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A ROBUST ASYMPTOTIC TESTING MODEL

By HELMUT RIEDER

University of Freiburg and
University of California, Berkeley!

In order to obtain quantitative results about the influence of outliers on
tests, their maximum size and minimum power over certain neighborhoods
are evaluated asymptotically. The neighborhoods are defined in terms of
e-contamination and total variation, the tests considered are based on sta-
tistics n~% 337_; IC(x:), IC a rather arbitrary function.

Furthermore, the unique IC* is determined that leads to a maximin
test with respect to this subclass of tests. A comparison with the likelihood
ratio of least favorable pairs shows that the test based on n—% 3;7_, IC*(x;)
is in fact maximin among all tests at a given level.

Tests based on (M)-statistics are also considered.

1. Introduction. Let (Q, <#’) denote a measurable space, _# the set of prob-
ability measures on (2, <#'), and let P, P, be two distinct elements of _Z

Consider the problem to decide between P, and P, looking at n independent
random variables x,, - .-, x,. Assume, however, that their distributions need
not exactly coincide with either P, or P, but are only known to lie in some
neighborhood .& of P, or & of P,.

Let a € (0, 1) denote a given level, and let ¢, be a test based on a statistic T,
such that E;pnd, < a (PP®" denotes the n-fold product of P,). Because devi-
ations from P, may increase the size of ¢,, the critical value of 7, must be ad-
justed. Similarly, deviations from P, may decrease the power of ¢,, and the
adjustment of the critical value will add to this decrease.

To be more precise, consider the neighborhoods

P ={Qe A QB) = (1 —¢;,)P;(B) — ¢, forall BeZ)

for given parameterse;, 6,€[0,1],0 < ¢; + 6, < 1, j = 0, 1, and consider tests
based on statistics of the form

T(IC) = nt 51, IC(x,) ,

IC satisfying some integrability assumptions.

After calculating the maximum size of ¢,, the appropriate critical value can
be determined, and then the minimum power can be evaluated. This is done
asymptotically, as the sample size tends to infinity (Theorem 3.4).

In the underlying asymptotic model, the centers of the neighborhoods belong
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to a smoothly parametrized family. They approach each other, and the neigh-
borhoods shrink at the same rate (Section 2).

If IC is unbounded, then the limit minimum power is 0 (Theorem 3.6). A
criterion for unbiasedness involving bounds on /C is derived. For unbiased tests
a measure of asymptotic relative efficiency is considered (Section §).

The unique /C* is determined that leads to a maximin test with respect to
this subclass of tests (Theorem 3.7). A comparison with the likelihood ratio of
least favorable pairs shows that the test based on T,(/C*) is in fact a maximin
test amoﬁg all tests at level a (Theorem 4.4).

The results are extended to (M)-statistics, which do not coincide with, but
can be approximated by (7,(/C)) for some IC.

This paper was partly inspired by the work of C. Huber-Carol (1970), who
studied the likelihood ratio of least favorable pairs in a similar asymptotic setup.
Actually, she considered the special case, where e; = 0, , = d,, and required Q
to be the real line and the parametric family to have monotone likelihood ratio.
By making use of the contiguity of least favorable pairs these restrictions can
be dispensed with (Theorem 4.1).

2. The model. Let (Q, %) be a measurable space and _# the set of proba-
bility measures on (Q, =#). For some = > 0 let {P,: |#| < r} denote a one real
parameter family in . Parameters¢;, d,€[0, ), 0 <¢; +d,, j= 0,1, are
given. ‘

AssumpTIONs. The following regularity properties are assumed to hold
throughout the paper.

(2.1) P, P, forall |§|<r. Let p, denote a suitable
version of ap, .
0
(2.2) 0 — p,(x) is twice differentiable for all xe Q.
0
Put A(x) = 5o log p,(x) .
(2.3) 0< {AdP; < oo
3 4
(2.4) lim,_, § (Pefolytzpo — 1{AdP,.

(2.5) There exists a function A in LYP,) such that

—aiPo(X)l = h(x) for all xeQ.

SUPyg<- 20

(2.6) S+ 0+ 0, §<A— 51_50>+dP0.
27 27

NOTATION AND DEFINITIONS. Let R denote the real line, N the set of nonnega-
tive integers. For Q', Q" e .2 putd,,(Q’, Q") =sup{|Q'(B) — Q"'(B)|: Be &%}.



1082 HELMUT RIEDER

Define for each ne N and for j = 0, 1

(2.7) T, = nit, €, = N ke and 0, = n740;

(2.8) P, =P__, P, =P,

(2.9) Fw ={Q€ A Q(B) Z (1 — ¢;,)P;(B) — 6, forall Be F}
(2.10) Fer = (Rr.,0,: Qe T, for i=1,...,n}

(2.11) H, = {(w,): w,e %" forall neN}.

Let Q" be endowed with the product o-field <£®*. For a sequence (¢,) of
tests ¢, : Q" — [0, 1] put
(2.12) a,(¢,) = sup{E, §,: 4, € F3"
Bu($n) = Inf{E, ¢,: v, e F2"}.
Given a € (0, 1). Then (¢,) is called an asymptotic test for H, at level a iff
(2.13) lim sup, a,(¢,) < a .

Denote the set of asymptotic tests for H, at level @ by @,. Then (¢,*) is called
an asymptotic maximin test for H, versus H, at level a iff (¢,*) € @, and

(2.14) lim inf, (8,(8,*) — B.($,) =0  forall (¢,)e®,.
REMARKS.
1. From (2.2) and (2.5) it follows that
{AdP,=0.

2. By Corollary 2.25 of Witting and Noelle (1970), page 66, the sequences
(P22) s (P@™) and (P2™)

are mutually contiguous.

3. Condition (2.4) is adapted to this corollary. It means interchangeability
of the limit and the integral. It is fulfilled, for instance, if p,(x) > 0 for all
|6| < 7z, xe Q and if the Fisher information is continuous in 0.

4. Condition (2.6) is fulfilled for small parameters ¢;, d;. In view of Lemma
4.3 of [8] it is equivalent to

GFow N T = D for large n.
5. Note that
T = U {Q" € A1 dy)(Q', Q") = 0,4} »

where Q' runs through {(1 — ¢,,)P;, + ¢;,H: He .#'}. Hence the considered
neighborhoods are a natural generalization of e-contamination and total vari-
ation neighborhoods.

6. For reasons of symmetry, the parameter sequence of the null hypothesis
has been chosen to be (—z,). The pair (0), (z,) could have been considered just
as well, the modifications being obvious.
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ExaMpLE. Exponential families satisfy the above regularity assumptions. The
densities may be assumed to be of the following form:
Po = c(f)e’,

where { ydP, = 0, 0 < § ?dP, < .

Because 6 — § e’* dP, is analytic on the interior Z° of the natural parameter
space Z, the function ¢(d) and in particular the expectation and variance of
x with respect to P, are continuous and bounded on [—<, ], provided that
[—7, 7] C Z2°

Then the supremum b of ¢(f) + |E,x|* + Var, y over |§| < 7 is finite, and £
may be chosen to be

h = ble* + e t)(2y} + 2b% + b). 0

3. General framework. We consider the subclass of asymptotic tests (¢,) that
are based on a special kind of test statistics:

g,=1 if T,(C)>k,
(3.1) =7, if T,IC)=k,
=0 if T,(IC)<k,,
where 7, € [0, 1], k, € R and
(3.2) T,(IC) = n* 3r IC(x)) Xy ooy x,€ Q.

We shall refer to (¢,) as an asymptotic test based on (7,(/C)). The function
IC: Q — R is assumed to be measurable, bounded and to satisfy

(3.3) {ICdP, =0, {IC*dP,c (0, o).

First, for an appropriate choice of the critical values k,, the limits of the maxi-
mum size a, and the minimum power 8, will be evaluated. Then the maximi-
zation problem expressed in (2.14) under the side condition (2.13) will be solved
within this subclass.

To begin with, observe the following asymptotic normality.

ProrosiTION 3.1. For all (w,) e H, U H, it holds that
L (T(IC) — E, T,(IC)) = A0, Ep IC?).
Proor. Note that
lim sup,, nt sup {d,(Q,, P)): @, € T, N T} < oo .
Because of the boundedness of IC we have
lim, Var, IC = E,,OIC2

uniformly in Q, e &, U Z,.
The Lindeberg condition is trivially fulfilled. []

By means of the next two lemmas the stochastically extreme limits of (7,(/C))
can be determined. Denote by P/° the image law of /C under P, and by (P¢)~!
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the left-continuous pseudoinverse of the distribution function of P, Extend it
to 0 and 1 by taking the one-sided limits. Then (P°)~}(0) = inf},, IC, the es-
sential infimum of /C with respect to P, and (P?°)~(1) = sup,; IC, the essential
supremum of /C with respect to P.

Define
0

an = (P (1 2)
1 — ¢,

(B4 - ay, = (P (I_—M__)>

1 — ¢,
D90.(IC) = (1 — &5,) § IC V a,, dP,, — d,,a,, + (¢, + 0,,) sup IC
4,,(IC) = (1 — ¢,) § IC A a,,,dP,, + (¢, + 6,,) InfIC — §,,a,,,

where x V y =max{x,y}, x Ay =min{x, y}, supIC = sup{IC(x): xe Q},
inf IC = inf {IC(x): xe Q}.

The following lemma is related to Lemma 2.4 of Huber and Strassen (1973)
and generalizes Lemma 4.2 of [8].

LEmMA 3.2. It holds that

sup {§ ICdQ': Q'€ B} = 5,,(IC)
inf {§ ICdQ": Q" e Z#,} = u,,(IC) .

Proor. The indices may be dropped from the notation. Then let v: <% —

[0, 1] be defined by
v(B) = ((1 —¢)P(B) + ¢ + ) A 1 if B+ @
=0 if B=g.
In this proof it is no restriction to assume that /C is nonnegative. Then the
integral
§&v(IC > t)dt

is an upper bound for § ICdQ’, Q' ¢ &, and, by a straightforward computation,
can be shown to equal 9(IC), defined by (3.4). It remains to prove that this
upper bound is approximated by integrals { IC dQ’, Q' ¢ &

Define

r = (PUC = a))~! <P(IC <a) - .1_‘L> if PUIC=a)>0
— €

Choose x, € Q such that /C(x,) > a, and let /, denote the one point mass in x,.
Consider the probability measure R defined by

R(B) = y(1 — ¢)P(B N {IC = a}) + (1 — )P(B n {IC > a}) + (¢ + o)l (B)
Be .
Then Re &7 and

{ICAR = (1 — ¢) { IC V adP — da + (¢ + 6)IC(x,) .
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Letting /C(x,) tend to sup IC proves the first equality. The other one is obtained
similarly. []

Define
(3.5) s(IC) = — 20 inf ;1€ 4 2 % qup ge
T T

s(IC) = _ﬂr‘_‘i inf IC + fz_isup[PO] ic.

LemMa 3.3. It holds that
lim,, n¥9,,(IC) = —z(§ ICA dP, — s5,(IC))
lim, nta,,(IC) = ©(§ ICA dP, — s5,(IC)) .
Proor. We may confine ourselves to the proof of the first equality. The

crucial point is to show that
lim, a,, = (P,"°)~%(0)
and
lim, n § ccq,,) (@0n — IC) dP,, = 0.

Put 7, = dy,.(Po,, Py) and y,, = 0y, /(1 — &,). Without restriction y,, > 0. Then
also P(IC < a,,) > 0, hence a,, = (P,’°)~*(0). On the other hand, g, is not
greater than (Py°)~Y(7,, + %), Which converges to (P,’?)~*(0).

To prove the second convergence it is sufficient to consider

nt §110<aqy) (ap, — IC) dP, .
An upper bound is

n(7on =+ 70a)(@0n — (P)70)) ,
which tends to 0. []

Define
(3.6) s(IC) = ©(Ep IC*)~42 § ICA dP, — (s,(IC) + 5(IC))),
and for a € (0, 1) define
(3.7) k(IC) = (Ep IC%tu, — «(§ ICA dP, — 5(IC)),

where u, is the upper a-point of the standard normal ©.
Then, if (¢,) is the asymptotic test (3.1) based on (7,(IC)), the preceding re-
sults imply the following theorem.

THEOREM 3.4. Provided that the critical values k,, tend to k(IC), we have
lim, a,(¢,) = «
lim, 8,(¢,) = 1 — O(u, — 5(IC)).

So far, IC has been assumed to be bounded. One might try to extend this
result to unbounded IC.
Assume that

(3.8) §ICH|A| + k) dPy < oo .
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THEOREM 3.5. If sup IC = oo, there exists a sequence (RS") in H, such that
Zgn(TA(IC)) = 1., (one point mass in 00) .
If inf IC = —oo, there exists a sequence (R$,") in H, such that
Zpen(To(IC)) = I_., (one point mass in —oco).
Proor. If sup IC = oo, choose x,, in Q such that
[IC(x,,)|* = o(n?), IC(xy,) > 0 as n—oo.
Define
ROn = (1 - (50n + 50n))P0n + (eOn + 50%)1::0” *
Observe that
lim, Var, IC = Ep I1C?,
whereas
lim, n*E,, IC = oo .
Furthermore, the Lindeberg condition is fulfilled. The proof of the second
statement is similar. [J

As a consequence, we obtain the following result, which complements Theo-
rem 3.4, since s(/C) = —oo if IC is unbounded.

THEOREM 3.6. Let IC be unbounded (satisfying (3.3) and (3.8)). Let (¢,) be the
asymptotic test based on (T,(IC)) satisfying lim sup, a,(¢,) < 1.
Then we have

lim, ,(¢,) = 0.
Proor. Obvious, since the sequences {gpggnn(Tn(IC)): neN}, j=0,1, are
tight. [J

ExaMmpLE. For quite a few one parameter exponential families on the real
line, including the normal location model, the gamma and the Poisson model,
the logarithmic derivative A is unbounded.

Hence in view of Theorem 3.6 the asymptotic test based on (7,(A)), which
is optimal for (P2") versus (P$"), ends up with error probability 1. []

We arrive at the problem of maximizing s(/C) under the side conditions (3.3)

and (3.8).
Consider the equations
(3.9) § (dy— Ayrap, = St 0t 00

27

By + 0
S(A—dl)+dP0:5L+2:_+_l_.

Note that the solutions d;, j = 0, 1, exist and are unique. Define

& — &

(3.10) IC* = (d, vV A A d) —

2t

Note also that IC* satisfies the side conditions.
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THEOREM 3.7. For each function IC satisfying (3.3) and (3.8) it holds that
s(IC) < s(IC*) .
Equality implies that
IC = yIC* Pja.e.

for some constant y > 0.

REMARK. There seems to be a relation between this theorem and Lemma 5 of
Hampel (1968), page 51, if IC denotes the influence curve of an (M)-estimate.

ProOF. Write

§ ICA dP, = § ICIC* dP, + { IC(A — IC*)dP,.

Apply the Cauchy-Schwarz inequality to the first integral on the right-hand side.
Observe that

(3.11) §IC(A — IC*) dPy < ¥(s(IC) + s,(IC))
with equality holding for /C = IC*, such that in particular
(3.12) S (IC*) = AT*Ep (IC*)*. 0

4. The likelihood ratio of least favorable pairs. According to Huber (1965),
(1968) there exists a least favorable pair (Q,,, Q:, | 7,) for (&,, &,) (notation
adapted to [8]).

Using the log likelihood

>r, log m,(x;) X, e, X, €Q
one obtains an asymptotic maximin test for H, versus H, at level « if the critical
values are chosen appropriately.

Let us recall that the special version =, of the likelihood ratio dQ,,/dQ,, is

given by
x, =Lz 61"<A0n v 4P Am>.
dP,

1 — €on on

The truncation points A;, are the unique solutions of the equations

A(m PO'n, <Z£ln < A0n> _ Pln <Z£ln < A(m) — 517:, + 5171, + 50”’ AO“

on on 1_61" 1_50"’
dP dP . &, + 0 0
pn< in An>_AnPn< in An>:ﬂ._‘"'An O
N R VT S A e
Put
L'n = i Z;;l lOg ”n(xi) Xps vty X, € Q.
2t

Recall the definition (3.10) of IC*; put 0,* = Ep (IC*).
THEOREM 4.1. The following asymptotic normality holds:
ZLen(L,) = A (—70,’, 0,7)
gQ%n(Ln) o ./V(—-‘r 70'*2, 0'*2) .
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The proof is based on two lemmas.
LemMA 4.2. The sequences (Q%"), j = 0, 1, are mutually contiguous.

Proor. If, say, (Q%") were not contiguous to (Qf"), there would exist some
sequence (B,), B, € =#®", such that

lim Q&™(B,) = 0
lim sup, 0%"(B,) > 0.

Let ¢, denote the Neyman-Pearson test for Q" versus Q%" based on L,, at
level Qf"(B,). Then, because of the inequalities

§ ¢, dPG" < § 6,405 = 05(B,)
§ $,dP5" = § ¢, dO%" = QL(B,)

it follows that ¢, tends to zero in P§,*- but not in P -probability—contradict-
ing the contiguity of (P§") to (P&"). [

LemMA 4.3. For all (w,)e H, U H, we have
lim, Var, L, =0,".

Proor. Take p_ [p_. as a version of dP,,/dP,,. Put

1
d;, = 2. logl,, .
It turns out to be sufficient to prove that
*) lim, d,, = d, .
For this implies that
lim,, log 7, (x) = IC*(x) xeQ
and
lim sup, sup {21 log 7, (x): xe Q} < oo .
T'ﬂ'
Because of

lim sup,, n sup {dv,.(Q,, P,): 0, € F, U FA,} <

we may then conclude that

lim, Var, 21 logm, = 0,?,
"2t

uniformly in Q, e &%, U ZA,.
Let us prove (*) in the case j = 0 (the case j = 1 can be treated similarly).
For de R, u > 0, x ¢ Q define the functions

— ezudp—u(x) _ Pu(x)
f(d’ “, x) - u(l + ezud)
F(d, u) = § /(d, u, x)* dP(x)
G(d) = § (d — A(X)* dP(x).
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By means of Taylor expansions, based on Assumptions (2.2) and (2.5), one
obtains

(**) lim,_, F(d, u) = G(d) deR.

u—0

Note furthermore that d — F(d, u) is isotone® and that G is strictly isotone in a
neighborhood of d,.
Note also that 4, and 4, are given by

& + 51 5082"%"0%
(1 — e, )(1 + e*non) (1 — &5,)(1 + e*nton)
G(d,) = W ,

T

F(dy,, t,) =

The sequence (d,,) is bounded. It is bounded by above, since 4,, < 1 for large
n, which is a consequence of &, N 24 = » and Lemma 4.3, Lemma 4.4 of
[8]. On the other hand, convergence of a subsequence (d,,) to —oco implies for
each re R that

0< %ﬁl < lim inf, F(d,,, 7,) < lim, F(r, 7,) = G(r) .
T
However lim,__, G(r) = 0.
Boundedness of (d,,) implies that
lim, F(dy,, 7,) = G(d,) .

Then lim, d,, = d, follows, because of (**) and the isotony properties of F and
G. ]

ProoF oF THEOREM 4.1. Because of uniformly bounded summands and Lemma
4.3 the Lindeberg condition is trivially fulfilled, and we obtain

gw,n([‘n - EwnL'n») = tA/(O’ 0*2) N

Then, if b denotes a cluster point of (EesL,), we may conclude that

®@n
y Rn <10g dQl'nn

~
“ige (log 557 >= N (2¢b, 4c% ) .

Denote this limit normal by H,.
Because (Qf") is contiguous to (Q5"), the equality

{etdH,(1) =1
must hold. This implies
b = —TO‘*2 .
Hence we have shown that
lim,, E@nL, = —t0,’.

2 Monotone increasing.



1090 HELMUT RIEDER

By symmetry, it follows that
lim,, Eg@nL, = 70,®,
and the proof is complete. []

As a consequence of Theorem 4.1, Theorem 3.4 and the equality s(/C*) =
270, the following statement is true.

THEOREM 4.4. Let (¢,*) be the asymptotic test based on (T,(IC*)), where IC*
is defined by (3.10); the critical values k, are supposed to tend to k,(IC*), given by
(3.7).

Then (¢,*) is an asymptotic maximin test for H versus H, at level a.

5. Unbiasedness and efficiency. Let /C, satisfy (3.3), (3.8) and let (¢, ;) be
based on (7,(IC,)) such that

lim sup a,(¢,,) = a, I=1,2.
Then (¢, ,) is called unbiased iff
lim inf, B,(¢,,) = «a .
Recall the definitions (3.5), (3.6) of s, s, s.
THEOREM 5.1. (¢, ,) is unbiased iff
5(IC) + s,(IC) < 2§ IC,A dP,.
Proor. Obvious, in view of Theorem 3.4 and Theorem 3.6. []
Let (¢, ,) be unbiased, / = 1, 2.

DeriNITION 5.2. The asymptotic relative efficiency of (¢, ,) with respect to
(¢n.1), denoted by ARE_, ((¢,.): ($,,)) is defined by
s} (IC,)
$(IC,)

ARE, . ((¢n2) (¢nl)) =

REMARKS.

1. The usual conventions about dividing by 0 are presumed.
2. ARE_, is a generalization of the Pitman efficiency. It allows the same
interpretation in terms of the sample size n and the minimum power 3,.

We are going to compare the asymptotic relative efficiencies of the asymptotic
tests based on (7,(IC)) and (T,(IC*)), respectively, when either deviations from
the parametric model are allowed or not.

To be more precise, denote by (¢,) the asymptotic test based on (7,(/C)), such
that lim, a,(¢,) = a. Let (¢,*) denote the asymptotic test based on (7,(/C*)),
such that lim, «,(¢4,*) = a.

On the other hand, let (§,) be the asymptotic test based on (T,(IC)), such that
lim, Epgnd, = a, and let (4,*) be the asymptotic test based on (T,(IC*)), such
that llmn EP%"’?S,;* = a.

Note that the Pitman efficiency of (4,*) with respect to (¢,) under (P2"),
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denoted by ARE (($,*): (8,)), is given by

ARE (6,51 (8)) = 50 e

The following theorem shows that even in the case s(/C) = O the asymptotic
relative efficiency of (¢,) with respect to (¢,*) is smaller than the Pitman effi-
ciency of (4,*) with respect to ($,) under (P%™) and thus may shed some light
on the stability of tests based on (7,(IC*)).

THEOREM 5.3. Assume that s(IC) = 0. Then we have

ARE,; ((4,): (#.*)) < ARE ((8,%): (¢.)) -
Proor. This follows from (3.11) and (3.12). [
ExAMPLE. Let P, denote a probability measure on R with continuous distri-
bution function F,. Consider the densities
Polx) = 1 + 6(Fx) — §) xeR, 6] <2.
Putr = 2. Given d¢(0,2), put ¢, =¢, =0, d, = 6, = 6. Consider IC = A.

Then (¢,) is unbiased iff § < 4. Furthermore, we obtain

IC*(x) = (=% + ) V (Fy(x) — $) A (3 — o)
and
ARE., ((84): ($.%)) = 1 — 168% 4 0(d%)
ARE (($,*): ($,)) = 1 — 85 4 o(%) as d—-0. 0
6. (M)-statistics. Test statistics of a more general kind can often be approxi-
mated in (P§")-probability by the sequence (T,(/C)) for some suitable IC, which
may be obtained by projection or differentiation. This approximation holds

then also under other sequences of probability measures, provided that they are
contiguous to (PP™).

However, under rather weak assumptions, there exist sequences in H, U H,
which are not contiguous to (P®™).

PROPOSITION 6.1. [f there is an unbounded measurable function f: Q — [0, oo)
that satisfies

§A(1 4 |A] + B)dP, < oo
or if there is a Bye <%, B, + @ such that
Py(B,) =0,
then there exists a sequence in H, U H, which is not contiguous to (Pe™).

REMARK. For every infinite Q the assumptions are fulfilled (provided that
{x} € & for every x e Q).

Proor. Under the first assumption, put

IC = ft — E, f*.
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Then the assertion follows in view of Theorem 3.5 and the tightness of
{ZLHen(T,(IC)): ne N}
Under the second assumption, choose x, € B, and consider
Rt‘m = (1 - (SOn + 50n))P0n + (501; + 50n)1z0
B, = (Q\B,)" .
Note that
lim, R§*(B,) =0,
whereas
Pe™(B,) =1 forall neNN. 0

Nevertheless, the results of Section 3 can be extended to special other test
statistics.
We confine ourselves here to (M)-statistics. Given a function ¢: R — R,
consider a measurable solution M, of the equation
?=1¢(A(xz)—Mn):O X1 ""xneQ*

The sequence (M,,) is termed (M)-statistic induced by ¢.
By the arguments of Huber (1964), M, may be thought of as a robustified
version of n7t 337, A(x,).
To be more precise, assume that
¢ s isotone, bounded and uniformly continuous;
SgboAdPo:O, S¢20AdP0€(O,OO);
the function & — § ¢(A(x) + §) dPy(x) has a strictly positive
derivative in 0, denoted by 1.
Define the asymptotic test (¢,) based on (M,) to be of the form (3.1) with

T,(IC) replaced by iniM,. Recall the definitions (3.6) and (3.7) of s(/C) and
k(IC).

THEOREM 6.2. Put IC = ¢ o A. Then, if the critical values k,, tend to k(IC),
we have
lim, a,(¢,) = «

limn Bn(¢n) =1— q)(ua - S(IC)) .
Proor. Because of the set inclusions
(T ¢(A(x) — 1) <0} {M, < 1} € {Ziy $(A(x;) — 1) < 0}
the study of (ntM,) can be reduced to the investigation of (7,(IC,)), where for

fixed te R
IC,(x) = ¢(A(x) — n~¥1) xeQ.

By the Lindeberg-Feller theorem we obtain
Z, (T,(IC,) — E, T,(IC,)) = 470, E, IC?)
for all (w,) e H, U H,.
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Recall the definition (3.4) of 9,,(/C,) and @,,(IC,). Then by the arguments of
the proof to Lemma 3.3 and, furthermore, by exploiting the uniform approxi-
mation of IC by IC,, hence in particular of the pseudoinverse (Q°)~* by (Q*%)~!
for each Q € _#; we obtain

lim, n¥0,,(IC,) = — At — =(§ ICA dP, — s5,(IC))
lim, nta,,(IC,) = — it + «(§ ICA dP, — 5,(IC)) .
From this the theorem follows. [J

Assume in addition that
P(A =d)) =0=P(A =d)
Pydy < A< d)>0.
Then the function
P*(s) = (dyVsAnd)— 2 "% seR
27
has all required properties. Hence the (M)-statistic induced by ¢* leads to an
asymptotic maximin test.
Via influence curves there corresponds to this (M)-statistic the sequence of
trimmed means
i
nt 2] {(Ax)m: Fi'd,) = ;—_'_—1 = FOA(dl)}
where the (Ax),;, are the ordered values of A(x,), - - -, A(x,) and F,* is the dis-
tribution function of P*.
It may be expected that they also lead to an asymptotic maximin test, how-
ever the author has not succeeded in treating them directly.
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