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ON CONSISTENCY IN TIME SERIES ANALYSIS
By P. M. ROBINSON?!

Harvard University

A number of statistics that arise in time series analysis can be repre-
sented as the sum of a partial realization of a possibly serially dependent
and nonstationary discrete-parameter stochastic process. The almost sure
and L,, p > 1, convergence of such statistics is investigated, under various
moment conditions. The results are applied to the least squares estimates
of multiple regressions.

1. Introduction. In time series analysis one is sometimes concerned with the
partial sums S, = >¥_ §,, N =1, of a realization of the discrete-parameter
zero-mean stochastic process {§,, n = 1}, and wishes to determine for which in-
creasing sequences {s,, N = 1},

(1.1) Sy/sy — 0, almost surely (a.s.)
or
(1.2) E|Sy/syl* — 0, some v,

as N — oo. Both (1.1) and (1.2) imply that S,/s, — 0 in probability, but neither
(1.1) nor (1.2) imply the other.

Often {§,, n = 1} is the output generated by passing a set of observable or
unobservable discrete-parameter time series through a filter which, possibly, is
nonlinear and time-varying. Some important situations of this type might be
described by the following model, which we refer to as

CONDITIONS A.
(1.3) €= Zfew  LFew G

where {;, is written in place of {; .

iqn?
(1.4) ECi|Cmm<n)=0, as.,

all —co < jj, -++,j, < coandall n > 2, and for some v > 1 there exist non-
negative constants {a,;, —oo < j < o0, 1 < k < ¢}, {a,, n = 1} such that

(1.5) E|C.) <apa), oy =Tlio

(1.6) DFa yy < 00 .

We take v to be the largest value for which such relationships hold.
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Conditions A generalize a familiar representation for a time series,
(1.7) €n= DNialilnmis  Lfemw1il < o0,

where {X,,, —co < n < o}isasequence of independent and identically distributed
random variables with zero means and finite variances. Then &, is strictly and
second order stationary and ergodic. In Conditions A, stationarity is not implied
by the homogeneity assumption (1.5); indeed, when a, — oo or when one can
choose a, that — 0, evolutionary behavior is implied. As in Hannan and Heyde
[5], independence is replaced by a martingale assumption, (1.4). In Conditions
A, the summable «,; are not introduced until one bounds E|;,|*. Cases v < 2
and v > 2, as well as v = 2, seem important, and the range of possible s, depends
on y. The multiple summation in (1.3) is motivated primarily to handle cases
in which &, arises as the product of random variables, each of which may, for
example, have a representation of the form (1.7). This is so when S, is a regres-
sion sum of squares, or when S,/N is the deviation from its expectation of
a sample rth-order autocovariance of an rth-order stationary time series (see
Robinson [8]). Also, a time-varying moving average of uncorrelated but hetero-
scedastic random variables may arise when certain continuous time stochastic
processes are sampled at discrete but unequally spaced intervals (see Robinson
[9))-

Define 6,, = 0, b,, = 2.{ a,”, N > 1. Throughout, K represents a positive
constant, not necessarily the same one.

THEOREM 1. Let Conditions A hold with 1 < v < 2 and let

(18) b,,[hkﬂ] < Kby[hk] , k=1
for some h > 1. Then in (1.1) we may choose
(1.9) sy = (b,y(In N)*+#++(In In N)t+é+o)u

when ¢ 4+ v > 0,0 > 0 or when ¢ + v = 0, 6 > max (0, —¢).

In most cases one would choose ¢ = ¢ = 0in (1.9). However, whena, = n~,
v=2,h=2,0onehas¢ = —1,¢ = 0;whena, = (nlnn)"t,n > 2,y =2,h =2,
one has ¢ =0, ¢ = —1.

Martingale convergence theorems can yield stronger results, under generally
stronger conditions. From Loéve [6], we may be able to choose s, = bV for
1 < v < 2, and from Neveu [7] we may be able to choose s, = biy(In b,y)+e,
0>0, fory=2.

This approach is not easily extended to handle a representation of the gener-
ality of Conditions A, however, and it cannot be used to improve the results of
Theorems 2 and 3 below.

For v > 2, define by r the largest power of 2 such that ¢ = 2! < v and

(1.10) ECalCim» m < m) < Kaya, .

By virtue of (1.5), this is similar to {{;,, n = 1} being an independent sequence,
up to rth moments.
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THEOREM 2. Let Conditions A hold with v > 2 and let
(1.11) bapprrry < Kby s k>1.
When v > 2rt, let
(1.12) (N — M) Yb,y — b,y) < K(byy — byy)*? s I<MZIN.
Then in (1.1), we may choose
(1.13) 8y = bly(In N)*(In In N)+o/v | any 6>0.

We next consider L -convergence. Lemmas 1 and 2 below (established to prove
Theorems 1 and, 2) imply that in (1.2), s, may be chosen as

bey, 1<v<2; bivey, v>2,

where {c,} is any sequence such that ¢, — oo as n— co. An improvement is
possible when 1 < v < 2.

ConpiTioNs B. Define
G = CGud(|Gsl” = CEIGL[Y) » Cin = Cin — Gl
For any ¢ > 0 and all j, n, C can be chosen such that
E|Cp ) < eElG,,) -

This is a type of uniform integrability condition.

THEOREM 3. Let Conditions A and B hold with 1 < v < 2 and let
(1.14) byy/b2y — 0 as N-— oo.
Then in (1.2) we may choose

sy = by .

Each of the conditions (1.8), (1.11), (1.12), (1.14) requires that a, should not
increase too fast, excluding a, = 6, |#] > 1, but not a, = n’.

The theorems are proved in Section 2. In Section 3, the results are applied
to the convergence of least squares estimates of multiple time series regression.

2. Proofs of theorems. Our results rest heavily on calculations of the order
of magnitude of the vth absolute moment of S, = §, — S,, 0 < M < N (S, =0).

LEMMA 1. Let Conditions A hold, for 1 < v < 2. Then
E[Sunl < K(boy — b,y) -
Proor. First we prove that
(2.1) 1Sunl” < K TGy -+ 25, a8 Gl

where the sum over n is for M < n < Nand, for 1 < k < ¢, the sum over j, is
over those j for which a,; #+ 0. To obtain (2.1), one first writes

SMN = Z;l e Z;',, aifll/ya}/y‘: Zn (Cin/au’l)
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whence Holder’s inequality gives
ISunl” < (25 a) " 25 a1 25, - 25, Zn Csal” -
Similarly, one has
|Z;2 o ;q chmr < (X azj)”_l i 2]2 |Z ;‘q 2in C,nl” .

After using Holder’s inequality a total of ¢ times, (2.1) follows by virtue of (1.6).
Then from Von Bahr and Esseen [13],

EIZn Cjnlv é K Zn\ElclnP ’
because of (1.4). Then the lemma is established by using (1.5) and then (1.6). []

LEmMMA 2. Let Conditions A hold for v > 2 and, when v > 27, let (1.12) hold.
Then

E|Synl" < K(boy — bu)” .
Proor. Because of (2.1) one has only to show that
(2:2) E| 20 Cial" < Kay(boy — byy)** .
From (1.4), Theorem 9 of Burkholder [3] and Minkowski’s inequality, °
E| 2w Gl < KE(XWC)"* < K(N — M) 31, BIC,u)" -
Thus when ¢ = 0, (2.2) follows from use of (1.5). When ¢t > 0, define
23) R =%, w =m0 = E e 5 G

for 1 <1<t It follows from Theorem 9 of [3] that, for all # and some K
depending only on 6,

(2-4) S, n8l’ < KE(S, o).

Repeated use of (2.3), (2.4) and the c,-inequality produces

(2:5) |5 Gl < KE(Zo 02" + K Dl B(LL 7)™ -

Now by Jensen’s inequality for conditional expectations and (1.10), (1.5),
EC & mrs -5 Cp) < Kaya,”, r<r.

Then it is easily seen that '

(2.6) P < Kata,? lgige.

Thus,

2.7) T BT )™ < Koy Ticy (baty — buy) ™™

< Ka] (bzzv - sz)V/z ‘
Now on expanding 7;% and using (1.5), (2.6), it is seen that

(2.8) Ens < Ka,*a;” .
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Thus
E(Z”v;’tn)z’)uﬂr < K(N — M)v/Zr—l Zn Eﬁ;;)u/r
(2.9) < K(N — M)y ? oy (by — by)
< Kaiu(bztv - sz)u/z ’
the last inequality following from (1.12). Therefore the desired bound for (2.5)
is provided by (2.7) and (2.9). [

Proor oF THEOREM 1. The method of proof is similar to one used by Stout
[12]. Write S, = Sp,kp, 5, = Syuy. There are finitely many k for which A% < 2.
For k > 1 such that #* = 2, and with s, given by (1.9),

P(|S,| > e5,) < E|S,[remvs,
< Ke7*(In [A*])~*=#=*(In In [A*])~1¢-?
< Ke=vk='=#=(In k)~1-¢=% |
from Markov’s inequality, Lemma 1 and [A*] = Kk*. Thus, when ¢ + v > 0
or when ¢ + v =0, ¢ + d > 0 it follows from the Borel-Cantelli lemma that
S./5, — 0, a.s. Now define T, = maX,uj<,<pur+1y |Spakie|- We need consider only
k such that [#*+'] — [#*¥] = 1. From Billingsley [2, page 102], Lemma 1 implies
(2.10) ET, < K[ln ([A**'] — [A*D][bupuesny — buai]
< Kkubu[h"]
using (1.8) and [A**'] — [A*] < A**' — k¥ 4 1 < KA*. Thus, much as before
P(T, > 5,) < ET 5,7 < Ke7*k='(In k)='=° .
When § > 0, it follows that T/5, — 0, a.s. Finally, for [#*] < N < [A¥+],

Sylsy < ISy — Sul/5, + 1Sul/50 < Tufs, + |S41/5, - 0

ProOF OF THEOREM 2. The proof is almost the same. For k > 1 such that
h* = 2 and with s, given by (1.13), it is readily shown that

P(|8,| > ¢5,) < Ke~*k~Y(In k)=1-?
s0 8,/5, — 0, a.s., for 6 > 0. Now from [2, page 94], Lemma 2 implies
(2.11) P(T, > ¢) < Ke=*(byurry — bygpsr)*” -
Therefore, using (1.11), one has !
P(T, > ¢3,) < Ke=vk~Y(In k)=1-2
and so T,/s, — 0, a.s., and the proof is completed as before. [

Serfling [10] proves inequalities similar to (2.10) and (2.11) for v = 2. For
v >> 2, his assumed bound for E|S,,|* (and derived bound for Emax, <y |S.]*)
depend on M and N only through N — M, and he requires 2b,, < b,,,. These
assumptions exclude many cases where a, — co or 0. Under Serfling’s assump-
tions, there is no loss in generality in taking 2 = 2 in the above proof (see Stout
[12, page 210]).



220 P. M. ROBINSON

Serfling [11] lists several alternative {£,} for which results similar to those of
Lemma 2 and Theorem 2 are available.

Proor or THEOREM 3. Because of (2.1) we need only show that for any ¢ > 0
which does not depend on j, ’

(2.12) E| X Gl < eapb,,

for sufficiently large N. Our method of proof then extends one given by Chow
[4]. From [3, Theorem 9] and Conditions B,

E| Gl < KE(Z, 8.)" < EK(X. GR)* + KE(Z, G)”
= KE(C* 1. EICLP)"* + K 3. EIGL)
< a;b, (Kb [b,, + Ke)
s0 (2.12) follows from (1.14). []

3. Multiple regression. The preceding results may be applied to estimates of
the model

Vo =012+ o+ 8,2, + X, nx=>1.
Define
ﬁl A X, Zy o2,
G B=| |, we=| |, oxe=| |, Zy=| r
B8, Vy Xy Ziy e Z,y

aBAV = (Aé]\) = (ZAVTZ;V)—IZAVTY,V = ﬁ + (Zl\"TZAv)AZA\'TXA\'
which is the least squares estimate of 8. A variety of results may be generated
from Theorems 1-3. Three examples will be given, under somewhat simplified
conditions.
The first assumes the z,, are random variables with representations

Z?n:Z;o:—oouijn’ ”Zl’lélép’

where there exist real constants «a;

i3

a,, a, such that 37 |a,;| < oo,

(3.2) Eu Um0y x,,,m<n) =0, as.,

(3.3) E(uhjlnuij2n|uhjlm, Upjoms M < M) = ;@;;a,,4,, as., h=j.=]>
(3.4) . =0, a.s., J1F Jas
(3.5) E([ujul [ tpjms m < ny 1 < h < pyx,, m < n) < Klag;a,|*

(3-6) Elx, | < la,]"

These are Conditions C.
Define Q, as the p X p matrix with (&, i)th element 3V_, w,,,, Where

whin = Ezhnzi'n = (Z;‘o:—oo ahjaij)ah'nain
and define
(3‘7) bwgv = ZQ:I Iainly > B‘V = diag {bzm" M) bzm’} .
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THEOREM 4. Let Conditions C hold with pp > 4, v > 2, p = v, and let

(3.8) lim,_, det {B,~*Q, B,"%} + 0,
(3.9) by 2x < Kby l<sh<p N = 1,
(3.10) lim sup, ., (In N)¥#(In In N)4*+>/s max, ., .,y @%,/byy < o0,

l<sh<p,d>0,
(3.11) limsupy_., (In N)¥*(In In N)®+9/» max, _, <, @, /gy < o0, 0>0.
Then B,y — B, a.s. as N — oo.
Proor. It is readily deduced from (3.1) that
(3:12) By — B = IByHZy"Zy) " Byd|| Thoy biidy bik| D2y 2ay X,
where [|+|| is the Euclidean norm. From (3.8) it suffices to prove
(3.13) B, ¥Z2,"Z, — Q,)B,"* -0, a.s.,
(3.14) bt bak 2N z,,x,— 0, a.s., I<hr<p.
Consider (3.13) first. Denote the (k, [/)th element of B, %Z,"Z,)'B,~* by
bk bk XV €, where &, = 3 35 o G
Cin = Ciyign = Wgnlijn — Bn@in Qi A5 5 h=h=],
= UpjnHijgn > JLF e
Then (1.4) is satisfied because of (3.3), (3.4), and (1.5) is satisfied with
E|C " < K(E|uyj ol Elty;0") + K@y, @y, an; ;|
< Kla,a;,a,; 0|
because of (3.3), (3.5). Since };; |a;;| < oo, 1 < I < p, all of Conditions A are

satisfied. Next, note that, because of (3.5), the result E| Y ,|** < K(}; a2, a?,)**
does not require a condition like (1.12). With regard to (1.11) note that

N 2
21 @@y, S MAXg oy @iy by 2N n @l S MAXy gy oy Ay byy
using (3.9) in the second case. Therefore, from Theorem 2,
2 2
2 (ZinZiw — @41a)/(MAXg oy [, |bhy(In N)Y#(In In N)@+27/1) — 0, as.

Then (3.12) is a consequence of (3.10). To establish (3.14) note that {7, x,
is of the form ¢, &, = >~ (;,, where {;, = 4,;,x,. Then Conditions A
are satisfied because of (3.2), (3.5), (3.6), with E|{, |* < |&;;a;,4a,]", v < p. Note
now that E|) &,|* < K(X a,’a},)*”* does not require a condition like (1.13),
because of (3.5), (3.6) and ¢ = v. Note also that

2 2,2 ’
Zl Zai” = max1§n§2N an b2hN > ZN+1 a ah’n é max1§n§2N anzb2hN .
Therefore, from Theorem 2,
28 Zun X/ (MaX g, coy a,]68 y(In N)*(InIn N)*+9¥) — 0, a.s.,

and so (3.14) follows from (3.11). ]
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An example in which the regressors are “decreasing” while the residuals are
“increasing” but Theorem 4 applies is when a,, = n~%, a, = Inlnn.

Notice that some of the weak dependence assumptions on the z,,, introduced
to establish (3.13), are used to prove (3.14) without any weak dependence as-
sumptions on x,. By way of contrast, Anderson and Taylor [1, Theorem 2], for
the case p = 1, assume x, is a martingale difference sequence and assume the a.s.
divergency of }¥ z,?, with no restrictions on its rate of increase.

Now let the z,, be fixed constants, and let x, = > % _,, v;,, Where «;, a, are

j=—o “jn?
such that 335 __ |a;| < o0, E(V;, |V m < 1) = 0, a.s., E(|0;,]" |V m < 1) <
|a;a,|*. Foryv > 2, let

(315) E(lvinlvlvjm’ m < n) < Klajanly ‘

These are Conditions D. We replace a,, by z,, in the definitions of ,,, and B,
in (3.7).

THEOREM 5. Let Conditions D, (3.7) and (3.9) hold. For 1 < v < 2, let
lim sup,_., (In N)@+*/(In In N)*+9/* max,_, ,v a,%/byy < o0
and for v > 2 let (3.11) hold. Then f,y, — B,, a.s. as N — co.

The proof applies Theorems 1 and 2 in a way that is similar to that of Theorem
4, so it is omitted. Anderson and Taylor [1, Theorem 1] proved that if the x,
are i.i.d. normal variables, then a necessary and sufficient condition for ﬁN — B
a.s. is (Zy"Zy)=* — 0. Our restriction (3.11) is relaxed as v increases, however.

Finally, we give an L -convergence theorem.

THEOREM 6. Let Conditions D hold. Incase 1 < v < 2, let
(3.16) limy_, max, .,y a, 6% /(byybyy) = 0, I1<r<p,
or let the |v;,[a;a,|" be uniformly integrable and
(3.17) lim Sup,, ., Max,c ey @, 6%/ (buybuy) < 00, 1<h<p.
In case v = 2, let
(3.18) lim,_, max, .y a,’/b,y = 0.
Then, forv > 1, E|,[§m — B> 0as N— oo.
Proor. We use (3.12) and thus have to investigate
(3.19) E| N z,,x,] .
From Lemma 1, this is bounded by
(3.20) K yila,a,) < Kmax,_,ovla,|"b,y» I<v2.

Then the theorem is proved under (3.16). From Theorem 3, (3.19) is of smaller
order than (3.20) as N — oo under uniform integrability of |v,,/a;a,|* and (3.17),
so that theorem is proved under these conditions. From (3.15) and Lemma 2,
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(3.19) is bounded by

K(Z1]:’=l a'nzain)v/z < Kmaxls'nsN Ianlybzl/jv *

Then because of (3.18), the theorem is proved for v > 2. []
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