=[ 4= My(3, (— o0, c(8,) ]/ My(, {c(6:)})

otherwise.

Let y € Y* be fixed. If ® has boundary points a and b we define

G,(1,0):=0 for < a
= F(1,0) for 6 € (a, b)
= sup{F(t,7):7 <b} ford = b
=1 for 8 >b.

The function  — G, (¢,0) is nondecreasing and continuous from below (since
6 —c(8,y) has these properties on ©9) Hence there exists a Markov kernel
kJ|R X ® such that

(12) k,(t, (—o0,8)) = G/(t, 9)
We have

forallt, 8 € R.

k(t,6°) =1

Similarly as in Pfanzagl (1970), Theorem 1.12, one can show that k, is median

unbiased. For a more precise formulation of this property, let
By ={1€0%7<0} and B/ ={r€06,7>0}.

By B, we mean either B, or By’. Then we have forally € Y,
(13) My(y,*) o k,(By) >3 t forall § €0
and
(13’) Mo(y, ') ° ky(Bo) =’;‘ f0r all 0 S @o,

So far, we have a separate estimator for each y € Y,. It is, however, easy to see
that the function (¢, y) — k,(¢, B) is measurable for every B € % . Foreveryr € R
we have (see (10)) c(8, y) > r iff My(y, (— o0, r]) <3. Since y — My(y, (— o0, r]) is
measurable, this implies that y — ¢(#, y) is measurable. Hence, by (11), (¢,y) —»
F,(t, 0) is measurable. By (12), (¢, y) — k,(¢, B) is, therefore, measurable for every
B = {r € ©: 7 <#}. Since the class of all B € B with (¢, y) — k,(¢, B) measur-
able is a o-field, this implies that (¢, ) — k,(¢, B) is measurable for every B € B.

Finally, we define k, for y & Y, by k, , say, with y, € Y arbitrary. Since Y is
measurable, (¢, y) — k,(¢, B) is measurable on R X Y. Hence we may define a

the interior of ©.
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Markov kernel ko|(R X Y) X % by
(14) ko((¢,), B) = k/(t, B).
Using (9) we obtain from (13)

(1) (Pyy*(T.S)) o ke(By) = [(1k (1, BYMy(», dD)) Py , * S(db)
>1  forall €0

and

(Po,y * (T, S)) © ko(Bg) = [(k,(t, BYMy(y, d1)) Py , + S(dy)

=1 for 0 €0°.

Hence the estimator defined by

(16) x = ko((T(x), S(x)), *)
is median unbiased for all (4, 7) € © X H.

g

(iii) It remains to be shown that the estimator k, is of minimal monotone risk
among all median unbiased estimators.

To this aim let k|X X B be any other median unbiased estimator. The basic
idea of the proof is to replace x — k(x, B) for each B € % by a conditional
expectation, given (7, S), not depending on (f, n) (notice that (7, S) are
sufficient by the factorization theorem), thus defining a function k|(R X Y) X %,
and to use completeness of the family P, , * S, n € H, to establish that for each
y € Y the function ¢ — k((¢, ), *)|® is median unbiased for the family M,(y, ),
0 € 0. Since ¢ — kq((2, y), *) is optimal for this family, the optimality of ., for the
family P, ., (§,m) €0 X H, follows by integration with respect to Py , * S.

In carrying through this idea, we meet the following obstacle. Median unbiased-
ness of kK means

(17) Py, °k(By) >3 forall (,m7) €O X H.
If for some 8 € O,
(18) Po‘,n ° k(Bo) =% for all n (S H,

we obtain from (9) for alln € H
f(fk_((t’J’)>Bo)Mo(y, dt))Po,n * S(dy)= [k((1, ), Bo)Po,v, * (T, S)(dt, dy)
= [k(x, Bo)Po,n(dx) = %’
so that completeness of P, , * S, n € H, implies
(19) [k((t,y), B)My(y,dt)y=73 for P, *S—aay€}y,

where (6, ny) € ©® X H is arbitrarily fixed.

An inequality like (17) cannot be used in the same way. However, (17) implies
Py, ° k(By) = for all but countably many values of §, and therefore complete-
ness can be used as indicated above.

This basic idea can be carried through as follows. Since P, , < P, , , we have
Py,°ok <Py, ok for any Markov kernel k. If P,, o k(By) >4 and
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Py, ° k(By) >3 and Py, © k(B;) + Py, © k(By) > 1, then P, o k{f} >0 and
therefore Py, ° k{6} > 0.Let ©,:= {§ € ©: P, , ° k{f} >0}. Since Py , °k
is finite, ®, is at most countable.

By definition of @, relation (18) and therefore relation (19) holds true for every
6 €O — 0, Let N, € D denote the exceptional P, , * S-null set occurring in
(19). Let ®, C ©° — 0, be a countable set which is dense in ©, and let N, :== U
{Ny: 6 € 0,}.

To prove the optimality of k, we proceed similarly as in the proof of Theorem
1.12(b) in Pfanzagl (1970), page 34. Lety & N, and 7 € O, be fixed. Then by (13),
(14) and (19),

(20) Jk((t,y), B YM,(y, dt) = [ko((t, ), B/)M,(y, dt).
By definition of &, (see (11), (12) and (14)),

ko((t,), B/) =0 1 <c(ry)
=1 t >c(r,y).
Hence, by Lehmann (1959), Theorem 2(ii), page 68

(1) Jk((t,), B/)My(y, dt) < [ko((t,»), B/)My(y, dt)  for 8 >17
> for 8 <.

Let now 6 € © be fixed. Since (21) holds true for all 7 € ©,, and since 0, is
dense in O, it holds true for all + € O, except 7 = inf®, if this element belongs to
©. For this element, (21) is, however, trivially true.

So far, y & N, was fixed. Since N, is a P, , * S-null set, integration over y with
respect to Py, = S yields (see 9)

(22) Py, o k(B]) < (Py,*(T,S))oky(B) for 6 >r
2 for 6 <.
From this, the assertion follows easily.
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