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A NOTE ON THE EDGEWORTH EXPANSION FOR
THE KENDALL RANK CORRELATION
COEFFICIENT

By W. ALBERS
Technological University Twente

In this note it is shown how to some extent the Edgeworth expansion
for the distribution function of Kendall’s r can be established by using a
well-known general result on such expansions.

Let X,, Y, - -+, X, Y, be independent random variables (rv’s), the X, with
a continuous distribution function (df) F, the Y, with a continuous df G. Let
R, and S, be the ranks of X, and Y,, respectively, then Kendall’s rank corre-
lation coefficient is defined as
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Using a direct approach, Praskova-Vizkova (1976) establishes the Edgeworth
expansion (for a definition see, e.g., Feller (1971), page 542) for the df of .
In the present note we shall point out how to some extent this result can be
obtained more easily by applying the following standard theorem due to Feller
(1971) (see page 548).

i Xy sign (R, — Ry)sign (S; — ) .

THEOREM. Let Z,, - -, Z, be independent rv’s with zero mean and let T, =
Y., Z,. Suppose that for some integer r > 3 there exist positive constants ¢ and
C such that forv=1, -..,r+landj=1, ..., N,

(2) c<EZ]r<C.

Moreover, assume that the characteristic functions (ch.f.’s)p,0f Z,,j =1, .- -, N,
satisfy

3) I e ()] = o (N7,

uniformly in |t| > d for all 6 > 0. Thensup, |Fy(x) — G,y(x)| = o(N~"**'), where
F is the df of Ty[o(Ty) and G, is its Edgeworth expansion to O(N~"/**1).

REMARK. As in Feller (1971), the theorem is formulated here for a single
sequence of rv’s Z,, j=1, ..., N. However, from Feller’s proof it is clear
that the theorem also holds for a triangular array Z,,, j =1, ---, N, N = 1,
2, ..., provided that conditions (2) and (3) hold uniformly for such Z,,.

To apply the theorem to 7, in (1), we note that r, has the same df as 4
Ty/(N — 1), where T, = Y-} Z,,, in which the Z,, are independent rv’s with
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P(Zyy = KIN) = 1/(j + 1), k= —jf2, —j2+ 1, -+, j2—1, j2 and j=
1, ..., N — 1 (this follows immediately from Hajek & Siddk (1967), page 115
and Hajek (1955)). The problem is, however, that neither (2) nor (3) is satis-
fied for these Z,,. We shall demonstrate how these obstacles can be removed.
As concerns (2), this is quite simple: just write T, = >!Y? V,,, where V,, =
Ziy+ Ziy_jywrj=1,---,[(N — 1)/2], and for N even, Viyy = Zyqy- For
these ¥, condition (2) holds for all r.

The real problem lies in condition (3). Let p, and p,, be the ch.f. of T, and
Z,, respectively, then (1) = I35 p;u(t) = T13a (sin {j2/2N)}/(j sin {1/(2N)}))
(see, e.g., Praskova-Vizkova (1976), page 599). Clearly, |o,(2kzN)| =1 for
k = +1, +2, ... and hence (3) does not hold. For this reason we introduce
T, =T, + Uy, with U, = Y le*"1 U, . Here the U,, are independent rv’s,
also independent of the Z;, and all uniformly distributed on (—1/(2N), 1/(2N)).
The difference U, = T, — T, is small with respect to T, for two reasons: in
the first place U, has [log 2N] rather than N terms and furthermore the support
of the U,y is of a smaller order of magnitude than the supports of (most of) the
Z,y. Nevertheless, adding U, to T, suffices to overcome (3): T, has ch.f.

ou(t) = TISoe™ L{Jf/_(_z_l)}_ 13- v-t0g 211 M
(/ sin {t/(2N)}) {/t/(ZN)}
and it follows that for g, condition (3) holds for all ». Hence the replacement
of some of the lattice rv’s Z,, in T, by smooth rv’s Z;, + U,,—which in fact
are uniformly distributed on (—(j + 1)/(2N), (j + 1)/(2N))—enables us to
apply the theorem for arbitrary r to the resulting rv T,.

Let F, and F, be the df of T,/s(T,) and T, /o(Ty), respectively, and let G,,
and G, be their Edgeworth expansions. According to the above, sup, |F(x) —
G,y(x)] = o(N-"2*Y) for all r. It remains to find out what this means for
sup, |Fy(x) — G,4(x)|. We note in the first place that E|U,|* = O(N~*log*N),
k=1,2,-..,0%Ty) = (N—1)(2N45)/(72N) and ¢*(T}) = 6T )+ O(N~*log? N).
Then we observe that P(T,/o(Ty) < x) < P(Ty/o(Ty) < x+¢) +P(|Uy|[o(Ty) = o)
for all e > 0. Combining this with a similar inequality in the opposite direction,
we obtain that

|Fy(x) — FN(X"(TN)/"(TN))I
< Plx— ¢ = Tyfo(Ty) < x + ) + P(Uy| Z co(T,) -

Using the results above and Chebyshev’s inequality, we find for r > 3 and k
sufficiently large that

sup, [Fy(x) — Fy(xa(Ty)[o(Ty))|
< sup, |G, ((x + 5)0(TN)/0(TN))
— Goy((x — &)a(Ty)[o(Ty))| 4 o(N=*) 4 {eo(T )} *E|U,|*
— 0(e + e~k N—3k/2 log" N) + O(N—r/2+1) — O(N—-%+77) + O(N—r/z+1)
for all » > 0, where the last step follows by choosing ¢ = N-#*7.



EDGEWORTH EXPANSION FOR KENDALL’S 7 925

Next we note that sup, |G,,(x) — G,4(x)| = O(N%) for all r and that
sup, |G, y(xo(Ty)/o(Ty)) — G,x(x)| = O(|o(Ty)[o(Ty) — 1]) = O(N-F) for all r.
Hence, for all r = 3, we have

sup, |FN(X‘7(TN)/”(TN)) — G y(x)]
< sup, |[Fy(xo(Ty)[o(Ty)) — Gy(xo(Ty)[o(Ty))|
+ sup, |G, u(x) — Gu(x0(Ty)[o(Ty)| 4 sup, |G u(x) — G.y(x)|
— O(N—r/2+1) + O(N—g) .

Combining the results above we finally arrive at the conclusion that
sup, |Fy(x) — G,y(x)] = O(N~#7) + o(N-7/**1) for all r = 3 and 5 > 0. As
G,y is continuous while F, has jumps of order N-%, this is, apart from 7, the
best result possible when ordinary Edgeworth expansions are used. However,
it should be clear that the present result is weaker than the one obtained by
Praskova-Vizkova (1976), using methods of Esseen (1945). She adds terms to
the G,, to account for the lattice character. With the generalized Edgeworth
expansions thus obtained one can approximate F, to every order desired by
using sufficiently many terms of the expansion, whereas with the G, the rate
of convergence will never be better than O(N~—%).
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