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ESTIMATION FOR A LINEAR REGRESSION MODEL WITH
UNKNOWN DIAGONAL COVARIANCE MATRIX

By WAYNE A. FUuLLER AND J. N. K. Rao

lowa State University and Carleton University

A method of estimating the parameters of a linear regression model
when the covariance matrix isan unknown diagonal matrix is investigated.
It is assumed that the observations fall into & groups with constant error
variance for a group. The estimation is carried out in two steps, the first
step being an ordinary least squares regression. The least squares residuals
are used to estimate the covariance matrix and the second step is the calcu-
lation of the generalized least squares estimator using the estimated covari-
ance matrix. The large sample properties of the estimator are derived for
increasing &, assuming the numbers in the groups form a fixed sequence.

1. Introduction. We consider the problem of estimating the parameter, 8,
in the linear regression model with heteroscedastic error variances:

M y=Xg+e,
where y is an n-vector of observations y(j=1,--,n5i=1, -, k; >;n =
n), X is an n X r full rank matrix of known constants (n > r), B is an r-vector

of regression parameters and e is an n-vector of random variables e;; with mean
zero and dispersion matrix

2) V = block diag. {o.I,, - - -, 6,71, } .
In (2), ¢,% is the unknown error variance associated with e;; and I, is the n; X
n; identity matrix.

The ordinary least squares (OLS) estimator of 8 is

A

B =XX)"X"y.
Let the two step weighted least squares (WLS) estimator of 8 be defined by

(3) B = (XV=X)(X'Vy)
where
4 V = block diag. {¢,'I,, - - -, 6,1, }

and 4, is an estimator of 6,>. The estimator B is obtained in two steps. The
first step is to obtain an estimator V. The second step is the calculation outlined
in (3). Bement and Williams [2] and Jacquez et al. [5], among others, have
investigated the efficiency of B, relative to the OLS estimator, given that 4,2 =
s = 20; (Vi; — P3)}/(n; — 1), where j;, = 2., Vi;/ni, is used in the estimated co-
variance matrix V. Jacquez et al. argued that results for small n; are important
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because it is often impractical to obtain more than 4 or 5 replicates at a point
and 2 or 3 replicates at a point is a common situation.

Rao and Subrahmaniam [9] used the OLS residuals é = y — X} and the
method of MINQUE (minimum norm quadratic unbiased estimation), to esti-
mate the ¢,. They empirically investigated the efficiency of the resulting WLS
estimator in the equireplicated case n; = m for all i. Their WLS estimator was
found to be considerably more efficient than that based on the s;> when m is
small (£ 5) and k is relatively large.

Williams [10] reviewed some recent developments in WLS estimation, giving
a number of references. Williams obtained lower bounds on convergence rates
of WLS estimators to best linear unbiased estimators when the ¢, are a function
of a finite number of parameters.

In the present context the approach discussed by Williams corresponds to
fixing the number of groups k and letting the number of elements n; within
each group increase. A notable exception to this type of approach is the pioneer-
ing work of Neyman and Scott [7], where the estimation difficulties associated
with an increasing number of groups are discussed. Assuming that the errors
e;; are normally distributed, they studied estimators of x for the model

y=pl+e,
where 1 is a column of ones. Neyman and Scott constructed an estimator

which is asymptotically (as k — oo) more efficient than the maximum likelihood
estimator of s, provided the n, differ.

We shall study the class of two step estimators of 8 given by

(5) B’w — (X'V—1WX)‘1(X'\A"_1W)’) ,
where & = (y — XB) = (64, -+ -, €inp * 3 € s k),
(6) 67 = T

(7 W = block diag. {w,L,, - - -, w,L, }

and w; = g(n,) for some g(+) such that 0 < 7, < w; < 7, < oo for all i (the w;
generate the class). For the equireplicated case, 8, reduces to 8 given by (3).
The asymptotic distribution of 8, is derived in Section 2. Under the postu-
lated model the individual ¢, do not converge in probability to the true g,® as
the number of groups increases. Consequently, the distribution of the two
step estimator of B is a function of the distribution of the difterences 6,2 — a,%
Because the g2 are functions of 8, it follows that replacing B in equation (6)
by an alternative estimator of 8 will produce a different limiting distribution
for the estimator (5). One might use the two step estimator 8, to construct
new estimators of ¢, and insert these estimated variances into (5) to obtain a
three step estimator of 8. One can view the maximum likelihood estimator as
the limit of such an iterative process with W = I. Hence, the distribution of
the maximum likelihood estimator differs from that of the two step estimator.
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The special case of the two step estimator of a common mean is investigated
in Section 3. The two step estimator is demonstrated to be superior to the
maximum likelihood estimator for a considerable range of parameter values.

2. Asymptotic distribution of 8,. In deriving the large sample properties of
B, we shall use the following assumptions:

(a) The sequences {¢,?} and {n;} satisfy 0 < 0,? <0< 0, < co and 3 <
n, < n* < oo for all i.

(b) The rows of X, (x,;;, - -, X;;,), form a fixed sequence with 37 , x};, <
0 < oo for all (i, j).

(c) The limits (as k — oo) of the matrices n'X'X, n7'X'VX, n'X'WX,
I X’'WGV-X, n-'X’WV-ILWX and n~'X’V,~'X exist and are positive definite,
where

(8) G = block diag. { 1 L, -, 1 I, }
n—2 1 n,—2 '*
9 L:blockd'a.{ M, e, In}
( ) 1 g n, — 2 1 n, — 2 k
and
(10) V, ™! = block diag. {ﬂ—l——— L, _ e I’nk} :
(n, — 2)o;? (n, — 2)a,?

Strictly, an additional subscript k should be introduced, e.g., n,7'X,’X,, when
discussing the asymptotic behavior as k — co. Because such notation becomes
cumbersome we have omitted the subscript.

2.1. The lemmas. We present seven lemmas prior to our principal result.
Lemma 1 is proven by Chung [4], page 111, and Lemma 7 is a straightforward
integration result. Proofs of Lemmas 2 through 6 are given in the Appendix.

LEMMA 1. Let{Z;} be a sequence of independent random variables with distribution
functions {F;} and let S, = Y., Z,. Let {c,} be an increasing sequence of positive
numbers. Suppose

(i) o SIZI>ck dFi(Z) = 0(1),
(i) ¢,* Dt Smgck 22dF(z) = o(1l)
and

(iil) @, = Xk, Sz, 2 dFi(2).

Then
¢, (S, —a,) —,0.

LEMMA 2. Let assumption (a) hold, let {b;} be a sequence such that |b;| < b* <
oo for all i, and let
lim,_, k' 2% byny(n, — 2)7 0, = A4
where A is a real number. Then

-1 %k 5 -2
k i=10i bi——>pA,
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where
(11) A R

LEMMA 3. Let assumption (a) hold. Then, for 3-' < a < 271,

k¥ S (7€) ea] —, 0.
LEMMA 4. Let assumptions (a) and (b) hold. Then
, k= i ot — 6,7 —, 0.
LEMMA 5. Let assumption (a) hold. Then, for 37! < a < 271,
k=3 3k (el + ey + el)%ellen| —, 0.
LEMMA 6. Let assumptions (a) and (b) hold. Then
k=H{X'V-'We — X'V-'We — 2X'WGV-X(8 — B)} -, 0,

where
(12) V = block diag. {d,L,, - - -, 6,1, }
and V is given by (4).

LeMMa 7. Let U, and U, be independent chi-square random variables with 1 and
2 degrees of freedom respectively. Then

(5 r ()

{<U1 LfU)m} - rr <¥;

2-32+8)

2

for a positive 0 < 1, where I'(+) is the gamma function.

2.2. The main result. The asymptotic distribution of B, is given by the
following:

THEOREM. Let 'y = XB -+ e where the e,; are independently and normally dis-
tributed, and e;; has mean zero and variance o;*. Let B, be defined by (5) and
suppose the assumption (a)—(c) hold. Then n¥B, — B) has a limiting normal dis-
tribution with mean 0 and covariance matrix H given by

(13) H = lim,__ n(X'V,,“'X)"'D(X'V,,~'X)"!
where
(14) D = X'WV-ILWX + 2(M + M)
+ 4X'WGYVX)(X'X)IX'VX(X'X)"(X'WGV-X)
and
(15) M = X'WGVIX(X'X)'X'WX .

Proor. We have, from (1) and (5),
(16) n(B, — B) = (X'VIWX)-n-4(X'V-1We) .
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We now follow the steps used in obtaining the asymptotic theory for standard
regression models (e.g., Anderson [1], page 23):
StTer 1. Demonstrate that
plim,_., n—l(X'V—IWX) = lim,_, n}(X'V,7X) .

STeP 2. Show that n—%l'(X’V—IWe) has a limiting normal distribution with
mean zero and variance A’'DA for every arbitrary 4 (# 0).

Proor oF sTEP 1. Consider the (¢, s)th element of n—l(X’{’—IWX) given by
lzl{=1wi6i_2 Z;L lx'L]txljs (I,S: 1’ Y r)~
n

By assumptions (a) and (b),
In (0' “r—é, _2) Zgl 1 zgt lgsl é ck™! 7I.F=1 léi—2 - 6‘i‘2| )

where ¢ is a positive constant. The quantity on the right converges to zero in
probability by Lemma 4. Furthermore

.1 1
th7 11-227 lxut z]s_hm flm

Z] 1 z]z zga

by Lemma 2 with b; = w; 31; X;;, Xy, The proof of step 1 is complete.
Proor oF sTEp 2. Consider
6 = n—12(X'V-'We)

which by Lemma 6 can be written as

6 =0+ o0,1)
where
6 = n A [X'V-'We + 2X'WGV-X(X'X)"'X'e]
=ntYk &,
and § = Nty Dica (Awi 077X 805 7sXij5€i5) s
(F1s =+ 5 70) = 7 = 2AX'WGVIX(X'X) ™

The &,’s are independent with uniformly bounded variances. By Lemma 7 and
the fact that x,;, and ¢,* are uniformly bounded, it follows that the &, have
bounded 2 -+ 6 moments for some §(0 < 6 < 1). Therefore the conditions of
Liapounov’s central limit theorem are met and § converges in distribution to
a normal random variable.

To evaluate the asymptotic variance of 6, we first consider the expectation
of the (¢, s)th element of X'V-'Wee’ WV-1X | say d,,. We have

5ts = E{Zf:l Wiz&i_A(Z?il xijteij)(zy% Xijseij)} .
Hence, following the proof of Lemma 7, we obtain

(17) E{X'V-'Wee’'WV-'X} = X'WV-LWX .



1154 WAYNE A. FULLER AND J. N. K. RAO

Next consider the expectation of the (7, s)th element of X'V-'Wee'X, say ,,.
We have

Elo,} = E{X{ w6, (07, Xij€:,)( D581 Xijs€i5)}

= oWy DTy Xy, %5, E{€3;6,70 = b we 20Ty Xij Xig -

Hence

(18) E{X'V-'Wee'X} = X'WX .
Finally

(19) E{X’ee’X} = X'VX .

Using (17)—(19), we obtain the expression 4'D4 as the asymptotic variance of
6. The proof of step 2 is complete. []

The asymptotic covariance matrix of B., simplifies considerably in the im-
portant special case of all n, = m = 3:
(20) V(B,) = V(B) = (1 + 2m~ — 8m=2)(X'V-1X)!
+ 4myXX) X VX(X/X)

3. Combining independent estimators. The problem of combining independ-
ent estimators of a common mean g has long been a concern of statisticians.

The model for this problem is y,;, =g+ e;,(j=1,---,n5i=1, .., k;
.. n, = n) which is a special case of the regression model (1). Here k£ denotes
the number of independent estimators y,, ---, y, of gand y, = n,7' 33, y,;. The
two step estimator (3) for the special case n, = m for all i reduces to

1) fr=(Lia 67 )7 B 67 g

where ,° = n,7' 33, (yi; — P)° and y = n=* Y, n, ;. For n, = m, the variances
of the limiting distributions for /, y and the maximum likelihood estimator s*
are given by

(22) V(E) = m(m — 2)m + &)V (e*) + 4m=*V(5)
(23) V(p) = k=*mt TF 0

and

(24) V(p*) = (m — 2Dk, 0,79

The formula (22) is obtained from (20) whereas (24) follows Neyman and Scott
[7].- Note that the Neyman-Scott estimator is identical to x* in the special case
n, = m for all i.

It is clear from (22) that j is a compromise between the sample mean y and
the maximum likelihood estimator u*. For a range of variability in the ¢,2 it
is superior to both y and g*. This is demonstrated by Table 1 which contains
selected values of asymptotic relative efficiencies for the Cochran and Carroll
[3] variance model. In this model it is assumed that one-third of the k groups
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TABLE 1
Asymptotic relative efficiency of estimators of the mean for
variances (a, 1, a"') and n; = m

m
Variance Ratio a
3 4 5 6 10
* i 1 . . 1.34 1.23 1.08
iV 2 %‘1‘; %Zg 1.35 1.19 1.06
3 1.76 1.31 1.18 1.12 1.04
4 1.40 1.09 1.05 1.03 1.01
5 1.12 0.97 0.95 0.95 0.97
6 0.91 0.82 0.84 0.86 0.93
V) V(g 1 0.82 0.80 0.81 0.82 0.86
2 0.98 1.02 1.05 1.08 1.16
3 1.22 1.37 1.48 1.55 1.73
4 1.43 1.74 1.95 2.11 2.47
5 1.60 2.07 2.42 2.69 3.31
6 1.72 2.35 2.86 3.27 4.23

have variance 1/a, one-third variance 1 and the remaining one-third variance
a. For small m (< 6) the sample mean is most efficient until @ approaches 2
(note that a” is the ratio of the largest o, to the smallest). For a in the range 3
to 4 and m < 10, 2 is most efficient and the gain in efficiency over u* and
is often large for m < 5. For larger a, p* is most efficient but the gain in ef-
ficiency over f is modest. As m increases the relative efficiency of g to p*
approaches one.

APPENDIX

PROOFS OF LEMMAS.

A.1. Proof of Lemma 2. Let Z, = b;/3;> = (b;n;)/(62U,,) where U, is a chi-
squared variable with n, (= 3) degrees of freedom. It can be verified that
lim,_, k=% 3, E{|Z;|***} = O for a positive 6 < 1 and the conclusion follows.
(See Rao [8], page 118, exercise 4.5.) []

A.2. Proof of Lemma 3. Let Z; = |v,|(v} + u,)~%, where u, = v%, 4+ v and
the v,; are independent N(O, 1) variables. We first demonstrate that T, =
k=331, Z; —,0 by verifying that the sequence {Z;} of independent random
variables satisfies the conditions (i) and (ii) of Lemma 1 with ¢, = k**. Now

Pl|vy| > k(i + u,)*]
Pllvy| > k*(vi + #,7)]
Pllvg| < k7% uy < k7]
P[vY 4+ u, < 2k < 23k—3

Pl|Zi] > k*]

IATIA - IIA

since P(U, < d) < di, where U, = v% + u, is a chi-square variable with 3 de-
grees of freedom. Hence, condition (i) of Lemma 1 is established, noting that
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1 — 3a < 0. Let u; = v}, then for any i
1 ut
. —3(uq+u
§ <o 22 dFy(2) < —ZT(%) §uyug>i—2a m e~ dy du,
S ¢ (ysuma yTylev 2 dy
< k™ § s pmsa yleT 2 dy = O(k)
where ¢ is a positive constant. Hence, condition (ii) of Lemma 1 is also es-
tablished. Similarly,
k=i 3ites Sircasa 2 dF(2) S k' (o pmna yTlev 2 dy = o(1) .
We conclude that T, —, 0. If the v;;’s are independent N(0, ¢,), the integrals
for the ith random variable Z; change by a constant which is bounded for all i
since ¢, < 0> < 0,°. In a similar manner if u, = u, + u,, where u, is a chi-
square random variable, then |v,|(v} + #,)72 > |v,|(v4 + ;)72 []

A.3. Proof of Lemma 4. We may write

_1_ (6,72 — 6,7 = — 2 (eij + &;; — gij)gij ,

n; (25 el 205 (e — 9:5)°]
where g;; = ¥, (8, — B,)x;;, and é,;, = e;;, — g,;. Letd > Oand e > 0be given
and a be as defined in Lemma 3. Let A4,, be the event that, for at least one i,
max; |e;;| < k~* and let A,, be the event that max;; |g;;] > (2k)~*. Let 4, =
4,, N Ay, where 4,, denotes the complement of A,,(# = 1,2). Then

Plk=t 33k 6,7 — 6,7 > 0]

= P(4,) + Plk7 1k, (6,77 — 677 > 0] 4,]

< P(A4) + Pk S5, 16,70 — 6,7 > Bkt X, Dy | )]

+ P[sz_% kD > 0]
where B, is some positive constant, D; = 2 le;[(20h €)™ and A, is the com-
plement of 4,.

By the property P(U, > d) < d? for a chi-square variable U, with 3 degrees
of freedom we have P(4,,) = 1 — ck'-%, where cisa positive constant. There-
fore, noting that § — B = O,(k?), there exists a K, such that P(4,) > ¢/3 for
k> K. If |g;] < (2k)= for j=1,...,n;, and |e;,| = max; |e;;| > k=%, then
there is a positive constant B, such that -

d, = |20 (ei; + e; — g45)| < B, 2ilesl B,D,.
(2 eIl 25 (e — 9i,)°] (Z;€)

This is true since

2 (e — 95)" = (4n) ™ 1 el
Because the x;;, are uniformly bounded and (,é — B) = 0,(k~%), there is a B,
such that P(k™' 3] |6, — 6,7%| > Bk~ ¥, D)) < ¢/3 for all k. By Lemma 3
there is a K, such that P[Bk~% 3, D, > 6] < ¢/3 for k > K,. Letting K* =
max (K, K;), we have P[k~' 37, 6,7 — 6,7 > 0] < 3(e/3) = e for k > K*. [
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A.4. Proof of Lemma 5. The proof parallels that of Lemma 3. We verify
that the sequence {Z;} of independent random variables satisfies conditions (i)
and (ii) of Lemma 1 with ¢, = k*, where Z;, = v},|v,,|(v}; + v}, + v})~and the
v;; are independent N(0, 1) variables. Now for any i,

P[Zl > k3a] — P[vfllvtzl > k3a(,v2 2 2 )3]
< Pl(vi + Vi)t > ka"(v + v + V)]
= P[(v} + vh)"t > k%) = P[U, > k=] < k™.
Hence, condition (i) of Lemma 1 is satisfied. Likewise
P{Z; >z} = 1 — Fy(z) £ Pv} > z74}
= [[(3)28]7* §z7% xte—=2 dx .
Let G(¢q) = 0 for g < 1; = 1 — [3I'(§)2!q]~* for ¢ > 1, and g(q) = ¢* for ¢ <
k*; = k® for ¢ = k*. Then F,(q) > G(g) and
Vocisn §* dF(g) < §7 9(9) dG(q) = 1 — 2[3(§)2}]7(1 — k*),
where we have used Problem 11, Chapter 3 of Lehmann [6]. Therefore, con-
dition (ii) of Lemma 1 is established. []

A.5. Proof of Lemma 6. The tth element of n=iX'V-1We is given by

k= 3k 670w D% Xy e
=kt Xiws Zji=1 Xijreis {67 + 26,7 Tisy (B, — BYm™ ity Xunseunl}
— S, —R,,
where
S, = k= 3k e T W T 005 Dy Xine€an
R, = k=t 3k n7%6¢,7%0 7w, 2oy, Xipe il 21700 (2eij - gij)gij]2 s
€ = ey — iy = €; — i (B, — Bo)Xijs s
and we have used
6,2 =6, — 6,6 — 6% + 6,746,762 — d}2).

Noting that §, — , = O,(k~*) and using Lemma 3 we have S, —, 0 as k — co.
Using Lemma 5 and the result d; < B, D established in Lemma 4 it follows
that R, —, 0.

By the arguments of Lemma 2,

k=t 3 o T w (00 Xaj, i) ( 20y Xins€in)
=k YinTw xijtxijsE{U ~tei;} + o0,(1)

= k™ lzc=1 Gi_z(ni - 2)_1wi XijeXigs + op(l)
noting that E{e},(2], €},)*} = [m(n; — 2)0,’]"*. Hence
k~IX'V-'We = k-iX'V-'We + 2k—iX’WGV‘1X(,§ — B) + 0,(1). 0
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