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MONOTONE DEPENDENCE

BY GEORGE KIMELDORF! AND ALLAN R. SAMPSON?
University of Texas at Dallas and Abbott Laboratories

Random variables X and Y are mutually completely dependent if there
exists a one-to-one function g for which P[Y = g(X)] = 1. An example is
presented of a pair of random variables which are mutually completely
dependent, but “‘almost’’ independent. This example motivates consider-
ing a new concept of dependence, called monotone dependence, in which g
above is now required to be monotone. Finally, this monotone dependence
concept leads to defining and studying the properties of a new numerical
measure of statistical association between random variables X and Y de-
fined by sup {corr [ f(X), g(Y)]}, where the sup is taken over all pairs of
suitable monotone functions f and g.

.

1. Introduction and summary. A random variable (rv) Y is defined (see
Lancaster (1963)) to be completely dependent on a rv X if there exists a function
¢ such that

(11) P[Y:g(X)]: 1.

Intuitively, Y is completely dependent on X if Yis perfectly predictable from
X. The rv’s X and Y are defined (see Lancaster (1963)) to be mutually completely
dependent (MCD) if Y is completely dependent on X and X is completely depend-
ent on Y. Equivalently, X and Y are MCD if (1.1) holds for some one-to-one
function g. The concept of mutual complete dependence is, in a real sense,
directly opposite to that of stochastic independence, in that mutual complete
dependence entails complete predictability of either rv from the other, while
stochastic independence entails complete unpredictability.

An important measure of dependence between two nondegenerate rv’s X and
Y is that of sup correlation, introduced by Gebelein (1941), studied among
others by Rényi (1959) and Sarmanov (1958a, b), and defined by

o'(X,Y) = sup o[ f(X), 9(Y)] ,
where the supremum is taken over all Borel-measurable functions f, g, such that
0 < Var f(X) < o0 and 0 < Var g(Y) < oo, and where p represents the ordinary
(Pearson product moment) correlation coefficient. The properties of sup cor-
relation as a measure of dependence are discussed in Rényi (1959). It is clear
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896 GEORGE KIMELDORF AND ALLAN R. SAMPSON

that two rv’s which are MCD have sup correlation 1, but that the converse is
not true. (See Lancaster (1963) for a discussion of necessary and sufficient
conditions for the complete mutual dependence of random variables.)

Clearly, if a sequence {(X,, Y,)} of pairs of independent rv’s converges in
law to a pair (X, Y) of rv’s, then X and Y must be independent. It might be
conjectured that if a sequence {(X,, Y,)} of pairs of MCD rv’s converges in law
to a pair (X, Y) of rv’s, then X and Y must be MCD. As is shown below, this
conjecture is false. In fact, Section 2 presents a sequence of pairs of MCD rv’s,
all having the same marginals, which converges to a pair of independent rv’s.
This defect of mutual complete dependence motivates a new concept of total
statistical dependence, called monotone dependence, which is defined and studied
in Section 3.

When two rv’s are neither totally statistically dependent nor totally independ-
ent, it is often useful to have a numerical measure, such as the correlation co-
efficient, to express the extent to which the rv’s are related. A new numerical
measure, called monotone correlation, is presented and examined in Section 4.
This new measure is related in Section 5 to the concept of uniform representa-
tions of bivariate distributions.
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FiG. 1. Support of the distribution of (Us, V).
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2. MCD rv’s which are almost independent. This section presents sequences
{U,} and {V',} of rv’s all having a uniform distribution on (0, 1) such that for
each n, U, and V, are MCD, but that the pairs (U,, V,) converge in law to a
pair (U, V) of independent rv’s each having a uniform distribution on (0, 1).

Partition the unit square into n* congruent squares and denote by (i, j) the
square whose upper right corner is the point with coordinates x = i/n, y = j/n.
Similarly, partition each of these n* squares into n* subsquares and let (i, j, p, q)
denote subsquare (p, ¢) of square (i, j). Now let the bivariate rv (U,, V,) distri-
bute mass n~? uniformly on either one of the diagonals of each of the n* subsquares
of the form (i, j, j, i) for 1 <i < n, 1 <j< n Figure 1 illustrates the case
n=3.

THEOREM 1. Each of the tv’s U,, V, has a uniform distribution on (0, 1). For
each n the rv’s U, and V, are MCD. The sequence {(U,,V,)} converges in law to
a pair (U, V) of independent uniform rv’s.

Proor. For each n, it is clear that U, and V, are MCD. Also, since U, and
V, each assign mass n~! uniformly to each interval ((i — 1)/n, i/n), it is clear that
U, and V, have uniform distributions on (0, 1). Finally, since (U, V,) assigns
total mass n~? to each of the n? large squares, lim, P[U, < u, V, < v] = wv for
each point (u, v) in the unit square. []

Now, let F and G be any pair of continuous cumulative distribution functions
(cdf’s). It is easy to generate sequences {X,} and {Y,} of rv’s with respective
marginals F and G such that X, and Y, are MCD for each n, yet {(X,, ¥,)} has
joint limiting distribution F . G and hence is asymptotically independent. To
do this, define X, = F~%(U,) and Y, = G-'(V,) where U, and V, are as above
and where for any continuous cdf K, we define

(2.1) K=(t) = inf {x: K(x) = ¢} .

This method of generating bivariate cdf’s having specified continuous marginals
from bivariate cdf’s having uniform marginals is the method of translation.
(See, for example, Mardia (1970b), Kimeldorf and Sampson (1975a).)

3. Montone dependence. The preceding example of pairs of MCD rv’s which
are almost independent suggests that mutual complete dependence is too broad
a concept to be an antithesis of independence. We therefore propose the follow-
ing concepts of total dependence.

DEerFINITION. Let X and Y be continuous rv’s. Then Y is monotone dependent
on X if there exists a monotone function g for which P[Y = g(X)] = 1.

It is easy either to verify directly or to conclude as a corollary to Theorem 2
below that Y is monotone dependent on X if and only if X is monotone dependent
on Y. We can therefore make the following definitions.

DEeFINITIONS. Two continuous rv’s X and Y are monotone dependent if there
exists a monotone function g for which P[Y = g(X)] = 1. If g is increasing,
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X and Y are said to be increasing dependent; if g is decreasing, X and Y are said
to be decreasing dependent.

Before proceeding to show that monotone dependent rv’s cannot be “almost”
independent in the sense described in Section 2, we review some known results
on Fréchet bounds. (See Fréchet (1951) and Mardia (1970a).) Let F and G be
cdf’s. Then

H*(x, y) = min [F(x), G()]
and

H~(x, y) = max [F(x) + G(y) — 1,0]
are called the upper and lower Fréchet bounds, respectively, of the class of
bivariate cdf’s with marginals F and G. Both H* and H~ are singular bivariate
distributions; H* assigns probability 1 to the set {(x, y): F(x) = G(y)} and H~
to the set {(x, y): F(x) + G(y) = 1}. They are bounds in the sense that if H is
any bivariate cdf with marginals F and G, then

(3.1) H=(x,y) < H(x,y) < H*(x, ).
(A proof of (3.1) appears in Johnson and Kotz ((1972), pages 22-23).)
THEOREM 2. Let X and Y be continuous rv’s with respective cdf’s F and G. A

necessary and sufficient condition that X and'Y be increasing (decreasing) monotone
dependent is that the joint cdf of (X, Y) is H*(H").

Proor. The sufficiency is immediate. To prove the necessity, assume that X
and Y are increasing monotone dependent, so that (1.1) holds for some mono-
tone increasing g. If s < ¢, then
(3.2) F(t) — F(s) = Plg(s) < 9(X) = 9()] + Plg(X) = 9(5)]

= Plo(s) <Y = 9()] + PIY = g(s)]

= Plg(s) < ¥ < g(1)]

= G(9(1) — G(9(9)) -
Let t — co and s — —oo in (3.2) to derive 1 < G(g(o0)) — G(g(—o0))and hence
G(9(o0)) = 1and G(g(— o)) = 0. Lets — —oo andset r = x in (3.2) to derive

(3.3) F(x) < G(g(x)) .
Let s = x and ¢ — oo in (3.2) to derive the inequality
(3.4) I — F(x) £ 1 — G(g9(x)) »

which, together with (3.3), implies that F(x) = G(g(x)). Now, if H is the joint
cdf of (X, Y), then
H(x, y) = P[F(X) = F(x), G(Y) = G(y)]
= P[G(9(X)) = F(x), G(Y) = G())]
= P[G(Y) = F(x), G(Y) = G(y)]
= min {F(x), G(y)} .

A similar argument is used if g is decreasing. []
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Theorem 2 is a partial justification for the interpretation of monotone depend-
ence as an opposite to stochastic independence. The theorem implies that among
all pairs of rv’s with prescribed marginals, those which are as dependent as
possible in the sense of (3.1) are exactly those which are monotone dependent.
Section 2 presented a sequence of pairs of MCD continuous rv’s which converges
in law to a pair of independent rv’s. The following theorem shows that this
cannot happen for pairs of monotone dependent continuous rv’s by showing that
the property of monotone dependence is preserved under weak convergence.

THEOREM 3. If{(X,, Y,)} is a sequence of pairs of monotone dependent continuous
rv’s which converge in law to a pair (X, Y) of continuous rv’s, then X and Y are
monotone dependent.

Proof. Denote by H, and H the respective bivariate cdf’s of (X, Y,) and
(X, Y), and denote by F,, G,, F, and G the cdf’sof X,, Y,, X, and Y, respectively.
Since {(X,, Y,)} converges in law to (X, Y), it follows that {F,(x)} converges to
F(x), {G,(y)} converges to G(y) and there exists a subsequence {(X,,, Y, )} such
that either X, and Y, are increasing monotone dependent for all k or decreasing
monotone dependent for all k. It follows in the former case by Theorem 2 that
H, (x,y) = min {F, (x), G, (y)}, which converges to H(x, y) = min {F(x), G(y)}.
Therefore, X and Y are increasing monotone dependent. A similar argument
holds if X, and Y, are decreasing monotone dependent for each k. []

4. Monotone correlation. Two continuous rv’s X and Y are monotone de-
pendent if there exists a perfect monotone relation between them. If the rv’s
are not perfectly monotonically related, it may be useful to measure numerically
the degree of monotone dependence between them. One such measure, called
monotone correlation, can be defined as follows:

DEeFiNITION. The monotone correlation p* between two nondegenerate rv’s X
and Y is

(4.1) p*(X, ¥) = sup o[ f(X), 9(Y)],
where the supremum is taken over all monotone functions f, g, for which
0 < Var f(X) < oo and 0 < Var g(Y) < oo.

It is clear that if two rv’s are monotone dependent, then their monotone
correlation is 1. To see that the converse implication fails, let (X, Y) have a
uniform distribution over the region [(0, 1) x (0, 1)] U [(1, 2) x (I, 2)] so that
X and Yare not monotone dependent, although p*(X, Y)= o[,,(X), I,,,(Y)]=1,
where I denotes the indicator function.

It is obvious that

(4.2) (X, Y)| < p*(X, Y) < o/(X, ).

For bivariate normal rv’s (X, Y), it is well known that |o(X, Y)| = p'(X, Y), in
which case the inequalities in (4.2) are equalities. On the other hand, it can be
easily seen that p* is not in general equal to p’. For example, let (X, Y) have a
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uniform distribution on the region [(0, 1) x (0,1)] U [(0, 1) x (2, 3)] U[(1, 2) X
(1,2)] U [(2,3) x (0, )] U [(2,3) X (2,3)] and let f= [, + [;;, so that
o*(X, Y) < 1, but ¢(X, Y) = o[ (X), (V)] = 1.

While correlation as a measure of dependence is invariant under changes of
scale and location in X and Y, monotone correlation is invariant under all
order-preserving or order-reversing transformations of X and Y. Thus, mono-
tone correlation would be a suitable measure of association for ordinal data.
For a further discussion of measures of association for ordinal data, the reader
is referred to Kruskal (1958) and Gibbons ((1971), Chapter 12).

Any candidate for a measure of association should have the property of being
zero when the rv’s are independent. Clearly, correlation, sup correlation, and
monotone correlation all have this property. It would also be desirable for a
measure of association to satisfy the converse implication, namely that it be
zero only when X and Y are independent. Correlation clearly does not satisfy:
this converse property, although sup correlation does. (See Rényi (1959).) The
following theorem shows that monontone correlation satisfies this converse
implication. The proof of the theorem is essentially similar to that given by
Rényi for sup correlation.

THEOREM 4. If X and Y are nondegenerate rv’s with monotone correlation zero,
then X and Y are independent.

PRrOOF. Suppose p*(X,Y) = 0. For any real ¢, define f, = /_., ,,. We claim
that o[ f,(X), f(Y)] = 0. For if not, then either o[ f,(X), f(Y)] > 0 or p[ f,(X),
—f(Y)] > 0, which contradicts the hypothesis. Now, o[ f,(X), f.(Y)] = 0 implies
that P[X < s, Y < ] = P[X < 5] P[Y < ¢], which implies independence. []

5. Uniform representation and monotone correlation. Let H be a continuous
bivariate cdf with marginal cdf’s F and G. The uniform representation U,, of H
as defined by Kimeldorf and Sampson (1975b) is

(5.1) Uy(u, v) = H(F~'(u), G}(v)) , 0<u<gl,0gvl,
where F~' and G~ are as defined by (2.1). Observe that U, is a cdf on the unit

square with both marginal distributions being uniformon (0, 1). Thus, the class
of all continuous bivariate cdf’s can be decomposed into equivalence classes

determined by the equivalence relation

(5.2) H o~H, iff U, =U,.

If (X,Y) and (V, W) have continuous cdf’s H and K, respectively, we write
X, Y)~V, W) whenever H ~ K.

LemmaA 1. Let (X, Y) and (V, W) have continuous bivariate cdf’s H and K, re-
spectively. Then H ~ K (i.e., (X, Y) ~ (V, W)) if and only if there exist increasing
functions A and B such that the joint cdf of A(X) and B(Y) is K.

ProoF. Denote the marginals of H by F, and F, and the marginals of K by
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F, and F,. Suppose there exist increasing functions 4 and B such that (4(X),
B(Y)) has continuous cdf K. Since A(X) is a continuous rv, the marginal cdf
of A(X) is F(s) = P[A(X) £ 5] = P[X < A7(5)] = (Fy o A7Y)(s), where 47! is
as defined by (2.1). Similarly, the marginal cdf of B(Y) is (Fy, o B-*)(¢). There-
fore, the uniform representation of K is
Uk(s, 1) = K[(A7Y) 7 o Fy7Y(s), (B™) ™' o Fp~Y(1)]

= PLA(X) < (A7) 77 Fy7Y(9), BY) =< (B™) ™' o Fy7Y(1)]
PIX < Fy™9), Y < Fyo(0)]

= H(Fx7(s), £,7(1)
which is the uniform representation of H.

Conversely, suppose H ~ K. Let A = F,"' o F, and B = F,,7'o F,. Then
A(X) has cdf F;, and B(Y) has cdf F,,. Moreover, by (5.1) the uniform represen-
tation of the joint cdf of (4(X), B(Y)) is

Us, 1) = PLA(X) < F,7(s), B(Y) = Fyy7(9)]
= P[Fy(X) < s, Fu(Y) < 1]
= P[X < F, (), ¥ < Fy(0)],

which is the uniform representation of H, hence of K. Finally, since the joint
cdf of (A(X), B(Y)) has the same marginals as K and also the same uniform
representation as K, the joint cdf is K. [

An elementary relationship between the concepts of uniform representation
and monotone correlation is that

(X,Y) ~ (V, W)  implies p*(X,Y) = p*(V, W).

This relationship follows directly from Lemma 1. A further relationship between
the concepts of uniform representation and monotone correlation is expressed
by the following theorem, whose proof requires an additional lemma.

THEOREM 5. Let (X, Y) have continuous bivariate cdf H. Then
(5-3) (X, Y) = sup {jo(V, W)|: (Vs W) ~ (X, V)]

LEMMA 2. Given nondegenerate rv’s X and Y, let f and g be increasing functions
for which 0 < Var f(X) < oo and 0 < Var g(Y) < oo. Then there exist sequences
{f.}and{g,} of strictly increasing functions for which Var f,(X) < oo, Var g,(Y) < oo,
and lim,, o[ .,(X), 9.(Y)] = o[ /(X), 9(¥)]-

ProoF. We use the fact that any increasing function can be uniformly ap-
proximated by a strictly increasing function. Let {f,} and {g,} be sequences of
strictly increasing functions converging uniformly to f and g, respectively.
Since f(X) and g(Y) have finite nonzero variances, we have p[ f,(X), g.(Y)] —

olf(X), 9(¥)]- U

PROOF OF THEOREM. Let any number ¢ > 0 be given. By the definition of
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p* and Lemma 2, there exist strictly increasing functions f and ¢ such that
|0*(X, Y) — Jo[f(X), g")]l| < . Thus, the pair (V = f(X), W = g(Y)) has a
continuous joint cdf and Lemma 1 can be applied to conclude that (V, W) ~
(X, Y). Hence the left side of (5.3) cannot exceed the right side. To prove the
reverse inequality, suppose (V, W) ~ (X,Y). Then by Lemma 1, there exist
increasing functions 4 and B for which p[A(X), B(Y)] = po(V, W). Let 4’ =
[sgn o(V, W)] - 4 50 that |o(¥, W)| = [ 4(X), BY)] < p*(X, Y). [

6. Remarks. If Xand Y are univariate rv’s with respective cdf’s F and G, then
the grade correlation (see, for example, Gibbons (1971)), which is the population
analog of Spearman’s rank correlation coefficient, is defined as p, = p[ F(X), G(Y)].
Thus, the grade correlation is the (ordinary) correlation coefficient of the uni-
form representation, and

P, (X, Y) < p*(X,Y) < p'(X, Y) .

Note that the probability integral transform can be used to standardize an
ordinal scale by devising ranges that are equal in terms of probability. In com-
puting relationships between two such ordinal variables, therefore, the rank
correlation (or grade correlation) is a useful device. However, it might be
argued that the scaling should be done in an absolute fashion, rather than
relative to some sort of population distribution. What the monotone correla-
tion measures is the maximal correlation that might be achieved under any such
monotone scaling.

A continuous bivariate distribution can be decomposed into two components:
its structure, by which is meant the equivalence class determined by the equiva-
lence relation ~ (defined by (5.2)) in which the distribution belongs, and its
marginal distributions. Conversely, given any equivalence class and any pair
of continuous univariate distributions, there exists a unique bivariate distribu-
tion with these two components. In this context, Whitt (1976) posed the follow-
ing problem: If the marginals are fixed, for what structure is the correlation
maximized? Whitt showed that the maximum correlation is achieved when the
bivariate distribution is the upper Fréchet bound, and the correlation is mini-
mized when the distribution is the lower Fréchet bound. '

One can just as well pose the reverse problem: If the structure is fixed, for
what pair of marginals is the correlation maximized? In general, there will not
be any pair of marginals for which the maximum is achieved; on the other hand,
Theorem 5 states that the supremum of the correlations is exactly the monotone
correlation.
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