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ON ASYMPTOTICALLY EFFICIENT RECURSIVE ESTIMATION!

By VAcLAV FABIAN

Michigan State University

Stochastic approximation procedures were shown by Sakrison to be-
come asymptotically efficient estimators when used to minimize the
Kullback-Leibler information, if certain conditions hold. Further results
in this direction were obtained by Nevel’son and Has’minskij. This paper
gives, first, alternative conditions for convergence and, secondly, shows
that, under weaker conditions, asymptotic optimality is obtained by a
modified stochastic approximation procedure. The modified procedure
uses a consistent estimate which leads the approximating sequence to a
proper local minimum of the Kullback-Leibler information. The condi-
tions under which the procedure is asymptotically optimal are close to or
weaker than those for asymptotic optimality of one-step-correction maxi-
mum likelihood methods.

1. Introduction. We shall be concerned with an estimation problem, de-
scribed in the following assumption.

1.1. AssuMPTION. Let m be a positive integer, ® a subset of the m-dimen-
sional Euclidean space R™, § a point in ©. Suppose (X, X) is a measurable
space, v a measure on X and for every ¢ in ©, Q, is a probability measure on
X with a density f, with respect to v. Suppose that Y, Y;, Y,, - - - is a sequence
of independent identically distributed random variables on a probability space
{Q, Q, Py, and that PY~! = Q,.

1.2. REMARKS. The problem considered is the estimation of § on the basis
of Y, Yy, ---.
Define a function K on © by

(1) K(9) = E[log fy(Y) — log fy(¥)]
so that K(0) is the Kullback-Leibler information number for the pair {4, ¢ (for
basic properties of K see Kullback (1959), or, e.g., Bahadur (1971)).

The function K has an absolute minimum, 0, at 4.

Sakrison (1965, 1966) proposed to estimate § by using a stochastic approxi-
mation method. Under some conditions, he obtained an estimate which is
asymptotically efficient in the sense that the covariance matrix of the estimate
approaches the lower bound given by the Cramér-Rao inequality. Nevel’son
and Has’minskij (1972) generalized these results and also proved the conver-
gence in distribution of the normalized estimate.
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These results seem to be of considerable importance. In some sense, they are
related to methods, in which an estimate is improved by taking a one step cor-
rection towards a solution of the maximum likelihood equation. But they are
of a form which is easier to use when it is desired to calculate the estimate re-
cursively. The methods are also related to stochastic approximation methods
with optimally transformed observations (Abdelhamid (1973); Anbar (1973);
Fabian (1973); Obremski (1976)) and in that way they are related to nonpa-
rametric asymptotically efficient estimation of a location parameter (see Stone
(1975) for such a method, and for references, and Pfanzagl (1974) on the limits
of this approach).

The purpose of this paper is to generalize the conditions under which the
Sakrison method has its optimal properties. There are two sets of conditions:
global conditions on K, to ensure convergence to ¢, and local conditions, to
establish the asymptotic properties. We shall show that the global conditions
can be altered and the local conditions can be weakened. Moreover, if a con-
sistent estimate is available, the procedure may be modified so that only the
local conditions are used.

Next, we shall agree on some notation and formulate some conditions. Then
we shall describe the result of Nevel’son and Has’minskij (Remark 1.6) and our
results (Remark 1.7) in additional details.

1.3. NOTATION, CONVENTIONS. B, denotes the g-algebra of all Borel subsets
of R™. Transposition of matrices and vectors is denoted by a prime.

The domain and range of a function # will be denoted by 2k and <2k re-
spectively. If % is a function with & C R*, “#h C R® and x is an interior
point of <7k then a total differential of # at x is a v X u real valued matrix M
such that

h(y) = h(x) + M(y — x) + ||y — xlle()

with a function ¢ satisfying lim,__ ¢(y) = 0.

By a (first) derivative of a real valued function 4 defined on a subset of R*
we mean the vector of the first partial derivatives. By the second derivative
we mean the matrix of the second partial derivatives with the (i, j) element
(0°/0x; dx,)h. If the derivative of the function K, defined by (1.2.1), exists, it
will be denoted by K. The functions logf, will be denoted also by L,. The
first and second derivatives of L,(y), with respect to 3, will be denoted by L,(y)
and L,(y), if they exist. Note that f,(y) > 0if L,(y) exists. If { L, L,’ d0, makes
sense, it will be denoted by /(d). By I we shall denote the function d ~ 1(9)
defined on the set of all such ¢ for which /(0) makes sense.

The m X m identity matrix is denoted by 1.

Convergence and equalities among random variables are meant with proba-
bility one unless specified otherwise. A sequence of random variables £, has a
property eventually if for every w in a set of probability 1, £,(») has the property
for all n greater than an nyw).



856 VACLAV FABIAN

A normal distribution with mean p¢ and covariance matrix C is denoted by
N(g, C) and convergence in distribution is denoted by — ..
If Z, ..., Z, are random vectors then ¢(Z,, ---, Z,) denotes the g-algebra

generated by Z,, ..., Z,.
By a convergence in L,(P) of a sequence of random vectors we mean the

L,(P) convergence in norm of corresponding components.

1.4. ConpITION. Assumption 1.1 holds with ® = R™ and the following re-
quirements are satisfied:

(i) Second derivatives, with respect to g, of L,(y) and K(9) (see (1.2.1)) exist
for all 6 and all y. Relations (1.2.1) and

(1) Vdv =1
can be twice differentiated under the integral sign.

(ii) The function I is defined on O, is finite valued, continuous, and /(9) is
nonsingular for every 0.

(iii) For every d + 0,

(6 — 6Y1(3)"*K(6) > 0.

(iv) With Z, = Ly(Y),
(2) 0~ I(0)"(EZ,Z,")I(0)™!
is continuous and has each component bounded in absolute value by C[1 + ||9|]
for a constant C.

(v) 6,eR™,
(3) Opir = 0, + n70(0,) Ly (Y,,) -

1.5. ConpitioN. Condition 1.4 holds and there is a neighborhood ©, of ¢
such that, as R — co,

(1) Sup; e, EllZsl"Xuz1>2 — 0 -

1.6. ReEMARK. Under Conditions 1.4 and 1.5, Nevel’son and Has’minskij
(1972, Theorem 5.4, Chapter 8) assert that
M n(0, — 0) —.. N0, 1(6)7") .

This result is restated in our Theorem 5.9, but with some changes. We need
to assume, additionally, that K(6) is a total differential of K at §. On the other
hand, Condition 1.5 can be omitted (also, in (1.4.2) an apparent misprint has
been corrected).

We cannot prove the result without the additional assumption on K(6).
Nevel’son and Has’minskij’s proof sheds no light on this since it merely refers
to the one-dimensional case.

Nevel’son and Has’minskij’s theorem has additional assertions under addition-
al assumptions: asymptotic behavior of n¥(@, — 6), n*(0,, — 0), - - -, X0, — 6)
for n — oo, log n;/n — t, and the convergence of the covariance matrix of ntf,
to 1(6)".
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1.7. REMARK. As we said above in Remark 1.4, the purpose of this paper is
to generalize the conditions under which the stochastic approximation has the
optimal properties.

The most restrictive part of Condition 1.4 is (iii). It means that the square
norm |x|* = (x — 6)'1(6)~*(x — ) should be increasing at d in the direction K(3).
Thus (1.4.(iii)) will not hold if, roughly speaking, the graph of K has a valley
descending in a direction leading away (as measured by | |) from 6. We shall
show that this condition can be replaced by an alternative condition (see Theo-
rem 4.8 and Remark 4.10).

Another question, pursued here, is whether any global conditions are neces-
sary. The answer is that if a consistent estimate is available, the stochastic ap-
proximation can be modified in such a way that it has the optimal property
under local conditions only (Section 3). The idea of using auxiliary estimates
has already been used by Has’minskij (1974, Theorem 2). However, his result
requires stronger conditions than our results. In particular, some of the prop-
erties are required to hold uniformly by Has’minskij, because his modification
of the basic procedure is different.

We shall also generalize parts (i) and (v) of Condition 1.4. In particular, we
shall consider the recursion given by (1.4.1).with —L,(y) replaced by a possibly
different function ¢(d, y). In this way we obtain the behavior of (@,) if an esti-
mate g of — L is used and obtain robustness results. Another point is that —gq
may be taken as a derivative of L in a weak sense. Nevel’son (1975) studied
such estimators in case X = © = R and for ¢ such that g(+, y) is nondecreasing
for every y.

The organization of the paper is as follows. Section 2 exhibits and discusses
conditions under which stochastic approximation gives asymptotically normal
estimates. Section 3 contains results on stochastic approximation supported by
auxiliary consistent estimates. Section 4 studies estimation by stochastic approx-
imation without a support and shows alternative conditions for convergence and
asymptotic efficiency to those used by Sakrison and Nevel’son and Has’minskij.

In Section 5 the assumptions are further discussed and compared with the
assumptions under which the Fisher bound was established by Bahadur (1964)
(Theorem 5.7), with the assumptions for the behavior of maximum likelihood
estimates (Remark 5.8) and with the assumptions used by Nevel’son and
Has’minskij (1972) (Theorem 5.2).

2. A lemma.

2.1. REMARK. Here we shall study the asymptotic behavior of recursive es-
timates assuming, among other things, that the estimate is consistent.

2.2. AssumpTION. (i) Assumption 1.1 holds, ©, in a neighborhood of ¢,
©, C 0, and ¢ is a B,, x X-measurable function into R™ defined on ©, x X.

(i) The random variable Z, = ¢(d,Y) is in L,(P) for every d in ©,, Z; — Z,
in Ly(P) if 8 — 6. The function D defined on O, by D(6) = EZ,, has value 0 at



858 VACLAV FABIAN

¢ and a nonsingular total differential H at §. The covariance matrix EZ, Z,’ of
Z, is denoted by X.

(iii) With & =o(Y,, ---, Y,_)), ®, are . ,-measurable m X m matrix
valued random vectors, 6, are m-dimensional .5 -measurable random vectors

and
(1) o, - H! on {6, — 06}.
2.3. LEMMA. Let Assumption 2.2 hold and let
(1) 0,— 6.
Then the following two assertions are true. If
@) [0nsr — Ol < 110, — 6 — 7@, 4(6,, Y,)|
eventually, then
3) n¥@, — 0) -0  forevery Bec(0,1).
If
4 Opsr =0, — n'®,9(0,,Y,)
eventually, then ,
(5) n¥@, — 0) >, NO, H'XH™).

Proor. Without loss of generality we may assume that = 0. Let ©, be a
subset of @,, and a neighborhood of 6. If we define ¢,(d, +) to be ¢(3, +) for
0 €0, and ¢(d, -) = 0 for § € ©,, all assumptions of the lemma will be satisfied
with ¢ replaced by ¢,. Thus we may assume that ¢ is defined on R™ x X,
4(0, x) = 0 for 0 ¢ ©,. Set now
(6) D, = D(0,) , Va=D, —q(0,, Y,).

Notice that D(6) — Z, — — Z, strongly in L,(P) as § — . Making ©, smaller,
if necessary, we find a constant C such that

(7 C> E7n||V,, v, —Z|—0, Efn||V,b||2 < C.
We also obtain
(8) E|WV lPxuw yosgm — O for every 7 >0.

Indeed, the conditional, given .5, expectation of the random variable in (8)
is b,(0,) with b,(0) = E||D() — Zy|[*ps)-zy>ym- The uniform integrability
of ||D(d,) — Z, |P for §, — 6 implies b,(d,) — 0. We obtain Eb,(0,) — 0 since
b,(0,) < C by (7). Thus (8) holds.

From (1), (2.2.1) and Assumption 2.2.(ii) we obtain

&) O, - H?, ®,D,=T,0,, r,—1

and we can choose I', to be .5 ,-measurable.
Thus

(10) ¢, — n'®,q,, Y,) =1 —nT,)0, + n'®,V,.
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To prove the first implication we adopt a technique used in Fabian (1967,
proof of Theorem 5.3).
From (2), (9) and (10), eventually,

(11) 10nidl® < (1 + n7Y)0,F + 20720,/ (1 — n7'T,)®,V, 4+ n7¥®,V,|}.
By (7) and (9),
(12) T @, VP < oo
for every g€ (0, 3).
Suppose now (3) holds for 8 equal to a §, in [0, 1). Let 8,e(B;, %) and set
B = 4(B, + B,). Denoting the middle term on the right-hand side of (11) by

w,, we find
E, W < 4n~3|®,/(1 — n7 T )|[Y0PE- |V -

Because of (9) and (7), the last expression is o(n*-*1). Multiplied by n** =
n?1+%: jt becomes o (n~?*?%2) which is summable.

A generalized Borel-Cantelli lemma (Lemma 10 in Dubins and Freedman,
1965) implies that Y 2_, n*W, exists and is finite. This, (12), (11) and Lemma
4.3 in Fabian (1967) imply that

lim sup n%|0,J|* < +co .

A complete induction proves the first assertion.
Let us prove the second assertion. From (4) and (10) we obtain
0n+1 = (1 - n—lrn)an + n_l(I)n Vn + n_%Tn

with T, ®@,, V,_, being & ,-measurable and with T, = 0 eventually. This, (7)
and (8) show that the conditions of Theorem 2.2 in Fabian (1968) are satisfied
and the required result follows.

3. Approximation using auxiliary estimates.

3.1. AssumpTION. Assumption 1.1 holds. For every n, ¢, is an m-dimensional
random vector, 7, a positive number, 7 € (0, ),

(1) Taltn — 0| >0, 7,— +o0

and

©) T() =0  if [t — 0l <ptV A,
= 0*  otherwise

where 6* denotes the closest point to d on the sphere {u; u € R™, |[u — t,|| = 1,7}
and Vv denotes maximum.

3.2. THEOREM. Let Assumptions 2.2 and 3.1 hold. Let
€)) 0pir = T,1[0, — n'D,q(0,, Y,)], eventually.
Then
2) nf@, — 0) - 0 for every Bel0, %)
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and
3) n¥@, — 0) —»_ N0, H'XH™).

PRroof. Since |0, — t,|| < r,”' V n~7, we have 6, — 6 and (2.3.1) holds.
Next we establish that, with u,,, denoting the argument of T, ,, in (1),

(4) ”0n - 0“ § ||un - 0“ on {”tn - 0“ < T'n_l} :

Notice 0, = u, if ||t, — u,|| < r,”* V n~7. In the opposite case, u, lies outside
the sphere S with center at ¢, and radius y,”*. The hyperplane perpendicular
to the segment [u,, 6,] and intersecting the segment at its center, divides the
points 4 into those closer to u, and those closer to #,. The hyperplane does not
intersect the sphere S and all points in § are closer to ¢, than to u,. Thus, if ¢
is in S, then @ is closer to ¢, than to #, and (4) holds.

Relations (3.1.1), (1) and (4) imply that (2.3.2) holds eventually. By Lemma
2.3, relation (2) holds. But this implies that 6,,, = 0, — n~'®,¢(4,, Y,) (i.e.,
(2.3.4)) holds eventually. A new application of Lemma 2.3 yields (3).

4. Approximation without auxiliary estimates.

4.1. REMARK. In this section we shall consider conditions under which it is
not necessary to use an auxiliary estimate sequence <t,». Essentially these will
be conditions which guarantee that ¢, — #. They will be global conditions and
could be formulated as not necessarily implying the asymptotic efficiency, but
we thought this would not be worth the necessary restatement of the basic as-
sumptions. Thus in all subsequent results we always start with Assumption 4.2
which then automatically implies the desired result (as described in Condition
4.3)if 0, — 0.

4.2. AssUMPTION. Assumption 2.2 holds with ® = ©, = R™,

(1) 0pey=0,—n'®,q@,Y,).
4.3. ConbitioN. For every 8¢[O0, %), n#(0, — 6) — 0 and
(1) n¥@, — 0) >, N, H'ZH) .

4.4. LeEMMA. Let Assumption 4.2 hold. Let g be a real valued nonnegative func-
tion on R™ with the first derivative D, and the second derivative H, on R™, H, con-
tinuous and bounded in norm. Let C be a positive number, n e (0, 1),

(1) D, (0,)®,D(0,) = (Clog n)'B(©,) ,
2) E, ||®.q(0. V)P = Clogn[l 4 g(0,) + B(0.)]
with a nonnegative function B on R™. Let g(0) = 0,

3) inf {B(0); e < 9(9) < e} >0,

“) inf {g(9); e <6 — 0|f} >0

for every ¢ > 0.
Then Condition 4.3 holds.
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Proor. Write z, = g(0,). By the Taylor expansion, enlarging C if necessary,
z'n+1 é Zn — n_ng,(o'n)q)'nq(an’ Y’”) + n_2C||q)"bq(0"’ )/7")”2 ‘

Using (1), (2), enlarging C again, and recalling that E_ ¢(0,, Y,) = D(0,), we
obtain

E, z,, < (1 + Cn*logn)z, — [(Cnlogn)~* — Cn=*log n]B(f,) + Cn~*logn.

Since the sequence Cn—*logn is summable we obtain from Theorem 1 in
Robbins and Siegmund (1971) that {z,> converges to a finite limit and that
Yiw-1[(Cnlogn)~* — Cn=*log n]B(0,) is finite. Then at every o in an event of
probability 1, a subsequence of B(¢,) converges to 0, and {g(,)> converges.
By (3), we obtain that a subsequence of (g(d,)> converges to 0 at w, thus
9(6,) — 0 at w. This proves g(d,) — 0 and, by (4), 6, — 6.
The assertion follows now from Lemma 2.3.

4.5. ReEMARK. Robbins and Siegmund (1971) give numerous applications of
their Theorem 1, both within and without the area of stochastic approximation.
But the theorem itself is only a slight generalization of a lemma used to establish
convergence in stochastic approximation, first in Blum (1954) and then in many
other papers (see, e.g., Lemma 3.2 in Fabian (1971)). The convergence result
in the preceding lemma would also follow from a slight generalization of Lemma
3.3 in Fabian (1971).

4.6. REMARK. Various choices of the test-function g in Lemma 4.1 give
various sufficient conditions for convergence. The next result obtains by taking
9(9) = [lo — 6l

4.7. THEOREM. Let Assumption 4.2 hold, let A be B,,-measurable, ®, = A(4,).
On R™ — {6} let

(1) 0 — (0 — ) A(0)D(9)
be continuous positive valued. Let
) EA@)Z| = C[1 + [|6 — 6IP]

for a constant C and all 4.

Then Condition 4.3 holds.

Proor. Apply Lemma 4.4 with g(d) = ||0 — 0|, D,(0) = 2(6 — 0), B(9) =
(0 — 0)'A(0)D(6). Then condition (4.4.1) holds by the choice of B, (4.4.2) fol-
lows from (2), (4.4.3) follows from the properties of B and (4.4.4) is trivial.
Thus Theorem 4.7 follows from Lemma 4.4.

4.8. THEOREM. Let Assumption 4.2 hold, let K, defined by (1.2.1), have a first
derivative equal to D, and a continuous bounded second derivative. Let

M inf {[DE)[[; |6 — 0| > &, K(8) <7} >0
for every ¢ > 0. For a number C let
©) inf {K(9); [0 — 6] > C} >0
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and
(3) E||Z,||' < C[1 + K(3) + |ID()|'] -

Suppose ®,(w) are symmetric, with eigenvalues in [(C log n)~*, Clog n}, for alln

and .
Then Condition 4.3 holds.

Proor. It is enough to verify the assumptions of Lemma 4.4 for g = K,
D, = D, B = ||D|’. Note that (4.4.1) and (4.4.2) follow from the properties of
®, and from (3). Relations (4.4.3) and (4.4.4) follow from (1), (2) and from
the fact that 6 is the unique point at which K is zero, and from the continuity
of K.

4.9. ReEMARK. Theorem 4.8 does not require the positiveness of (4.7.1). It
requires, however, the boundedness of the second derivative of K. This condi-
tion is also unpleasant, and especially so, since we require ® = R™. It would
be of interest to extend Theorem 4.8 to the case ® — R™. This may be an easy
task if © is, e.g., a sphere when a modification similar to that described in
Theorem 3.2 would work. For less simple sets ©® we are getting into the area
of nonlinear programming. Some results here are known (Fabian, 1965 and
Kushner, 1974).

4.10. REMARK. Some additional comments on the two Theorems 4.7 and
4.8. Theorem 4.8 is close to the conditions used by Blum (1954) in his original
paper on multidimensional approximation. But Sacks (1958) used a condition
analogous to the positivity of (4.7.1). Venter (1967b) pointed out the undesir-
ability of this condition and then apparently unaware of Blum’s (1954) results,
obtained results weaker than those obtained by Blum.

5. Special cases and comparisons.

5.1. ReEMARK. The results in preceding sections were obtained under As-
sumption 2.2 and with the use of an auxiliary consistent estimate (Section 3)
or global conditions guaranteeing 6, — 0 (Section 4). Part (iii) of Assumption
2.2 is usually easy to satisfy (see the choice of @, in Theorems 5.2 and 5.7 and
also Remark 5.9). Parts (i) and (ii) of Assumption 2.2 are rather general and
we shall see that they are satisfied in particular situations considered below.

If only Assumption 2.2, parts (i) and (ii) are required (rather than the stronger
Condition 1.4, or the conditions in Theorem 5.7), then there is a question about
the meaning of the asymptotic covariance C = H-'XH. Suppose ¢(, y) is, in
some sense, L;(y), so that X = /(f). Under weak assumptions, corollaries to
Lemma 6 in Le Cam (1970) show that /(§) < H and it follows that C < 1(6)~*.
If the Fisher bound C = I(#)~* holds, we have C = [(6)~*.

We shall now restate and prove the result of Nevel’son and Has’minskij, with
changes explained in Remark 1.6.

5.2. THEOREM. Let Condition 1.4 hold and let K have a total differential at 0.
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Then
(1) n¥(0, — 0) — . N, 1(6)7") .

PRrooF. Assumption 1.1 is repeated in Condition 1.4. Part (i) of Assumption
2.2 is satisfied with ©, = R™ and ¢(3, y) = —L,(y), since measurability with
respect to y and continuity with respect to  implies joint measurability. We
obtain Z; € L,(P) from (1.4.(iv)), Z, — Z, in L,(P) because Z; — Z, pointwise
on Q if 6 — ¢ and (1.4.(ii)) together with (1.4.(iv)) imply E||Z,|? — E||Z,|]* as
d — 0. Since D(6) = K(9) by (1.4.(i)), we obtain D(d) = 0. Condition (1.4.(i))
and the assumed existence of a total differential H of K imply that H = X =
1(6). Thus (2.2.(ii)) holds. Condition (1.4.(ii)) implies that ®, = I-(8,) satisfy
(2.2.(iii)). We have shown that Assumption 2.2 holds and the proof is now
completed by an application of Theorem 4.7 with 4 = I-* and with (4.7.1) and
(4.7.2) implied by (1.4.(iii)) and (1.4.(iv)). )

Next we shall state a condition used by Bahadur (1964):

5.3. ConpITION. Assumption 1.1 holds with © open, L;(»), ]:t,(y) exist for
all 60, ye R™, and L,(y) is continuous with respect to d at 8. Also, I(6) is
nonsingular,

(1) EL(Y)=0, [IO)|< +oo,
(2) EL,(Y) = —I1(6) .
There is an X-measurable function M and a neighborhood 0, of # such that
(3) IE,) < M(y)
for all 6 € ©;, y e R™, and
4) EM(Y) < +oo.

5.4. ReEMARK. The validity of the so-called Fisher bound for the asymptotic
variance of a sequence of estimation was studied by several authors starting
with Le Cam (1953) (see also Pfanzagl (1973) and the references therein). We
shall compare our results with conditions used by Bahadur (1964).

Suppose Condition 5.3 is satisfied for every # in ©. Write now E, for E.
Bahadur (1964) showed that if ¢, is (Y;, - - -, Y,)-measurable for every n and

(1) ni(t, — 0) — . N(0, C(0)) on (Q,9,E)
for every 6 then
2) c(6) — 1)~
is positive semidefinite for almost all (with respect to the Lebesgue measure) ¢
in ©. This gives a precise meaning to a convention under which (z,> is called
asymptotically efficient if (1) holds with C(8) = 1(6)~".

We shall show that under little more than Condition 5.3 stochastic approxi-
mation methods give asymptotically efficient estimates.
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5.5. LeEMMA. Let Condition 5.3 hold. Then

) EM*Y) < oo
implies
@ E|L,(V)[ — ElL, (M) as 50,

and (2) implies parts (i) and (ii) of Assumption 2.2 with q(3, y) = —L,(), a ©,,
and £ = H = 1(0).

Proor. D(0) = O follows from (5.3.1), £ = I(f) from the definition of 4. A
Taylor expansion, (5.3.3) and (5.3.4) give

(3) Z, =27, — L(Y)©® — 6) + |6 — 6|R(5)
with
4 R, -0, E|R)]| -0 as 0 —@.

If (1) holds, we have even R, — 0 in Ly(P), Z, — Z, in L,(P) and the first as-
sertion of the lemma holds.

Assume (2) holds. Take expectations in (3) to obtain
(5) D(0) = I(6)(0 — 6) + ||6 — O||ER, .
Thus /(6) is a total differential of D at ¢ and the second assertion holds.

5.6. REMARk. Under conditions of the previous lemma, and if @, are suita-
bly determined we can obtain n#(6, — 6) — . N(0, I(f)~") either by Theorem 3.2
using auxiliary estimates, or by Theorems 4.7 and 4.8, if certain additional
global conditions are satisfied. Let us formulate one of these possible assertions.

5.7. THEOREM. Let Condition 5.3 hold with EM*(Y) < oo and let I be continu-
ous at 0. Let §, ¢ R™,

(1) Onir = Topa[0, + ”—lq)nLan(Yn)]

with T, satisfying Assumption 3.1 where

2) o, =16, if I6,) is nonsingular,
=1 if I1(8,) issingular.

Then n?(6, — 0) — 0 for every B¢ (0, §) and
(3) ‘ n(0, — 0) —>_. N, 1(6)7) .
Proor. Using Lemma 5.5 we establish that Assumption 2.2 holds and the

result follows from Theorem 3.2.

5.8. REMARK. We shall now compare the previous result to the known be-
havior of one-step-maximum likelihood methods.

Let Condition 5.3 hold with / continuous at 6, let {z,» be a sequence of esti-
mates such that ni(t, — 1) is a tight sequence and let

(1) X =ty + (nl(1,)) Doy L (Y,) -
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Hannan (1976), generalizing slightly Le Cam’s (1956) Lemma 6, showed that
(X, — 60) > N, I(6)7") .

The difference in these assumptions and those of Theorem 5.7 is that the one
step maximum likelihood method requires more of 7, while the stochastic ap-
proximation method requires, e.g., the finiteness of EM*(Y).

5.9. REMARK. Choice of ®,. Assuming I continuous and H = I(), we can
choose @, as in the preceding theorems, or, if desired, (5.7.2) can be used only
for a subsequence n, < n, < - -, with @, = @, forn, < n < n;,,.

But even without these assumptions, a choice of consistent estimates @, of
H-' is possible and easy since ¢(d, Y;) are unbiased estimates of D(d). Ina more
complicated situation the matrix of second derivatives of a function is estimated
in Fabian (1971, Theorem 2.7); a different method of estimating additional prop-
erties of the function, to which stochastic approximation is applied, is due to
Venter (1967a). These methods can also be used to obtain suitable @,.
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