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ON WEAK ADMISSIBILITY OF TESTS

By BENNETT EISENBERG AND GORDON SIMONS!
Lehigh University and University of North Carolina

This paper lays the foundation for a general theory of weakly admissible
tests, where a test consists of both an experiment (a s-field of information)
and a decision function based on the experiment. A test is weakly admissi-
ble unless there is another test with as good a decision function, which
uses no more information, and is strictly better in one of these respects.
Weakly admissible tests are completely characterized. In the case where
the experiment consists of a sequential sampling procedure, a method for
constructing such tests is given. ‘

.

1. Introduction. A sequential test is weakly admissible unless there is another
test which has no greater error probabilities, never requires more observations
and is strictly better in one of these respects. Clearly, weak admissibility is the
minimal requirement for a good test. Eisenberg, Ghosh and Simons (1976)
show, for arbitrary underlying distributions on the data, that a sequential prob-
ability ratio test is always weakly admissible. This follows, of course, from the
Wald-Wolfowitz optimality theorem when it is applicable. On the other hand,
Neyman-Pearson tests are not always weakly admissible. This paper character-
izes weak admissibility. Roughly speaking, a test is weakly admissible if it is a
sensible likelihood ratio test which takes no unnecessary observations.

The theory of weakly admissible tests can be developed at a useful level of
abstraction that is somewhat removed from the trappings of sequential analysis.
Rather than discussing tests (N, D) where N is a stopping time and D is a termi-
nal decision (measurable over the g-field &, of “events up to time N”), we shall
discuss tests (£, D) where & is an “experiment” (a o-field which represents the
information available to a decision maker) and D is a “decision based on the
experiment” (an -measurable mapping from the basic space Q into the action
space).” The decision maker must choose an experiment within a class E of
permissible experiments and then choose an appropriate decision for the experi-
ment chosen. In the case of general sequential tests, E would be the class of
o-fields <, where N is a stopping time.

Properties of decisions are discussed in Section 2. The notion of level k
equivalence of decisions is introduced here. This concept plays an important
role in the general theory of hypothesis testing. In particular, it appears in a
general version of the Neyman-Pearson lemma, appearing in the section. Many
results concerned with the concept are proved throughout the paper.
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A formal definition of weakly admissible tests is given in Section 3. Theorem
6 says that, under general conditions, such tests may be characterized as *‘cur-
tailed,” “proper” likelihood ratio tests. Theorems 7, 8 and 9 (appearing in
Section 4) show, under mild assumptions, that a proper likelihood ratio test
can always “be curtailed,” and the resulting “curtailed version” is a proper
likelihood ratio test as well.

Section 5 applies our general theory to several contexts arising in the area
of sequential analysis with the bulk of the attention given to tests which permit
general (unrestricted) sequential sampling. A method for constructing and
identifying the curtailed version of a likelihood ratio test is described.

Generalizations of our theory beyond the context of two competing simple
hypotheses could be considered but are not in this paper.

2. On making a good decision for a given experiment. Probability measures
P and Q defined on a measurable space (Q, .~ ) represent two states of nature.
The problem is to decide whether the “null state” P or the “alternative state”
Q is the true state of nature. The decision maker must choose an experiment
# from a family E of possible experiments, and on the basis of the information
obtained from this experiment, he must make a decision D in favor of P or Q.
Formally, an experiment is a sub-g-field of .~ and a decision, for a given experi-
ment &, is an & -measurable mapping from the basic space Q into the set {P, O}.
In accordance with conventional terminology, a = P(D = Q) denotes the size
of D and 1 — B, where 3 = Q(D = P), denotes the power of D. Also, « and §
are called error probabilities. Occasionally, they will be written as a vector
(a, B). Each pair (£, D), £ €E, is called a test. Throughout the paper, R
denotes the probability measure (P + Q), which clearly dominates both P and
Q. The use of R not only makes many statements more concise but simplifies
arguments as well. )

Associated with each experiment 4, there is an extended nonnegative random
variable 2, determined up to an R equivalence, which is #-measurable and
satisfies the equations

(1) Q(E, 2 # c0) = §, AdP, Ecé .
A is called the likelihood ratio for #.® It always exists and satisfies the reverse
relationships

P(E 1+ 0) = {47 dQ, Eer,
where 27! = 0 when 1 = .

For the remainder of this section, & will be a fixed experiment, 12 will be its
likelihood ratio and all decisions will be decisions for ~#.

% The reader is referred to Eisenberg, Ghosh and Simons (1976) for details about this notion
beyond those described in the present paper. Essentially, i is the Radon-Nikodym derivative
dQ/dP relative to #.
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Two decisions, D and D’, will be called equivalent if

(2) : RD=D)=1,
and will be called level k equivalent ( for &), k € [0, o], if
3) RD#D,A+k =0

and

(4) (a, B) = («', ),

where these vectors represent the error probabilities of Dand D’ respectively.*
We will denote level k equivalence by D =, D’ when the experiment ~ is un-
derstood 'from the context. When there is a possibility of confusion, we will
write D =, D’ for &. It is easily checked that equivalent and level k equivalent
decisions possess the reflexive, symmetrlc and transitive ‘properties expected of
an equivalence.

A decision will be called a (level k) likelihood ratio decision (for &) if it is
equivalent to a decision which equals P when 2 < k and equals Q when 2 > k.
(Its value when 2 = k is unspecified in the definition.) If D =, D’ and D is a
level k likelihood ratio decision, then so is D’.

We are now in a position to state a quite geﬁeral version of the:

NEYMAN-PEARSON LEMMA. If there is a level k likelihood ratio decision D which
is @ most powerful decision of size a, then every other most powerful decision of size
a is level k equivalent to D. In order that there exist such a decision D for some
k € [0, oo], it is sufficient that P has no atoms in £

An assumption that P has no atoms in & is quite mild and is more convenient
in the present context than the usual (and equally mild) assumption that ran-
domized decisions are permissible. In point of fact, both assumptions nearly
amount to the same thing. Two observations should clarify the situation: (i)
Suppose that U is a random variable which, under P and Q, is uniformly dis-
tributed on [0, 1] and is independent of &. Then the information represented
by the o-field o(U) can be used, together with the information in &, to make
“randomized decisions” relative to . But the likelihood ratio A’ for the experi-
ment &’ = & Vv ¢(U) (the smallest o-field containing & and ¢(U)) will be identi-
cal to 2. It follows that a likelihood ratio decision with randomization would
just be a likelihood ratio decision relative to #”’. Hence, there is little reason
not to replace & by &” in the first place; the class of possible decisions is
increased, but no unfair statistical advantage is conferred. (ii) If the o-field &
is large enough to support a uniformly distributed random variable under P,
then P is nonatomic on & (and conversely).

¢ The level of a decision should not be confused with the significance level of a test. The latter
terminology will not be used.

5 It is possible to develop the results of this paper using critical functions instead of decisions.
For a given experiment &, a critical function would be an &-measurable function taking values
in [0, 1] and representing the probability of deciding @. Two critical functions ¢ and ¢/ are
called level k equivalent if R(¢ # ¢/, A + k) =0 and { 9dR = { ¢/ dR.
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It cannot be inferred from the Neyman-Pearson lemma that every likelihood
ratio decision is a most powerful decision of its size. This is not quite true.
Neither would it be correct to conclude that every likelihood ratio decision is
a least size decision for its power. The problem is that a level infinity likeli-
hood ratio decision can foolishly choose P when 2 = <o, and a level zero likeli-
hood ratio decision can foolishly choose Q when 2 = 0. A decision D will be
called proper ( for &) if

RD=0,2=0)=RD =P, 1=0c0)=0.

Since P(2 = oo0) = Q(2 = 0) = 0, it is easy to show that a given error probability
of a proper likelihood ratio decision can be improved upon (reduced) by another
decision_only at the expense of the other error probability. In particular, every
proper likelihood ratio decision is a most powerful decision of its size. Con-
sequently, the Neyman-Pearson lemma yields the following theorem.

THEOREM 1. If D is a proper likelihood ratio decision of level k and D' is a
decision with no larger error probabilities, then D' =, D.

The proofs of the Neyman-Pearson lemma and Theorem 1, which rely on
equation (1), vary only slightly from standard arguments and, hence, will be
omitted.

Level k equivalence is implicit in standard treatments of hypothesis testing,
where a single experiment is being considered. There, it is a simple notion
needing little elaboration. In a sequential context, the notion is more com-
plicated.

It should be emphasized that the notions of “level k equivalence,” “likelihood
ratio decision” and “proper decision” are defined only within the context of a
specific experiment. For instance, ‘

D=,D" for &=D=,D" for &',
even if the decisions D and D’ are decisions for &” (i.e., are &”’-measurable).

ExaMPLE 1. Let X, and X, be independent Bernoulli variables under P and Q
with P(X;, = 1) = Q(X; = 1) = 4, and P(X, = 1) = Q(X, = 0) = 4. Further,
let D=Qiff X, =0and D' = Q iff X, = 1. Then D =, D’ for & = ¢(X,) but
D #,D for & = a(X,, X,). [

In contrast to this example, there are several results which can be very roughly
interpreted as saying that a notion holds with respect to &' if it holds with respect
to &, and &' Z &. The next three theorems give three examples where this
rough statement can be made precise. Their relevance will be apparent in the
next section, where we will be concerned with the possibility and the conse-
quences of replacing a given experiment (o-field) & by a smaller one.

THEOREM 2. Suppose D =, D' for & and &' < &. Then D =, D’ for &' pro-
viding only that D and D' are &"'-measurable (making them decisions for &"').
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THEOREM 3. Suppose D is a level k likelihood ratio decision for &. If D' is a
decision for &' = & and D' =, D for &, then D' is a level k likelihood ratio
decision for &’'.

THEOREM 4. Suppose D is a proper decision for & . If D' isa decision forZ' <
& and D' =, D for & and some k € [0, o], then D' is a proper decision for &".

The proofs of Theorems 2 and 3 depend on the following:

LEMMA. Let £ and &' be two experiments with likelihood ratios 2 and X', re-
spectively, and k € [0, co]. If &' = &, then R(E) = O for every Ec &' for which
ECAk<2NU[izk> 1]

REMARK. The statement of this lemma is made awkward by the fact that the
event E* = [A < k < X]U[42=k > 2] may not be in &’ and R(E*) > 0 is
possible. This is apparent from Example 1 if the roles of # and & are reversed.

Proor. Without loss of generality, it can be assumed that £ C [1 < k < 4]
orEC [A=k > 2]. (Ifitisnot, consider E, = E[X > k]and E, = E[X < k].)
We shall only consider the case £ C [1 < k < ] since the other case can be
handled similarly. If P(E) > 0, then k < oo and (using (1))

0< §z(¥ —k)ydP < (¥ — 2)dP = Q(E, X # ) — Q(E, 2 #+ o)
=0(E)-QE)=0,
a contradiction. Thus P(E) = 0. In turn, if R(E) > 0, then k < oo and (using

(1)
0< Q(E)=Q(E, 1< o) = {,2dP =0,

a contradiction. Thus R(E) = 0. []

As immediate consequences of the lemma, we have for any event A ¢ &
(i) R(A, 2 > k) =0=R(A, X > k) =0,(ii)R(4,A < k) = 0= R(A, X < k) =
0, and (iii) R(A4, 4+ k) = 0= R(A, ' # k) = 0. By setting A = [D # D’] in
(iii), one finds that condition (3) for & implies condition (3) for &, and Theo-
rem 2 follows. The proof of Theorem 3 requires the setting of 4 = [D’ = P]
in (i) and 4 = [D’ = Q] in (ii).

PROOF OF THEOREM 4. If k # oo, R(D' = P, = o0) < R(D' = P,A= o0) =
RD=P,2=00)=0. Ifk = oo, RD' = P, ¥ = c0) = R(D' = P) — R(D' =
P, ¥ <o)< RD =P)—RD' =P, 1< c0)=RD=P)—RD=P, 1<
)= R(D = P,A=00) =0. ThusR(D' = P, 2 = oo0) = 0. Similarly, R(D’' =
Q, 2 = 0) = 0, and hence, D’ is a proper decision for &”. ]

It is easily seen from Theorem 3 that (under the assumptions of the theorem)
(%) R(k is strictly between 2 and ) =0.

For the purposes of Section 5, we shall establish a slightly stronger result:

THEOREM 5. Assume D is a level k likelihood ratio decision for & and there exists



324 BENNETT EISENBERG AND GORDON SIMONS

a decision D' for &' C & with D' =, D for &. Then
RA<Zk<AH)=RA<kZX)=0.
In particular, 2 = k on the set [X = k] except on an R-null set.

ProoF. We shall only show that R(2 < k < ') = 0 since the proof that
R(7 < k < 2) = 0 is similar. By using (3) (since D’ =, D for &), our task can
be reduced to that of showing R(E, 2 < k) = 0, where E = [D'=P, X = k];
and by using (1), our task can be reduced further to that of showing P(E, 2 <
k) = 0. Since P(¥ = ) = 0, we may take k to be finite, in which case a
double application of (1) yields

kP(E) < {z ¥ dP < Q(E) = {, 2dP + Q(E, A = o0).
But (3) implies Q(E, 2 = oo0) = 0 and P(E, 2 > k) = 0. Hence,
atici (A — k) dP = {5 (1 — k) dP = §, 2dP — kP(E) 2 0,
which implies P(E, 2 < k) = 0. J

3. Weakly admissible tests. Some of the terminology introduced in Section
2 to describe decisions will be adapted here, without formal announcement, to
the descriptions of tests. For example, (£, D) will be called a likelihood ratio
test if D is a likelihood ratio decision for & ¢ E.

Let (&£, D) be a test with error probabilities (a, 8), and let (&7, D’), with error
probabilities (a’, f’), denote a general competitor to (<, D). The test (", D) is
called weakly admissible (relative to E) unless there exists a test (-, D’) for which

(6) “<a, PFsp. ACE,

and which is strictly better in one of these respects, i.e., @’ < a or §/ < g or
A'is a proper subset of . Actually, it is undesirable to distinguish between
two experiments whose sets are comparable up to a P and Q equivalence.
Therefore, in order to avoid problems with the definition of weak admissibility
given here, we shall insist that each of the experiments # € E is complete under
the probability measure R = }(P + Q). That is, for each Zc¢E and Ec &, if
Fe 5 and R(E A F) =0, then Fe#. (Alternatively, one could replace the
experiments appearing in (6) by their completions under R. But this would
needlessly complicate the notation and theory which follow.) With this con-
vention, if (#, D) is a test and D’ is equivalent to D, then D’ is Z-measurable.
For this reason, we will no longer distinguish between equivalent decisions;
equivalent decisions will be interpreted as equal.

A test (#, D) cannot be weakly admissible if there is another test (£', D)
with D’ equal to D and " ¢ E strictly included in . To be weakly admissible
it is therefore necessary that a test be minimal. That is, there must be no «’
in E with & strictly included in & and such that D is measurable over #’.
However, even a minimal and proper likelihood ratio test need not be weakly
admissible as the next example demonstrates.
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ExampLE 2. Let X, and X, be i.i.d. Bernoullj variables under P and Q with
means. § and %, respectively. Further, let E = {&”, &} where &’ = ¢(X,) and
& = a(X,, X;). Then (&, D) is a minimal and proper likelihood ratio test when
D is the decision which chooses Q iff X, = 1. However, (£, D) is not weakly
admissible because the test (7, D’) is better, where D’ is the decision which
chooses Q iff X, = 1. ] :

This example suggests that there is a more stringent property than that of
minimality which every weakly admissible test must satisfy. A test (£, D) is
said to be curtailed (relative to E) if there is no other test (£7, D') with <’ e E
strictly included in # and with D’ =, D (for &#) for some k € [0, oo]. A curtailed
test is minimal, but the converse is not true.

THEOREM 6. Curtailed proper likelihood ratio tests are weakly admissible. Con-
versely, a weakly admissible test (%, D) is a curtailed proper likelikood ratio test if
P is nonatomic on £ .

Proor. If (£, D) is a proper likelihood ratio test of level k and (&£, D) is
any (competing) test which satisfies (6), then by Theorem 1, D’ =, D for &,
and hence ' = a and B’ = B. If, in addition, (&£, D) is curtailed, then #’
cannot be a proper subset of . Thus (¥, D) is weakly admissible. Conversely,
if (£, D) is weakly admissible, it obviously is curtailed. Now consider the test
(&’, D), where &' = & and D' = P, D or Q as 2 (the likelihood ratio for
&) =0, 2€(0, ) or 2 = oo, respectively. Since P(2 = o0) = Q(4 = 0) =0,
the test (£7, D’) satisfies (6).' Since (%, D) is weakly admissible, a’ = @ and
B = B. Then

:a'—Q(D':P,X<oo):Q(D':P,Z:oo):O.

Similarly, R(D = Q, 2 = 0) = 0, and hence (&, D) is a proper test. Suppose,
in addition, that P is nonatomic on &. Then by the Neyman-Pearson lemma
(described herein), there is a most powerful likelihood ratio decision D’ for &
(not to be confused with any previous D’), which has the same size as that for
D. That is, @’ = @ and 8 < 3. Consequently (6) holds if #” is set equal to
. Since (#, D) is weakly admissible, 3 must equal . Thus D’ and D are
both most powerful decisions of size a (for <7). The desired conclusion that D
is a likelihood ratio decision (for ") then follows from the Neyman-Pearson
lemma. []

If randomized tests are allowed, more precisely, if there is a uniformly dis-
tributed random variable over every < in E so that P is nonatomic on E, then
Theorem 6 gives a complete characterization of weakly admissible tests.

4. Curtailed tests and curtailed versions of a test. While it is a completely
trivial matter, in most cases, to check whether a test is a proper likelihood
ratio test, it is not always so easy to determine whether a test is curtailed. For
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instance, it is obvious that every sequential probability ratio test is a proper
likelihood ratio test, but it is not obv.ous that all such tests are curtailed (with
respect to the class of experiments that can be realized through sequential
sampling). Nevertheless, this must be the case since Eisenberg, Ghosh and
Simons (1976) show that every sequential probability ratio test is weakly ad-
missible. This leads us to raise the following related questions: When is a test
curtailed? When can a noncurtailed test be replaced by a curtailed improve-
ment? Will the improvement be unique? If the noncurtailed test is a proper
likelihood ratio test, will the improvement be weakly admissible?

A curtailed test (minimal test) (£, D) will be called a curtailed version
(minimal version) of the test (£, D) if & < & and D’ =, D for & and some
k e[0, oo] (if £ < & and D’ is equal to D). In Example 2, the test (£, D') is
a curtailed version of (7, D), while each of these two tests is a minimal version
of itself.

Because of the importance of the notion of weak admissibility, it is apparent
from the previous theorem that a study of curtailed versions should have pri-
ority over a study of minimal versions. But since a minimal version is sometimes
a curtailed version, we shall first discuss an elementary theorem about minimal
versions and then turn our attention to curtailed versions.

THEOREM 7. If E is closed under the formation of intersections, then every test
(2, D) has a unique minimal version.

ProOF. Let &’ be the intersection of experiments in E for which D is a
decision (i.e., for which D is measurable). Then #” ¢ E, and D is #”’-measura-
ble. Clearly, (£7, D) is a minimal version of (¥, D) and no other minimal
version is possible. []

CoROLLARY 7. If (&, D)isalevel k proper likelihood ratio test and R(A = k) = 0
(where 2 is the likelihood ratio for &), then the minimal version promised by Theo-
rem 7 is the unique curtailed version of (Z°, D).

Proof. Any candidate (£, D’) for the role of being a curtailed version of
(Z, D) must have the same error probabilities as those for (7, D), and, hence,
according to Theorem 1, must have D' =, D for &. This condition, under the
assumption R(4 = k) = 0, implies D' = D. Thus only the unique minimal
version (£”, D), found in the proof of Theorem 7, can be a curtailed version.
The same kind of reasoning shows that (£, D) is curtailed, which implies that
it is, in fact, a curtailed version of (&, D). []

The situation when R(4 = k) > 0is more complicated. To prove the existence
of a curtailed version of even a proper likelihood ratio test requires the additional
(mild) assumption that P is nonatomic on every experiment in E. Even then,
there may be more than one curtailed version of the test. Fortunately, there
is little reason to be concerned with the existence of curtailed versions for tests
which are not proper likelihood ratio tests; so the next theorem is adequate, as
far as it goes.
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THEOREM 8. Suppose (&', D) is a proper likelihood ratio test of level k and
R(2 = k) > 0. If the class E is closed under the formation of intersections and P
is nonatomic on (each experiment of ) E, then (£, D) has a curtailed version but (in
general) there is no assurance that it is unique.

Proor. Let E; denote the class of experiments <" in E for which there is a
decision D’ that is level k equivalent to D for <. A particular pair (&7, D’) is
a curtailed version of («, D) if #” is a minimal member of E; in the sense of
set inclusion. For if (4", D") is such that <" < #<’ and D" =, D for &’ and
some k', then D" =, D for ~, on account of Theorem 1, and, hence £"” ¢ E,.
It follows that (&7, D) is curtailed and, therefore, a curtailed version of (&,
D). Now E, possesses at least one minimal member, according to Zorn’s lemma,
if every “chain” in E, possesses a “lower bound” in E,. Thatis,if [isa linearly
order index set and {,, y € I'} is a nonincreasing collection of experiments in
E,, then it must be shown that £, = M, . £, belongs to E,, i.e., there is an
“,-measurable decision D, that is level k equivalent to D. Briefly, this can be
demonstrated as follows: Let C, denote the class of ~ -measurable ‘“critical
functions” ¢.(cf. footnote number 5) which assume their values in [0, 1], are
zero on [2 < k] and one on [4 > k], and which have the same size as D, i.e.,
{ ¢dP = P(D = Q). Since there is some decision D, for #, which is level k
equivalent to D for &, C, contains the indicator function ¢ = I[Dr=Q]’ and,
hence, is nonempty for every y e I'. Let C; = M, C,, an intersection of non-
increasing sets. C, is nonempty since, as it turns out, each C, is an L,-weak-
*-compact set (relative to L,(Q, -7, R)), a closed subset of the L.-weak-*-
compact unit ball. Thus C, contains a critical function ¢,, which, clearly, must
be ~<,-measurable. Since, by assumption, P is nonatomic on &,, ¢, can be
taken to be (replaced by) an indicator function /;; _o, with D, =, D for &.
Thus &, € E, as required.

The next example shows that the curtailed version (27, D') guaranteed by
Zorn’s lemma does not have to be unique. A less artificial (though more com-
plicated) example appears implicitly in Case 3 of Example 5 below. []

ExampLE 3. Let X, and X, be independent Bernoulli variables with common
means p = 4 under Pand p = % under Q. Further, let U be a uniform variable
on [0, 1] which is independent of X, and X, under P and Q. Set & = o(X,, X,,
U), & =X, U), &' =0, U), & =oU)and E = {&, &/, &/, £"}. P
is nonatomic on E and E is closed under the formation of intersections. Con-
sider the test (#, D) which chooses P if X, =0 and Q if X; = 1. This is a
proper likelihood ratio test of level one. It is easily checked that (&7, D,’) and
(&Y, Dy') are each curtailed versions of (&, D), where D/ = D and D,/ = P or
Q as X, = 0 or 1, respectively. []

THEOREM 9. A curtailed version of a proper level k likelihood ratio test is weakly
admissible and a proper level k likelihood ratio test.

Proofr. This follows immediately from Theorems 3, 4 and 6. []
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A summary. Our theory has brought us through a series of steps which can
be summarized as follows: Start with any test (&, D). By the Neyman-Pearson
lemma, there is a likelihood ratio test (2, D) (in most cases) which does as well
as (&, D). If (&, D’) is not already a proper test, there isa simple modification
(&, D) which is a proper likelihood ratio test and an improvement upon (&,
D'). If (£, D") is not curtailed and Theorem 8 is applicable (which it usually
is in practice), then a further improvement (&7, D'"), a curtailed version of
(&, D), is possible. Moreover, according to Theorem 9, (£7, D) is a proper
likelihood ratio test and a weakly admissible test. Thus, through a series of
steps one (usually) can obtain a weakly admissible improvement of any test.

We complete this section with an interesting (though very artificial) example
which shows that Theorem 8 would be false if the assumption that P is non-
atomic on E were dropped.

EXAMPLE 4. Let X, X,, - - - be independent uniform variables on [0, 1] under
both Pand Q. SetE = {¥,:1 < n < oo}, where &,, 1 < n < oo, is the closure
under R of ¢(X,, X, ,,, ---), and &, = N2, &, is the closure of the tail o-field
of the X,’s. Clearly, E is closed under the formation of intersections, but P is
atomic on & because of Kolmogorov’s zero-one law. Also, 1, = 1 is the likeli-
hood ratio of &,, 1 < n < . Consider the level k = 1 proper likelihood ratio
test (&, D), where D = Por Q as X, < % or > 4, respectively. It has error prob-
abilities @ = 8 = 4. Clearly there is no curtailed version of this test: the only
possible candidates are of the form (%, D’y with n < oo, and all such tests can
be improved upon by increasing » and modifying D’ in an obvious way.® []

S. Applications to sequential tests. In applications, one is ﬁsually concerned
with a nested sequence of experiments &, € &, C - .., where, typically, &,
represents the “information” obtainable from a sample of size n, i.e., &, =
(X, -+, X,), where X,, ..., X, denote n observations. Fixed sample size tests
take the basic form (&, D), while sequential tests take the basic form (&, D),
where N is a stopping time adapted to {&,, 1 < n < oo}, &, = V5, &, (the
smallest g-field which includes every &, n = 1) and &, is the o-field of “events
up to time N,” i.e., :

Ey={Ee F:E[N=nle&, 1 <n< }.

We shall not be concerned here with how the experiments &, arise, but we
shall insist, as we do of experiments in the previous sections, that they are
complete under the probability measure R. It follows that the experiments &,
will be complete under R as well.

There are many different classes E of possible experiments that have been
considered in the past, e.g.,

¢ There clearly does exist an &.-measurable critical function ¢ (cf. the previous footnote)
which has the right error probabilities, and it would be a curtailed version of &, (in an obvious
sense) were we to work with critical functions rather than decisions.
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(i) fixed sample size experiments: E = {~,,1 < n < oo},
(ii) two-stage experiments: E = {&,}, where N is & ,-measurable for some
m = 1 (depending on N) and N = m,
(iii) general sequential experiments: E = {&}, where R(N < oc0) =1,
. (iv) truncated sequential experiments: E = {&,}, where N < n for some n = 1
(depending on N or on the class E itself),
(V) experiments for power one tests: E = {&}, where Q(N < o0) = 1.

The tests referred to in (v) have been popularized by Robbins and others.
They advocate using the decision D which chooses Q when N < oo and P when
N = oo (i.e., the decision maker acts as if he believes P is correct until the
experiment stops, if ever). The resulting test (£, D) has power Q(D = Q)=
Q(N < o) = 1 and size « = P(N < o0), which depends on how N is chosen.

The assumption in Theorems 7 and 8 that E is closed under the formation of
intersections holds for all of the classes (i)—(v) except (ii), and even for that
class Theorem 8’s conclusion, namely that curtailed versions of proper likeli-
hood ratio tests always exist, can be sustained. (The assumption that P is non-
atomic on & is still required. Also, the conclusion of Theorem 7 is valid for
the class, except for the uniqueness of the minimal version, which seems un-
likely.) Thus the problem of existence of curtailed versions is a relatively minor
one. The problem of finding them can be more difficult.

Let us turn to this problem within the specific context of general sequential
experiments (case (iii)). Theorem 5 points to a partial solution: Let (£, D)
be a fixed general sequential test which (from now on) we suppose to be a proper
likelihood ratio test of level k. Further, let 1, denote the likelihood ratio for
#«, and 2, denote the likelihood ratio for &, n = 1. Finally, let

N’ = the first n>1 suchthat Rs(1, < k < 4y)
=Ry <k<2)=0.

It is readily seen that N’ is a well-defined stopping time and, in particular,
N’ < Na.s. (R). In fact, N < M a.s. (R) for every stopping time M such that

(7) R(Ay Sk < y) = R(Ay < k < 2,) =0.
For on [M = n],
R, <k < 2y) = R%»(2y Sk < 2y) =0 aus.

and
Ria(Ay < k< 2,) =Rn(2, <k < 2,) =0 as.

Now suppose (&, D,) is any test for which &, & &, and D, =, D for & .
By Theorem 5, (7) holds and, hence, &, < &. In particular, if (&, D) isa
curtailed (or the unique minimal) version of (£, D), then &, & &y

THEOREM 10. The following are equivalent:

(i) There exists a curtailed version of (£, D) of the form (&£ ., D).
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(ii) There is a decision D' for & ., which is level k equivalent to D for £ .
(iii) There exists no curtailed version of (£, D) not of the form (£ ., D').

Proor. Condition (i) implies (ii) because of the definition of curtailed version.
Likewise, condition (ii) implies (iii) because of the definition of a curtailed
version, since every curtailed version (¢, D) not of the form (& ., D) would
have to be such that # ,, is a proper subset of . (See the last sentence pre-
ceding this theorem.) Finally, condition (iii) implies (i) because, according to
Corollary 7 and Theorem 8, (#,, D) must have a curtailed version. [J

THEOREM 11. If R(A, = k) = 0, then D is &£ y,-measurable and (£ ., D) is the
unique curtailed version of (£, D).

Proor. Let (£,, D) denote the unique curtailed version of (&', D) referred
to in Corollary 7. It must be shown that &,’ = &,. The last sentence preced-
ing Theorem 10 points out that &’ < &,. It easily follows from the definition
of N’ that R(2,, £ k < 2y) = R(Ay < k £ 2,,) = 0. Since R(4, = k) =0, it
follows that R(4,, = k) = 0, and consequently, that D is equivalent to the & .-
measurable decision D’ which equals P on [4,, < k], and = Q on [4,, > k].
Thus (£, D) is a test and &, < &, as required. For otherwise (#,, D)
would not be curtailed. [J

There is a less compact way of describing the stopping time N’, which is
somewhat easier to intuit. Since

Rén(2, S k < 2y) = ][XnSk]Rg”('zN > k) and
Rn(Ay < k = 4,) = Iy 2R (Ay < k),

(where 7, denotes the indicator function for an event A4), due to the smoothing
properties of conditional expectations, it follows that N’ is the first integer n > 1
such that (a) 2, > k and R”»(2, < k) = 0, or (b) 4, < k and R“»(2, > k) = 0,
or (¢) 4, = k and R%~(1; #+ k) = 0. For the experimenter, case (a) can be
interpreted as saying: If sampling has continued up to time n and it is found
that (i) 4, > k and (ii) 2, will not be less than k, then stop. Cases (b) and (c)
have similar interpretations.

In the case R(1y = k) > 0, Theorem 10 leaves open the possibility that there
is no curtailed version of (£, D) of the form (&, D'). Unfortunately, this
“possibility” can be realized. The following example illustrates a basic com-
plication that can occur: For a given experiment &, the class of experiments
"¢ which admit a curtailed version (&, D,) of (£, D) depends on which level
k likelihood ratio decision D is being considered. This is significant, for it should
be remembered that the stopping time N’ is defined with respect to k, not D. It
also will be apparent that the complication cannot be removed by simply ad-
mitting randomized decisions. ’

ExaMpLE 5. Let &, = o(X,, ---, X,, U) (n = 1), where the random variables
X, X,, - - - are independent Bernoulli variables with common means equal to
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1 and 2 under P and Q, respectively, and U is a uniform variable on [0, 1]
which is independent of the X,’s under P and Q (that is, available for making
“randomized decisions,” if desired). Further let N = 4. Then, for k = 1,
N =2 if X,4+X,=0 or 2,
=3 if X,+X,=1.
Suppose D = P when 4, < 1 and D = Q when 4, > 1, so that D is a likelihood

ratio decision for &, of level k = 1. We shall illustrate three different situations
that can arise depending on how D is defined on [, = 1].

CaseI: D=Qon[4 =1,U < }]. Here, there is a unique curtailed version
of the form (£, D’). Either 1, < 1, in which case D’ = P is mandated, or
Ay, > 1, in which case D’ = Q is mandated. )

Case II: D = Q on [A, = 1]. Here there is a unique curtailed version (&,
D,), and it is not of the form (&£, D’).
M=2 if X,+X,=2,
=3 if X,+X,=1 and X,=1,
=3 if X,+X,=0 and X;=0,
=4 if X;+X,=0 and X,=1,

A

decision D, is actually the same as D, and, hence, (£, D,) is also the unique
minimal version of (&, D).

and D, = Q on [4, = 1]. Obviously, &, is strictly larger than &,,. The

CasglIlI: D= Q on [4 =1, UL 2]. Here, there is no curtailed version
(£ > Dy) of the form (., D), but, in contrast to the previous case, there is
more than one choice for (&,, D,). Two possible choices for M are as follows:

First Choice
M=2 if X,+X,=0 or 2,
=3 if X,+X,=1 and X,=1,
=3 if X,+X,=1, X,=0 and
=4 if X,+X,=1, X,=0 and
Second Choice
M=2 if X,+X,=2,
=3 if X,+X,=1,
=3 if X,+X,=0 and X,=0,
=4 if X,+X,=0 and X,=1.

For both choices, D, = Q on [4, = 1] is mandated. []

T <
AVAR'AN

N

We can offer no algorithm which finds a curtailed version (&, D) for (£,
D) in every possible situation.
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