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ONE-SAMPLE RANK TESTS UNDER AUTOREGRESSIVE
DEPENDENCE!

By W. ALBERS

Technological University Twente, Enschede

One-sample linear rank tests are considered for the case where the ob-
servations are not independent but come from an autoregressive process.
It is proposed to apply the tests under these circumstances to certain trans-
formations of the observations, rather than to the observations themselves.
Then the tests have asymptotically the same properties as under independ-
ence, both under the hypothesis and under contiguous location alterna-
tives. In particular, they are asymptotically distribution-free.

1. Introduction. In the standard formulation of the one-sample problem an
independent sample from a common distribution is given, on the basis of which
the hypothesis has to be tested that this distribution is symmetric about zero.
Widely used tests for this problem are one-sample linear rank tests. These tests
have the desirable property that under the hypothesis the distribution of their
test statistic does not depend on the generally unknown underlying distribution.

Unfortunately, this nice property does not continue to hold if we drop the
assumption that the observations are independent. This sensitivity of nonpara-
metric tests to dependence has been noted by several authors. Gastwirth, Rubin,
and Wolff (1967) showed that the sign test is no longer distribution-free even
when the observations are from two stationary processes with the same spectrum.
Gastwirth and Rubin (1971) studied the effect of serial correlation of the ob-
servations on the level of the one-sample t-test, sign test, and Wilcoxon test.
Serfling (1968) considered the two-sample Wilcoxon test under strongly mixing
processes. The problem has also received attention in the engineering literature,
see, e.g., Modestino (1969). Finally, the effect of dependence on robust esti-
mators has been studied by Gastwirth and Rubin (1975).

For dependent observations in general, it is not clear how distribution-free
tests can be obtained (cf. the remarks in Section 4 of Gastwirth and Rubin
(1971)). For special types of dependence, however, it may be possible to find
such tests. In this paper we shall consider the case where the observations come
from an autoregressive process with independent symmetric errors.

Then we have the following situation: let m be a fixed nonnegative integer.
For N=1,2, ..., consider (m 4+ N) identically distributed random variables
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(rv’s) X_pyys -5 X_py Xy X3, -+, Xy, Suppose that the X, form a stationary
solution of the following autoregressive equation:

(1.1) Zi= Yo Xy i=1,-.-,N.

Here the Z, are independent identically distributed (i.i.d) rv’s, @, =1 and
a,, ---,a, are constants such that all roots of Y7 a,w™* = 0 lie inside the
unit disk. This latter condition ensures the existence of a stationary solution of
(1.1) (see, e.g., Anderson (1971), Theorem 5.2.1, page 170). Note that it in
particular implies that Y7 a, > 0. Let us also assume that the Z; are sym-
metrically distributed if the X, are symmetrically distributed.

In Section 2 we first consider the case where a,, -- -, a,, are known. Then it
is easy to obtain a distribution-free test, as the Z, can be found from the X;
through (1.1). As EZ, = EX(Xr,a,), with 7 a, > 0, we can test the hy-
pothesis that the distribution of the X; is symmetric about zero on the basis of
(Z,, ---, Z,). But since the Z, are i.i.d., this is just the standard one-sample
problem and any linear rank test will do.

Unfortunately, the solution above is not only simple, but also unrealistic, as

a,, ---, a, are genenerally unknown. In the general case we proceed as follows:
first we note that consistent estimators 4, for a,, k =1, ..., m, based on
X_pi1> - v+, Xy, are given by Anderson (1971). Then we introduce

(1.2) Z, = Nr,d X, i=1,---, N

and propose to use linear rank tests based on (Z,, ---, Z,). In Section 3 we
show that such tests have the same asymptotic behavior as those based on
(Z,, ---, Zy), both under the hypothesis and under contiguous location alterna-
tives. Hence, in particular, such tests are asymptotically distribution-free.

In the above we have considered one-sample rank tests for the hypothesis of
symmetry about a specific value. Such tests can also be used for the hypothesis
of symmetry in general, by applying them to X, — 2 rather than to X;, where
£ is some estimator of the center of symmetry. However, it should be noted
that the result above does not extend without additional conditions to the latter
case. In fact, Gastwirth (1971) has shown that the sign test based on X, — X,
where X is the sample mean, is not even asymptotically distribution-free for
independent X;.

2. Rank tests for autoregressive processes. We shall consider the hypothesis
of symmetry and contiguous location alternatives. More precisely, let (= 0,)
be such that, for some positive constant C,

(2.1) 0<6<CNE.

Assume that the joint distribution of (m + 1) consecutive (X; — 6) has a density
fms1 such that, for all (x;, - - -, X,44),

(2'2) fm+1('“x1’ Tt _xm+1) = fm+1(x1’ Tt xm+1) .

This implies that the distribution function (df) F of (X; — 6) has a density f
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that is symmetric about zero. Moreover, suppose that 0 < ¢%(X;) = ¢* < co.
Then it follows from (1.1) and (2.2) that the df G of (Z, — 6 37 ,a,) has a
density g that is also symmetric about zero. Assume that ¢%(Z;) = ¢* > 0. Let
o, be the correlation coefficient of X; and X,,,. Since the X, form a stationary
solution of (1.1), we have that X, is independent of Z,,, Z, ,, - - - (see Anderson
(1971), Corollary 5.2.1, page 170). Hence

(2.3) = E{(Z; — 0 T a)(X; — 0)) = ¢’ X, a,p0, -
Let J be a square-integrable function on (0, 1)and let R, - - -, R,, be the ranks
of |Z|, -+, |Zy|. We define the linear rank statistic

(2.4) S=yr, J<NR1 1>sign z,,

where sign x = 1 for x > 0, sign x = 0 for x = 0 and’sign x = — 1 for x < 0.

The properties of the level a test ng which rejects H,: & = 0 for large values of S
are well known. From Hajek and Sidak (1967) (see Theorem V.1.7, page 166)
it follows that its critical value &, satisfies

(2.5) £, = Niu {§1J%(t) di}t + o(N?),
where u, is given by @ = 1 — ®(u,), in which @ is the standard normal df.
Furthermore, let 74(#) be the power of ¢ and let Wy(r) = —g§"(G-Y([1 +

11/2))/6(GX([1 + 1]/2)), where §(x) = g(x/c) is the standard density of Jtype
g. If §§WX(r)dt < oo, then Theorem VI.2.5 on page 220 of Hajek and Sidak
implies that
26) o) =1-fu, - NG Ziea . IO dr
o (Ziweapt  (§:7%) dr)t
where we have used (2.3) and the fact that EZ, = 0 3, a,.
Next we shall introduce consistent estimators 4, for a,. First we define the

so-called serial correlation coefficients

(2.7) p‘k — ’L——m+1 X, X1;+k — (m —+ ]V_)Yz
ZZ:—m+1 Xl — (m —+ ]\").X2

where X = (m + N)' 21X ... X;. AsO < ¢* < oo, it follows that g, is consistent
for p,, k =1, ..., m. From these g,, Anderson (1971) (see Section 5.4) derives
the d, as follows: in view of (1.1) we have that R™a = —r™, where a? =
(a, -+, a,), R™ is the covariance matrix of n consecutive X, and (r'™)? =
(01> -+ > pu)s m =1, ---, m. Let R™ and (#™)7 be obtained from R™ and (r'»)"
through replacing p, by g, everywhere, for k = 1, ..., n. Since R™ is positive
definite (see Anderson (1971), page 187), the obvious choice for 4" = (4, - - -, d,,)
then is d = —(R™)~%#™. From this result d, can be calculated recursively:
let a” = (a,, - - -, @,_,) be defined by a = —(R‘"‘—“)"lf‘"‘—l’, then

}+o(1),

) k=1""’m9

(2.8) Gy = "Ont LR Pkl 4, = a, + a, 4, ,

+
M
Ti
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k=1,...,m— 1. Finally, Anderson also shows that the estimators 4, thus
obtained are consistent under the present conditions.

As a first application we note that (2.7) and (2.8) immediately yield a con-
sistent estimator 74(6) of 74(f) in (2.6). More important, however, is the fact
that (2.8) enables us to evaluate the Z; defined in (1.2). Let R,, - -, R, be the
ranks of |Z,|, ---,|Z,|. Then we introduce the level a test ¢3 which rejects
H,: ¢ = 0 for large values of

A

ZQ;IJ(NI_? 1) sign Z, .

(2.9) S

In the next section we shall show that ¢ is asymptotically equivalent to ¢.

3. Asymptotic equivalence of ¢, and ¢;. Let E, and P, denote expectation
and probability under F(x — #) for # = 0. Then our main result is

THEOREM 3.1. Suppose that 6 satisfies (2.1) and that the X, are such that (1.1)
and (2.2) hold. Assume that E|X,|" < oo for some r > 20 and that the density g of
Z, is bounded. Finally, suppose that J is differentiable on (0, 1) and that its deriva-
tive J' is bounded. Then

(3.1) sup, |P,(N~1§ < x) — P(N-1S < x)| = o(1),

for 8 = 0. If moreover g is such that {§ W;*(t)dt < co, then (3.1) also holds for
6 > 0.

Remarks. (1) Let &, and 73(d) be the critical value and the power of ¢,
respectively. Then (3.1) obviously implies that (2.5) and (2.6) remain valid if
we replace &, by &, and 74() by m3(6).

(2) Asan example in which the conditions of the theorem are clearly satisfied,
we mention the case where the X, (and hence the Z,) are normally distributed
and J(t) = ¢ or J(t) = 1, corresponding to Wilcoxon’s signed rank test and the
sign test, respectively.

To prove Theorem 3.1, we shall use Lemmas 3.1-3.5 below.

LeEMMA 3.1. Suppose that § satisfies (2.1) and that the X, are such that (1.1) and
(2.2) hold. Let J be square-integrable and assume that

(3.2) E(S — S)* = o(N).
Then the conclusions of Theorem 3.1 hold.

Proor. From Chebyshev’s inequality and (3.2) it follows that N~#($ —
S) —»POO. Hence by Slutsky’s theorem (see, e.g., Cramér (1946), page 254),
N-i$ and N-tShave the same limit distribution under the hypothesis, i.e., (3.1)
holds for ¢ = 0. If (}Wr)dt < oo, we have contiguity and therefore
NS — S) —p, 0 implies NS — 8) —p,0. Hence, by the same argument,
(3.1). holds for 6 > 0. ]

In view of Lemma 3.1 it suffices to show that (3.2) holds under the conditions
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of Theorem 3.1. In doing so, we are concerned with the hypothesis only and
therefore we shall in the sequel simply use E and P instead of E, and P,.
We introduce the follwoing notation: let § — § = 323_, T,, where

T, = fv=1{.1< R )—J( R, >}signZi,
N+ 1 N+ 1

3 = mn () s s 7,

TS:Z{"=1{J< R, >_.1< R, >}{signz”i_signzi}.

N+ 1 N+ 1
Furthermore, for s = 0,1, --., N, let Z® = (Z,*, ..., Z,®), where
(3.4) Zw=—-Z, i<s,
=Z,, i>s, i=1,...,N.
In particular, Z® = Z and Z'> = —Z. Under (1.1) and (2.2) the Z; are i.i.d.

and symmetrically distributed about zero and therefore the distribution of Z
does not depend on 5. In particular, if Ei(Z) exists for some function #, then

(3.5) EW(Z®) = EK(Z),

for s =0,...,N. Let X® = (X® .., .-, X,®) be the stationary solution of
Z® = 3r,a, X, Again, X = X and X2 = —X. Furthermore, replace
X by X in (2.7) and call the result ), k = 1, - .., m. Likewise, replace the
p. by p,* in (2.8) and let4,”, k = 1, - .., m, be the result. Now p,¥ = p,V’ =
fr» 4,0 =4, =d,, k =1, ...,m. Define Z® = (2, .-, Z,) by Zw =
e d X, i=1,..., N, then 2 = Zand 2 = —2. Finally, let R" =
(R®, -+, Ry®) be the vector of ranks for |2¢| = (|Z,*], .-, |Z,")|, then
R® = R™ = R. In passing we note that these facts, together with (3.5), im-
mediately yield

A
)
R;

(3.6) ES =3}y, E{J( R
B N+ 1

. nZ"i(m J<__
>Slg AN

) sign ZAi‘N’} =0.

To investigate the relation between X, and X', we use the fact that (1.1)
implies (see Anderson (1971), page 167)

(3.7) X, = Yittb,Z, , + Nitm bk X, ., i=-—m+1,...,N,
where the b, are given by }17_ b, 2* = (3, a,z*)"" and the b}, by Y itm-1b% 2% =
e bzt Yra,zk. Letw, --.,w, be the roots of 3.  a,w™* = 0; then it

follows that b, can be written as b, = 37, c;w;**! for certain constantsc,. By
assumption all w; lie inside the unit disk and hence, uniformly in k,

(3-8) |be] = O(e™*7),

where ¢ = —log {max ;. |w;]} > 0. To deal with the b}, we note that |b};| =
O([b4))-
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From (3.4), (3.7), and (3.8) it follows that, for all ¢ > 0,
(3.9) |X;® — X;sign (i — s5)] = O(N~* max,g,y |Z}])
for Aarbitrarily large and uniformly in i and s such thati > N’ and |i — 5| = N°.
Now we have the following set of preliminary results.

LemMA 3.2. Suppose that the X, satisfy (1.1) and (2.2). Let E|X,|" < oo for
some r > 4. Then for e > 2/r

(3.10) P(max,_;_y |Z,| = N*) = o(N7Y),
(3'11) P(max—m+1§i§1v' IXil = Ne) = O(N_l) ’
(3.12) P(MaX,zyep |4, — @ = N+ = o(NY),
(3.13) P(max,c<, |4, — 4] = N7'%) = o(N7Y).

ProoF. As Z, = i a, X, ,, the fact that E|X,|” < co implies that E|Z,|" <
co. Hence by Chebyshev’s inequality, the df G of Z;satisfies1 — G(x) < C,x~"
for x > 0 and some positive constant C,. As the Z; are independent,
P(max, ., v |Z| =2 x)=1—-{2G(x) — 1} =1 —{1 =21 —=Gx)}" <1 —{1 —
2Cx P <1 — {1 — 2NC,x™"} = O(Nx~") for x > (2C,)¥. If we choose x = N*
with ¢ > 2/r, then O(Nx™") = o(N~') and hence (3.10) follows. In view of
(1.1), (3.7), and (3.8), max_,,,<;<y |X;| and max,.,., | Z;| are of the same order
and therefore (3.11) also holds.

Using Chebyshev’s inequality, (3.7) and (3.8), we obtain that P(|X| > N~#*) =
O(N~") and thus
(3.14) P(X* > N-'*¢) = O(N~"/*) = o(N7Y),
for e > 2/r. In the same way, we find that, fore > 2/r, P(|(m+N)* 12 _,. .. X;*—
o > N74#9) = O(N™"/*) = o(N7'). As ¢® > 0, these results and a similar one
for (m + N)™* 3} )% . X, X,,, imply in view of (2.7) that P(|g, — p,| > N~t*) =
o(N7") for ¢ > 2/r. Together with (2.8), this proves (3.12).

Finally, because of (3.9), we have that (m + N)=* 3 X__ . (X;*)! — (m +
N)' 2N X = O({N* + N-*} max,.,., Z7) for all § > 0 and 2 arbitra-
rily large. A similar result holds for (m + N)=' 7% ., X,®X),. Combining
these facts with (3.10), (3.14), and (2.7), we obtain that P(|g, — p,| > N71+*) =
o(N~") for ¢ > 2/r. This implies (3.13). []

Next we use the results of this lemma to obtain bounds for |R, — R;| and
R, — R,]. Letu(x) =1 for x = 0 and u(x) = 0 for x < 0. Then
(3.15) Ri— R, = T (w2 — 12,)) — w(1Z:| — |Z;])} -

LemMA 3.3. Suppose that the X, satisfy (1.1) and (2.2). Let E|X,|" < oo for

some r > 20 and assume that g is bounded. Then, for every § > 0, there exists
e < 1/10 such that

(3.16) P(max,,.y |R; — R > N¥*) = o(N7Y),
(3.17) E|R® — R| = O(N¥),
uniformly in all i and s such that i = N’ and |i — s| = N°.
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PROOF. As |u(x + a) — u(x)| < u(|a| — |x|), we have in view of (3.14) that
IR, — R| < D ul|Z, — Z| + |2, — Z,| — ||1Z] — |Z,|l}). From (Z,— Z) =
e, (4, — a)X,_,, together with (3.11) and (3.12), it then follows that there
exists ¢, < 1/10 such that

(3.18) R — R| < DL, u2mN-+ — ||Z] — |Z,]),
except on a set of probability o(N~?), uniformly in i. As g is bounded, P(||Z;| —
|x|| < 2mN~-#**1) = O(N~#+*1), uniformly in x. Using a well-known bound for
binomial probabilities (see, e.g., Okamoto (1958)), it follows that for ¢; < ¢ <
1/10, given |Z;| = |z,|,
(3.19) P({# indices j for which ||Z,| — |z|| < 2mN-#*%*1} > Nit¥)

< exp{—2N[N-H* — O(N-+*9)) = o(N-Y),
uniformly in |z,|. Together, (3.18) and (3.19) imply (3.16).

To prove (3.17), we first note that

(3.20)  EIRY — R| < E T3, |u(| 2| — |2,)) — w(|Z| — |Z,))]

< DL PUIZI = 12500 S 1120] = 1201+ 112,91 = 1251) -
Now [|Z.9] — |Z| = [| D 4 X2l — | Do G Xomil| S | X (49 — 4)X12] +
min {| X7, d (X2, — X, )|, | 2, du(X$2, + X,;_,)|}. Using (3.13), (3.11), (3.9),
and (3.10), respectively, we arrive at
(3.21) P(2:] — |Z]| Z mN-+% 4 mN=4+) = o(N-Y),
fori = N’ and |i — s| = N°. In view of (3.20) and (3.21) it remains to show
that 3300, P(|Z,] — |Z,]] < 2(m + 1)N***) = O(N*).

To this end, we introduce some notation. Let X, , = X, — b,_,Z, fori = p,
then X; , and Z, are independent. Replace X, in (2.7) by X, , for i = p and
denote the result by g, .. Let d, , be the corresponding estimators obtained
through (2.8). Then 4,, and Z, are independent and |4, , — 4, =
O(N7'|Z,| max,,_y |Z,]). Obviously this procedure can be repeated to obtain
d, , .» independent of Z, and Z,, and such that, uniformly in p and ¢,

(3.22) |4y .o — 4] = O(N'max,_;<y Z2) .

Furthermore, for every 6 > Oand alli = N?, let X, , = Noemp, Z, . Inview
of (3.7) we then have, uniformly in i

(3.23) | X, ; — X;| = O(N~*max,;y|Z;|) -

Using (3.11), (3.22), and (3.23), we obtain that for i, j > N’ the following holds:
”Zzl - le” = ||Zz + ka=1 (dk,i,j - ak)Xi—k,al - |Zj + Z?:l (dk,i,j - ak)Xj—k,5|| -
O(N~'*%*z 4 N-*+a), for some ¢, such that 2/r < ¢, < ¢, except on a set of pro-
bability o(N~!). Hence it now remains to show that

i P(1Z; + X Grs; — a)Xisis| — 1Z; + Zii (dre; — a)X; |
< 2(m + 2)N-1¥) = O(N¥*).
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But that is easy: for i,j = N°, |i — j| = N°, both }\», (d4,,, — a,)X,_,, and
21 (dy,;,; — a)X;_,, , are independent of Z; and Z; and therefore the condi-
tional probability

P(|Z; + 2, (Gr,1,5 — ) Xizk,s| — |Zj + 2 (dk,i,j - ak)Xj—k,.s”

= 2(m + )N e, (Griy; — ) Xizps = % 20y (Grys; — @) Xips = )
equals P(||Z; + x| — |Z; + y|| < 2(m + 2)N~'**). Since Z, and Z; are indepen-
dent and their density g is bounded, this latter probability is O(N-1**), uni-
formly in x and y and the desired result follows. []

We shall also use the results of Lemma 3.2 to obtain bounds for [sign Z, —
sign Z;| and [sign Z,* — sign {(i — 5)Z}}].

LeMMA 3.4. Under the conditions of Lemma 3.3 we hdve that for every 6 > 0
there exists ¢ < 1/10 such that

(3.24) E|sign Z;, — sign Z,| = O(N-¥**),  uniformly in i,

(3.25)  E[sign Z, — sign Z,||sign Z, — sign {(j — 5)Z;}| = O(N-1+%)
uniformly in i, j, and s such that i,j = N° and i <s — N° < j — 2N° or i > s +
N° >+ 2N°.

Proor. In view of (3.11), (3.12) and the boundedness of g, we have that
Elsign 2, — sign Z| < 2P(Z, — Z| = |Z]) < 2P(Z]| = mN-+%) 4 o(N-)) =
O(N-#*%), for some ¢ < 1/10. Hence (3.24) follows.

To prove (3.25), we note in the first place that its left-hand side is at most
AP(12, — Z| = |Z| N2, — Z;sign (j — s)| = |Z;]). As |2, — 2, sign (j —
9 = S (4 — a)X P, + | D dy(X 2, — X, sign (j — 5))], application of
(3.11), (3.12), (3.13), (3.9), and (3.10), respectively, shows that there exists ¢ <
1/10 such that the expectation in (3.25) is less than or equal to
(3.26)  4P(Z] < mN-1¥ A |Z,] < (m 4 DN%) 4 o(N)

uniformly in the values of i, j, and s indicated above.

Next we use an argument similar to the one used at the end of the previous
lemma. From (3.22) and (3.23) it follows that |Z;| > |Z; + Yp, (d,.,; —
a,)X;_p,s| — O(N7**¥1 4 N-**e), except on a set of probability o(N-?), for some
2/r < & < e. Moreover Z,, Z; and Y, (4, ,; — a,)X,_, , are mutually inde-
pendent for i, j > N°, |i — jl = N°. Hence the expression in (3.26) is at most

AV(|Z,| = mN=2) X P(Z; 4 Do (des,; — ) Xjopl S (m+ 2N + o(N7Y)
< ON-+*)sup, (P(Z; + x| = (m + N-4%)) + o(N) = O(N-+%) . []
Using Lemmas 3.3 and 3.4 we can now finally show:

LemMAa 3.5. Suppose that the conditions of Theorem 3.1 are satisfied. Then
(3.2) holds.

Proor. In view of (3.3) it suffices to show that ET,* = o(N), p =1, 2, 3.
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First we consider ET\* = E 3}, 3% | A,., where

i3

A = {J<N1-?|j 1> - J(Nii 1>} {J<7\£j_1> _J<N1jf 1>}Sign “ts

Let 6 > 0 be arbitrarily small and let X’ denote summation over the indices i
and j such that i, j > N’, |i — j| = 2N°. Let X" denote summation over the
remaining indices, i.e., T’ = (£’ 4 Z")A4,;. For the terms in X" we simply use
the boundedness of J' together with (3.16): |EA4,,| = O(N-*E|R, — R,||R, —
R;|) = O(N7'**) + o(N~") = O(N-'**), for some ¢ < 1/10. As there are only
O(N**?%) terms in X*/,
(3.27) 2VEA;; = O(N*+?) = o(N).

For the terms in X', we use (3.4), (3.5) and the fact that |Z,*|, .. ., |Z,| have
the same ranks R,, - . ., R, for all s:

EAijzéE{[{J<NIj_i 1) —J<N1:_" 1)}{J<Ni’: 1) _J<N1:f 1>}
_{J<NRiS)1>_J<NI-? )}

x {J<Nﬁf1> N J<Nlj: 1>H sign {Z"Z"}}’

where s is chosen between i and j such that min (|i — s|,|j — s|) = N°. Using
the relation |(c, — d;)(¢; — d;) — (b, — d;)(b; — d,)| < |(¢; — b)(¢; — d;) + (b, —
d)(c; — b)) and the boundednes of J’, we arrive at
(3.28)  |EA;,| = O(NZE{|R,” — R||R, — R,| + |R, — R||R;” — R,]}).
From (3.4) and (3.5) it also follows that E|R — R||R,” — R,| = E|R, —
R;¥||R; — R;|. Hence we can apply (3.16) and (3.17) to both terms in (3.28),
thus obtaining that |[E4,;| = O(N-#*)+0(N-!) = o(N~'), uniformly for all terms
in 2'. Hence X'EA;; = o(N). Together with (3.27) this gives that ET,* = o(N).
By using Lemma 3.4 instead of Lemma 3.3, it can be similarly proved that
ET; = o(N). As concerns T;, from (3.16) it follows that there exists ¢, < 1/10
such that
(3.29) ET? = O(N-"E(3 N, |sign Z; — sign Z,|)*) + o(N).
Performing similar steps as in (3.18) and (3.19), we find that there exist ¢, < ¢, <
1/10 such that 33X, |sign Z, — sign Z,| < 230, u(mN-#+22 — | Z,|) < 2N#+3s,
except on a set of probability o(N~'). Combining this with (3.29) we arrive at
ET? = O(N*1*%9)) + o(N) = o(N). [J

The proof of Theorem 3.1 now follows from Lemmas 3.1 and. 3.5.
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