The Annals of Statistics
1978, Vol. 6, No. 4, 846-853

SOLUTIONS TO EMPIRICAL BAYES SQUARED ERROR
LOSS ESTIMATION PROBLEMS

By RicHARD J. Fox!
Michigan State University

Asymptotically optimal empirical Bayes squared error loss estimation
procedures are developed for three families of continuous distributions,
uniform (0, §), # > 0, uniform [¢, 6 + 1),  arbitrary, and a location parame-
ter family of gamma distributions. The approach taken is to estimate the
Bayes estimator directly. However, for the [0, # + 1) case, it is shown that
the indirect approach of applying the Bayes estimator, versus an almost
sure weakly convergent estimator of the prior, also yields an asymptotically
optimal procedure.

1. Introduction. Consider a sequence of independent and identically struc-
tured Bayes statistical decision problems for which the common prior probability
distribution over the state space is unknown. The empirical Bayes problem
consists of constructing a procedure which makes use of historical data from
previous problems in the sequence, as well as the current observation, and whose
risk for the current problem converges to the generic Bayes optimal risk. A
procedure having this convergence property is said to be asymptotically optimal
(a.0.).

In this paper, a.o. procedures are developed for the empirical Bayes squared
error loss estimation problem (see Robbins (1955)) for three parametric families
for which the Bayes estimator is easily estimated from the historical data. Al-
though these examples are not of major methodological interest, they have
played a traditionally important role in developing statistical theory. None of
the existing literature establishing general solutions to empirical Bayes problems
gives sufficient conditions which are satisfied in these particular examples. One
obvious possibility is Theorem 1 of Robbins (1964). However, his Assump-
tion [C] regarding the generic problem, which requires that the sup of the loss
function over the action space be an integrable function of the parameter or
‘“state of nature,” is not satisfied.

The following notational devices will be used. A distribution function F
will also be used to denote the associated measure. Occasionally, the argument
of a function will not be displayed and operator notation will be used extensively
to represent integrals, e.g., §f(¢) dA(f) might be written as A(f(z)) or A(f). All
intervals of integration will be open on the left and closed on the right. A
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“4” or “—” superscript on a function will denote the positive or negative part
of the function respectively. [A4] represents the indicator function of the event A.

Let {F,|60 € Q}, Q being a Borel subset of the real line, be a class of distri-
butions, possessing densities, fg, with respect to Lebesgue measure p. Let G be
a prior distribution on Q. Define K(x) = § F,(x) dG(0) and k(x) = { f,(x) dG(6),
i.e., K and k are respectively the marginal distribution function and density of
x of the pair (¢, x). Let (x;, x,, ---) be a sequence of i.i.d., according to K,
random variables. Let P be the product measure on the space of sequences
(%15 X5, + -+, (0, X)), resulting from K= and the joint distribution of (4, x). Define

(1.1) K (x) = n7t Zr, [x, £ x].
Let ¢(x) denote the Bayes estimator versus G assuming squared error loss (the
posterior mean), i.e.,
0fy(x) dG(0)
(1.2) p(x) = L06(*) dG(0)
§fo(x) dG(6)
(undefined ratios are taken to be zero unless otherwise specified).

Let R be the Bayes optimal risk versus G, i.e., R = P((¢(x) — 6)?). Our ob-
jective is to find an estimator of ¢, say ¢,, based on x;, x,, - - -, x,, whose risk,
defined by P((¢.(x) — 6#)*) and denoted by R,, converges to R as n increases,
i.e., ¢, is a.0. Assuming that R, and R are finite, we have

(1.3) R, — R = P((¢, — 9)) -
Hence, when (1.3) holds, asymptotic optimality is equivalent to P((¢, — ¢)*) — 0
as n — co. In Sections 2 and 4 of this paper, we assume
(A) G0’ < .
By Jensen’s inequality, (A) implies P(¢?) < co and thus guarantees R < oo.
For the family considered in Section 3, it is easily shown that R < 1 without
any restrictions on the prior G.

2. Uniform (0, 6) case. Let f,(x) = 670 < x < 6] where 6 e Q = (0, o).
For this family,

(2.1) K(x) = G(x) + k(x)
and (1.2) becomes

2.2 _1=6()
(2.2) #) = 7

Note that k(x) = O implies that both G(x) = 1 and K(x) = 1 so that ¢(x) = 0
by convention. Hence, it follows from (2.1) and (2.2) that

(2.3) ¢(x) = x[k(x) > O] + ¢(x)

where ¢(x) is defined to be (1 — K(x))/k(x). With & positive and depending on
n, recall (1.1) and define k,, a one-sided version of the typical divided differ-
ence estimator of k, by

kn(x) = hﬁl(Kn(x) - Kn(x - h)) .
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This modification enables us to obtain certain bounds, e.g., (2.7), which are
essential to the development of this section.

For each n, let a,(x) be a bounded nonnegative function defined on the posi-
tive reals. Estimate ¢(x) by

. 1 — K,(x) ))
=(m , — 2 ) ) [x = h].

9u(x) = (min (a0, ~7)) [ 2 4
From (2.3), estimate ¢(x) by
(2.4) Pa(X) = X + Po(X) .
If P(¢*) < oo, then P(x?) < co. Therefore, under Assumption (A), (1.3) holds
and we are concerned with choosing 4 and a, so that P((¢, — ¢)’) =
P((g/ln — ¢)2) — 0 as n— oo.

LEMMA 2.1. Under (A), if nh* — oo, h — 0 and if a,(x) — co for each x, then
P{(¢, — ¢ P)—>0asn— co.

ProoF. Let xe A = {x|k(x) > 0, G(y) — G(x) as y — x}. Since k is con-
tinuous at x, k(x) = K’(x). Since nh® — oo, by the Tchebichev inequality,
k,(x) — h~}(K(x) — K(x — h)) — O(K=) where, as is typical, the parenthesized
K> denotes “in K=-measure.” Hence, since A~%(K(x) — K(x — h)) — k(x) as
h—0,

(2.5) ko (x) — k(x)(K>) .

By the Glivenko-Cantelli theorem, page 20 of Loéve (1963), the Slutsky theorem,
page 174 of Loéve (1963) and (2.5), (I — K,(x))/k.(x) — ¢(x)(K=).

Therefore, since a,(x) — oo, h — 0 and P([4]) = 1, ¢, — ¢(P) so that

(2:6) (¢n — ¢)” = 0(P) .

Since (¢, — ¢)~ < ¢ and under (A), P(¢*) < oo, by (2.6) and the dominated
convergence theorem, P({(¢, — ¢)7}}) — 0.

LEMMA 2.2, For each x > 0,

" v a, c(a, + 2h) 2(h7'a, + 1)
Ke(ga = 1) < {(h{l AR }

where c is the Berry—Esseen constant.

Proor. If k(x) = 0 or if x < h, the result is obvious. Hence, fix x such
that x = 4 and k(x) >0 and let (a,(x) — ¢(x))* = b. Since for v = b,
K*([,¢ — ¢ > v]) = 0,itfollows that K=({(¢, — ¢)*}) = SEK=([¢ — & > v])dv’.
Fix v such that 0 < v < b and for i = 1,2, ..., n, define w,, i.i.d., de-
pending on x and v, by w, =k [x — h < x;, < x](¢ + v) — [x, > x] and
let w=n"'37r,w. Note that K=([¢, — ¢ > v]) = K*([w < 0]). Let A =
h~Y(K(x) — K(x — h)) and note that K(w,) = A(¢ + v) — (1 — K). Since k is
decreasing, for x = h, A = k(x). Therefore, recalling the definition of ¢,
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for x = A,
(2.7) K(w,) = vk .
By the Berry-Esseen theorem, page 288 of Loéve (1963), with ¢? and r denoting
respectively the variance and range of w,,
(2.8) K~[w < 0] £ O(2) + cntro~!
where z = —nie~'K(w,), c is the Berry-Esseen constant and @ is the standard
normal distribution function. Noting that ¢*> > A~*{(¢ 4 v)*A(1 — K(k))} and
that ir = (¢ + v) + h, we obtain
(2.9) (s ro~tdv* < {RA(1 — K(h))}~}(6* + 2hb) .
By weakening the tail bound of ®, page 166 of Feller (1957), by (2.7) and by
the fact that ¢ < r, it follows that ®(z) < (ntvk)~'r. Hence, since b < a, and
for0<v<b, hr<a,+ h,
(2.10) P D(z) dvt < 2T+ )

ntk
Substituting a,, for b and k for A in the right hand side of (2.9) and combining
the result with the bounds displayed in (2.8) and (2.10), we obtain the bound
of the lemma for {¢{ K=([w < 0]) dv* and the proof is complete.

Let ||a,||, denote the L,-norm of the function a, (see, e.g., pages 188 and 346
of Hewitt and Stromberg (1965)) with respect to Lebesgue measure restricted
to the positive reals.

Lemma 2.3.

P({(¢n — 9)*P) = nH{e(h{1 — K(A)})Hlau(laulle + 2k) + 2(A~Y|a,ll* + [la,l)} -

Proor. Note that P({(¢, — ¢)*P) = (¥ K=({(¢» — ¢)*P)k du.  Extending
the range of integration from (4, o) td (0, co), introducing the bound of Lemma
2.2 in the integrand, noting that x(k) = 1 and a,’ < |a,.a, and applying the
Schwarz inequality, we obtain the desired bound.

THEOREM 2.1. Under (A), if a,(x) — oo for each x >0, if h— 0 and if
lla.l, = o(n?), ||a,|l,* = o(nth) and ||a,||., = O(n*), then ¢,, defined by (2.4), is a.o.

Proor. Noting that the hypotheses of this theorem imply that nh* — co, the
theorem follows directly from Lemmas 2.1 and 2.3.

REMARK. Defines = n=7where 0 < y < 4. Also, forx > 0, leta,(x) = n’f(x)
where 0 < 20 < 4 — r and f is a positive-valued bounded function of x > 0
having the properties that {{° f(x) dx and {§ f?(x) dx are both finite. It is easily
seen that this selection of & and a,(x) satisfies the conditions of Theorem 2.1.
In fact, ||a,||.. = o(nt), which is a slightly stronger condition than required.

3. Uniform [0, 0 + 1) case. Let f)(x) =[0 < x < 6 + 1] where 6eQ =
(—o0, +0). For this family,

(3.1) K(x) = G(x — 1) + xk(x) — §2_,0.dG
(3.2) k(x) = G(x) — G(x — 1).
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By the right continuity of G, k is right continuous and it follows that k is the
right hand derivative of K for all x. Thus, for convenience, estimate k(x) by
right divided differences instead of the typical divided differences, i.e.,

(3.3) ko(x) = B7Y(K (x + k) — K,(x))
where # is chosen so that 0 < 2 < 1. By (3.2), for all x,
(3.4) G(x) = DF=ok(x — )

and

(3.5) K(x) = Zo k(y)dy = 2. G(y) dy
Using (3.4) and recalling (3.3), estimate G(x), for all x, by
(3.6) G *(x) = Dooka(x —Jj)-

LemMA 3.1. If h — 0 and nh* — oo, then for each x, G,*(x) — G(x)(K*).
Proor. Let x be fixed. By (3.5),

Y5 (K(x + b — j) — K(x — j)) = D5 (13277 G dy — 12557 6(0) 9) -
Since the series on the right hand side of the above equality is telescopic and
{2th=i G(y)dy — 0 as j — oo, we have

(3.7) i (K(x + b — ) — K(x — ) = 27" G(y) dy -

By (3.7), G, *(x), defined by (3.6), is the average of i.i.d. random variables having
expectation A~* {2** G(y) dy which converges to G(x) as £ — 0. Therefore, since
nh* — oo, by the Tchebichev inequality, G,*(x) — G(x)(K~). By (1.2),(3.1), and
(3.2), with ¢(x) = (G(x) — K(x))/k(x),

(3.8) #(x) = (x — Dk(x) > 0] + ¢(x) .

Since the conditional distribution of ¢ given x is concentrated on (x — 1, x], it
follows that 0 < ¢ < 1. Define the function ¢, by

1 G'n* - K'n
(3.9) ¢, = min <1, max <0, —k,,_»
i.e., ¢, is (G,* — K,)/k,)* truncated at 1. Recalling (3.8) and (3.9), define
(3.10) Gu(x) = (x = 1) + ¢o(x) .

THEOREM 3.1. If nh* — oo and h — O, then ¢,,, defined by (3.10), is a.o.

Proor. Since P((¢p — 6)*) < 1 and P((¢, — 6)*) < 1, it follows that (1.3) holds
and it suffices to show that P((¢ — ¢,)*) —> 0. Let x be fixed so that k(x) > 0.
Applying Lemma 3.1 and the same logic as used in the proof of Lemma 2.1,
it can be shown that ¢,(x) — ¢(x)(K~). Hence, since P([k(x) > 0]) =1,
¢, — ¢(P). By the bounded convergence theorem, P((¢, — ¢)’) — 0 and the
proof is complete.

ReMARK. Note that (A) (G(6*) < oo), which implies that R < oo, is not made
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in this section. For this family, R < 1 for any prior G. However, ¢ can have
an infinite second moment as is the case when G is discrete and attaches mass
Cj-%at j, where j = 1,2, ... and C is a normalizing constant.

REMARK. Let GA,,, based on (x,, x,, - - -, x,), be a sequence of distribution
functions converging weakly to G a.s. K~ (see Robbins (1964) and Fox (1970)).
Redefine ¢,(x) to be the Bayes estimator versus G, with 9 defined to be x so

that x — 1 < ¢,(x) < x. Itis easily established via the bounded convergence
theorem that this ¢, is also a.o.

4. A location parameter family of gamma distributions. For ¢ Q =
(—o0, +00), let fy(x) = (I'(a))"Y(x — §)*'e~*~P[x = 6] where a =1 and T
represents the gamma function. For this family,

(4.1) k(x) = (T(a)) (2o (x — 0)*te===2 dG(6) .

By (1.2) and the definition of f,(x) for this family,

(% O(x — 0)*le= == dG(0) .
T'(a)k(x)

Lemma 4.1, If k(x) > O, then ¢(x) = x — ag(x), where

ot = Lo ).

Proor. Note that a {2, e~ dK(f) = a {=_ e~"~"k(f) dt. Replacing k by
the expression of (4.1), inverting the order of integration in the resulting ex-
pression and performing the inner integration yields k(x)(x — ¢(x)) and by the
definition of ¢(x) the proof is complete.

Estimate ¢(x) by

, ? . e” " dK (1)
4.2 ,.x=mn<a,. L : )
(4.2) 4ax) = min (.00, =00
where K, is defined by (1.1), k, is defined by (3.3) and a, is a bounded non-

negative function of x for each n. Besides being convenient, the use of (3.3)
also enables certain crucial bounds, e.g. (4.5), to be obtained. Define

" . Sim e—(x—t) dK(t)
Y0 = K B — K@)

P(x) =

This function, ¢, is a tool for establishing the convergence in quadratic mean
of ¢, to ¢. Note that (4.1) and the fact that « > 1 imply that for any x and
a>0,

(4.3) k(x + a) = e~%(x) .
Further, it follows from (4.3) that
(4.4) h~Y(K(x + k) — K(x)) = b7 (2*h k(y) dy = e "k(x) .

LEMMA 4.2, Under (A) (G(6?) < o), if h — 0, then P((¢ — ¢)*) — 0.
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ProoF. If x is such that k(x) is positive and if # — 0, then J(x) — ¢(x). Re-
call that (A) implies P(¢*) < oo and since § x*dP = a(a + 1) 4 2aG() + G(6%),
(A) also implies P(x*) < oo. Since for k(x) > 0, a¢(x) = x — ¢(x), it follows
that P(¢*) < oo. If k(x) > 0, by (4.4), |§(x) — ¢(x)| < (e* + 1)¢(x). Hence,
by the dominated convergence theorem, P((¢ — ¢)*) — 0.

LEMMA fl.3. Under (A), if h— 0, nh* - co and a,(x) — oo for all x, then
P{(¥. — ¥)}) - 0.

Proor. Fix x such that k(x) > 0. By the strong low of large numbers,
(2 e dK,(t) = (", e~“"" dK(t) a.s. K*. Continuing as in the proof of
Lemma 2.1, we see that ¢,(x) — ¢(x)(P). Further, since ¢(x)— ¢(x),
¢u(x) — § — O0(P). By (4.4), {¢,(x) — H(x)}~ < e*¢(x) and the result follows
by applying the dominated convergence theorem as in.the proof of Lemma 4.2.

LemMa 4.4. P({(¢, — )*P) < 2etn~i(c + 1)u(a, + h~'a,’), where c is the
Berry—Esseen constant.

Proor. Fix x such that k(x) > 0. Analogous to the proof of Lemma
2.2, we deal with §{{K=([¢, — § > v]) dv* = {{ K=([% > 0]) dv* where b =
(a,(x) — $(x))* and w, =[x, < x]e=*~% — (§ 4+ V)h~[x < x, < x + h] for
0O<v<bandi=1,2,...,n Analogousto(2.7)and (2.8), weobtain from (4.4)
(4.5) K(w)) = —vh~Y(K(x 4+ k) — K(x)) < —ve~"k(x)
and consequently
(4.6) K=([w > 0]) < ®(z) + cn~to~*(1 + h~'a,)
where ¢ is the standard deviation of w,, 1 + %~!a, is a bound on the range of
w,and oz = —ntve~*k(x). Note thatve *k(x) < ¢ < 1 + h~'a, (the lower bound
being obtained via (4.4)). Using these bounds for ¢ and continuing from (4.6)
as in the proof of Lemma 2.2, leads to

2 2a,e" n h!
K9, — dy) < 2l AN+ 00T
ntk(x)
The proof is completed by continuing as in the proof of Lemma 2.3.
Using Lemma 4.1, with ¢, defined by (4.2), estimate ¢(x), for all x, by

4.7 Pu(X) = x — ad,(x) .

THEOREM 4.1. Under (A), if ||, = o(n?), |a,/,} = o(nth), h— 0 and if
a,(x) — oo for each x, then ¢,, defined by (4.7), is a.o.

Proor. Under (A), R < oo and P(x*) < oo as seen in the proof of Lemma
4.2. Therefore, by (A) and the fact that a, is bounded for each n, the conditions
implying (1.3) hold and thus it suffices to show that P((¢, — ¢)’) — 0. Since
a,(x) — oo for each x, p(a,?) = o((nkh*)) implies that nh* — co. Hence, by Lemmas
4.3 and 4.4, P((¢, — ¢)*) — 0. By Lemma 4.2 and the triangle inequality for
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L,-norm, P((¢, — ¢)*) — 0 or equivalently P((¢, — #)’) — 0 and the proof is
complete.

ReEMARK. The above development could easily be applied to the more general
case of a two-parameter gamma distribution, i.e.,

fox) = ([(@)72%(x — 9)*le~1=0[x = 0]

where a = 1 and 2 > 0. Of course, the expressions would have to be modified
slightly to reflect the additional parameter.

REMARK. The conditions on # and a,(x) of the above theorem are a subset
of those of Theorem 2.1. Hence, the sequences of values of # and functions
a,(x) (with the domain of f extended to the entire real line) constructed in the
remark following Theorem 2.1 satisfy the conditions of Theorem 4.1.
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