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ASYMPTOTIC DISTRIBUTION OF AN ESTIMATOR OF THE
BOUNDARY PARAMETER OF AN UNSTABLE PROCESS!

By M. M. Rao
University of California, Riverside

The limit distribution of the least squares estimator & of the parameter
a of the first order stochastic difference equation, in the boundary case
lal = 1, is presented. With this, the asymptotic distributional problem for
any real « in the first order case is completely settled.

1. Introduction. Let {X,, r > 1} be a time series generated by the stochastic
difference equation:

) X, =aX,_, +¢, t=z1,aeR,

where X, = 0 for t < 0, and {¢,, t = 1} are independent identically distributed
random variables, on a probability space, with mean zero and variance ¢* > 0.
Here a is an unknown parameter, and the least squares estimator &, of a is
given by
(2) ay = L XX, /2D X,
Then it is known that p lim, @, = a (consistency). The next important problem
is to obtain the asymptotic distribution of @&,. Thus if s(n) = |a|"/(a* — 1) for
la| > 1, = n/2t for |a| = 1, and [n(1 — a?)]~* for |a| < 1, then s(n)(&, — a) has
a limit distribution if |@| < 1 which is normal with mean zero and variance 1
(i.e., N(0, 1)), and if @] > 1 then again this limit exists but it depends on the
distribution of ¢,’s. In particular if ¢,’s are N(0, 1), then the last limit distribution
is Cauchy. These results were proved under essentially the present generality
by Anderson ([1], Theorems 2.5, 2.7, 4.3) and under the normality assumption
(la| > 1) by White [9]. The earlier important study (for |a| < 1) of Mann-Wald
in 1943, and the consistency problem by Rubin in 1950 (for « € R, cf. references
in [9]), should also be recalled. Both the consistency and limit distribution for
la| > 1, in exactly the present generality, are contained in [7] (Theorems I and II).
The result in the boundary case |a| = 1 needs a quite different method (as
seen in the next section) compared to the other cases. A preliminary study of
this was made in [9]. The purpose of this note is to present a solution of this
boundary parameter problem which has been open from at least 1958.

2. The result. The desired result may be given as follows.

THEOREM. Let {X,, t = 1} be a process generated by (1) where the {¢,; t = 1}
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are independent, identically and symmetrically distributed with means zero and vari-
ance one. Let |a| = 1, and &, be given by (2). Then

3) limy_, P[s(N)(@y — &) < x] = (=, h(u) du,

where the density function h(+) of the limit distribution is given by:

0 ) = (B g2 B0 (‘x ,’))]g cos (3(x, 1) — $6(x, 1))
X 2wz (% 1) + 12 (=X _t)]@ .

Here p, r, 0, 0 are defined by the following expressions:

®)] r(x, t)* = sinh?® (2tx)* + cos? (2¢x)? + _zt_ (sinh? (22x)} + sin? (21x)t)
X
a [ t\t, . b )
+ 5 <7> (sin (81x) sinh (8x)?),

1 — (a/2)(1/x)¥(coth (2tx)t + cot (21x)})
I — (a/2)(1/x)¥(tanh (2zx)} — tan (21x)F)

(6) 6(x, 1) = arc tan [

% tan (21x)! tanh (2zx)%] ,

T p(x. 1) = 2(1 e ) (sinh*(21x)t + sin? (2ex)t) 4+ (smh2 (2x)}

+ cos? (2tx)t) — a(t/x)}(1 — a/(8x2)})(sin (8tx)’f + sinh (8#x)?),

— arc C cos (2)tat — Dsin (2)tat
(8) Ox, 1) = arc tan <Csin (2)iat + D cos (2)%m>
where
© C= <1 & 2)é> (sinh (2x)} cos (2tx) — cosh (2ex)t sin (26x)t)

+ a(t/x)i sinh (21x)t sin (2£x)?

D ) (sinh (26x)} cos (26x)t + cosh (2x)? sin (21x)?)

<1 (8x 2)5
— a(t/x)t cosh (2tx)t cos (21x)t .

REMARK. This formidable expression is presented in the hope that it could
be used for a numerical evaluation in some problems. More particularly, it may
be of interest in considering the kth order equation (k > 1) with some of the
roots of its characteristic equation lying on the (boundary of the) unit circle.
After presenting the proof, simple modifications of the argument will be pointed
out whereby the assumption of symmetry for the common distribution of ¢,’s
may be suppressed in the above theorem.

If |a] < 1, the process {Y,, t > 1} of (1) is called stable, |a| = 1 it is unstable
and |a| > 1 it is explosive. An excellent account of the stable problem can be
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found in ([2], Section 5.5) while a study of the explosive case may be seen in
[9], [1], [7], and [8], among others.

3. Proof of the result. From (1) and (2) one obtains

(10) Gy —a= 1NV e X, /0 X = Uy/Vy,
where U, and V', stand for the numerator and denominator sums respectively.
Since (1) also implies X, = Y it a'e, , = X ¢zhu,_;, with u,_, = a’¢,_,, one may

conclude that the u; are independent and identically distributed with mean zero
and variance one by using the symmetry of the distribution of ¢,’s. This and a
theorem of Erdos and Kac [5] yield that

. 2
(11) thWP[N,z Ve < x]:F(x), FO)=0,
where the characteristic function £ of F is given by §(u) = (sec (4iu)t)t. Simi-
larly U, = 5%, (X, — aX,_))X,_, and since ¢, and a’¢, are identically distributed
(by the symmetry assumption) one can deduce from the same considerations
of [5] leading to the invariance principle, that

. 2t

(12) lim,_.. P{W Uy < yJ = G(y)
exists. In fact, using Donsker’s result ([4], Theorem 4.4), one deduces that the
vector ((2¢/N)U,, (2/N?)V ) converges in distribution, as N — oo, to a function
which is independent of the distribution of ¢,’s (or of the #,’s) and the limit
distribution is that of a suitable functional of the Brownian motion process.
In the present case, this functional is as follows. Let H,, H, be the functionals
defined by (the first one is the (Itd) stochastic integral, the second pointwise
Lebesgue):

(13) H(B) = (i B(t) dB(t) , Hy(B) = {} B¥(1t) dt
where {B(t), t € [0, 1]} is the Brownian motion, and let a,, a, be real numbers.
Then, on observing that Uy, V', are both Borel functions of X, = !z} u,_,, the

partial sum of the desired sequence of independent identically distributed random
variables (for [4]), it follows that

(14)  lim,_, P [al % U, +

2
]522 VN < al'x + azy:l - Ga(alx + aZy) )

where G,(+) is the distribution of a, H,(B) + (a,a — a, + a,)H,(B). The point
here is that the left side limit of (14) exists for each vector (a,, a,) which then
implies the earlier statement. Next to calculate G,, following the method of
[5], one chooses a convenient distribution of ¢,’s (hence of u,’s) and determines
the characteristic function of the limit distribution G,. :

The obvious choice of the distribution of ¢,’s is that they be N(0, 1) so ,’s
also have the same distribution. Thus if ¢,(., +) is the characteristic function
defined by

bi .
ot u) = E<exp [%NLI U, + _2]\17? VN}>,
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then it is easy to calculate ¢,. In fact this was done in [9] and one finds that
¢y — ¢ (as this must obtain by the preceding paragraph and the easy halt of the
continuity theorem for characteristic functions). Moreover,

(15) o(t, u) = ettait <cos 2(iu)t — (;;t)i sin 2(1u)i>

Observe that ¢(o, u) is precisely §(u) of (11), as calculated in [5]. If (U, V) is
the limit random vector whose characteristic function is (15) then it is clear that
V' > 0 with probability 1. (Observe that (2¢/N)U, — U in distribution, and U
has the shifted gamma distribution.) Further, one finds, after an elementary
but somewhat tedious computation, that (¢, #)] — 0 as |t| — oo and |u| — co.
Hence (by the Riemann-Lebesgue lemma) one concludes that the joint distri-
bution of (U, V) is of continuous type. Since ¢ is differentiable (several times)
this limit distribution has at least two moments finite.

From the preceding facts, one can apply Cramér’s theorem ([3], page 317,
Exercise 6, which is based on his 1937 theorem noted there), the random vari-
able U/V has the density given by

1 dp
16 h =__ (> -~ (t, —tx)dt,
(16) () = 5= §2e 2 (1, —1)

if the integral converges uniformly in x. To see that this A(.) is the desired
density, let W,* = (U,/s(N)) — x(V/s*N)) and W* = U — xV. Then

(17) E(e7"N) = oy(r, —xt) — ¢(t, —x7) = E(e"™"7), as N co.
Moreover,
(18) lim,_, P[s(N)(&, — a) < x] = lim,__, P[W,* < 0]

P[W+® < 0] :P[_g<x]

Then Cramér’s theorem implies that i(x) = (d/dx)P[W* < 0], and so it remains
to establish (16), which is the essence of the proof.
Thus differentiating ¢(., +) and simplifying one gets

(19) %ff* (t, —tx)

ettatt [(2i) sinh 2(ztx)5(1 — a/(8x")}) — ai(1/x)* cosh 2(itx)}]
(81x)’4’ [cosh 2(itx)} — a(it/2x)} sinh 2(itx)}]?

Next observe that i = (1 4 i)/2} and then substituting (19) in (16) with g8 =
(21x)3,
Ay
(20)  A(x) = 4;1.(12}){ fr. 2
[(1 +i)(1 — a/(8x")}) sinh (1 + )8 — ai(t/x)t cosh (1 +/)B]
[cosh 2(1 + )8 — (a/2)(¢/x)}(1 + i)sinh(1 + §)B]?
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Using the identities sinh (8 + i8) = i cosh 8sin 8 4 sinh 8 cos 8, and cosh (8 +
if) = cosh B cos 8 + isinh Ssin 8, and simplifying (20), one finds, after a
straightforward but long computation, the following:

1 .. F—IiE dt
(21) hx) = 5 1% ml’%?)’?(_t})‘”

where A4, B, E, F are given by:
3
A= cosh Bcos 8 — %’ <i> (sinh 8 cos 8 — cosh 8sin §),
x

3
B = sin Bsinh § — ;»62{ <L> (sin B cosh 8 + cos Bsinh g),
X
E = Ccos 2tat — D sin 2tat,
F = Csin 2tat + D cos 2t ,

with C and D as in (9).
It is now necessary to consider (i) x = 0 and (ii) x < O separately on the #-
intervals (— oo, 0) and [0, o). This is done as follows:

Casg (i). x = 0. If t = 0, then 8 = 0 so that 4, B, C, D, E, F are real. Let
F + iE = pe”, A + iB = re",sothat p> = C* 4 D* = E* + F?,andr’ = A* + B’
Also 6 = arc tan (E/F), 6 = arc tan (B/A) and then p, r, 6, 0 are seen to reduce
to (5)—(8), when a? = 1 is used. If t = —7 < 0 (z > 0), then it is noted that
(A4 + iB)(—7) = (A + iB)(z), C(—7) = —iC(r), D(—r) = iD(r) so that (F —
iE)(—t) = iF(r) — E(r). With these reductions (since x > 0) (21) reduces to the
following:

- —iE dt - 'FANiE d:
(22) M) = 5| S5 ]
(A + lB) (1x)} (A T IB)% (zx)?
= # §e £ cos (5 30> di .
(8x%)} rt (tx)%
Case (ii). x < 0. Ift< Othen8>=0, and 4, B, C, D, E, F are again real.
If t >0,z = —¢ > 0 so that xt = —xr and the same relations obtain as in the

preceding case (i.e., the second integral is the complex conjugate of the first).
Thus (22) again holds.
Combining the two parts, one has

(23) h(x) = é’;r- % f(x tf))% cos (d(x, 1) — 30(x, 1)) y(fm),% , x>0,
= Lo 05D cos o(x. 1) — 3 .
=g o e (00x, 1) — 30(x, ))(t el x<0.

Note that p, r, d, 6 are not symmetric in x or ¢. Also x is not a singularity of the
integrands in either parts of (23), and the integrals exist uniformly in x. Then
by the important Cramér’s theorem noted above, this 4(.) must be the desired
density, and (23) is just (4) in a different form. This completes the proof.
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REMARKS. 1. Intheabove proof, the fact that¢,’sare symmetrically distributed
is used in concluding that u,’s are identically distributed which was needed
for Donsker’s theorem, employed in (13)—(14). However, this hypothesis on
u,’s was used in [4] and [5] in deducing the fact that the u, (or the partial sums
X,’s) obey the central limit theorem. For the latter, it is sufficient (as well as
necessary) that the u, obey the classical Lindeberg condition. This was used
by Prokhorov ([6], Theorem 3.1) in extending Donsker’s theorem for noniden-
tically distributed summands. Now if ¢,’s are independent and identically distri-
buted with means zero and variance one, then u,’s satisfy the Lindeberg condi-
tion, as a simple computation shows. Thus the above theorem is true if the sym-
metry assumption is dropped from the distribution of ¢,’s. Also if the Lindeberg
condition is violated (and the latter, is true of u,’s if |a| > 1) then by Prokhorov’s
result, noted above, the invariance principle fails. This observation helps in
appreciating Anderson’s conclusions [1].

2. The preceding analysis and an extension of Crameér’s theorem to higher
dimensions may lead to the solutions of the asymptotic distributional problems
of @,,’s of [1] and [7] when some of the roots are on the unit circle. This is
presently unexplored.
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