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WEAK AND STRONG UNIFORM CONSISTENCY OF
THE KERNEL ESTIMATE OF A DENSITY
AND ITS DERIVATIVES

By BERNARD W. SILVERMAN
University of Cambridge

The estimation of a density and its derivatives by the kernel method
is considered. Uniform consistency properties over the whole real line
are studied. For suitable kernels and uniformly continuous densities it is
shown that the conditions #— 0 and (nh)-logn— 0 are sufficient for
strong uniform consistency of the density estimate, where n is the sample
size and % is the “‘window width.”” Under certain conditions on the kernel,
conditions are found on the density and on the behavior of the window
width which are necessary and sufficient for weak and strong uniform
consistency of the estimate of the density derivatives. Theorems on the
rate of strong and weak consistency are also proved.

1. Introduction. Consider the kernel estimate f, of a real univariate density
f introduced by Rosenblatt (1956) and defined by

(1) [u(x) = Ziea (nh) 7oA (x — Xy}

where X,, - - -, X, are independent observations from the density, 0 is a kernel
function, and A(n) is a “window width.” The explicit dependence of 4 on n will
generally be suppressed.

The weak and strong uniform consistency properties of f, have been con-
sidered by several authors, including Nadaraya (1965), Schuster (1969) and Van
Ryzin (1969). In these papers the conditions placed on the window width for
strong uniform consistency include X exp(—cnh’) < oo for all positive ¢. In
this paper this condition is substantially weakened. The exact rate of weak and
strong uniform convergence of (f, — Ef,) to zero is demonstrated under mild
conditions on 4, f and &, thus giving the best possible improvement of the result
given by Schuster (1969). The conditions on 4 are again much weaker than
those assumed by previous authors.

The final section deals with estimation of density derivatives and gives con-
ditions under which the estimate of density derivatives due to Bhattacharya
(1967) is uniformly consistent. The conditions on # are shown to be necessary
as well as sufficient. Necessary and sufficient conditions in density estimation
were also considered by Schuster (1969), who concentrated on the conditions
placed on the density fand showed that the uniform continuity of f was necessary
for uniform consistency, under the above condition on A.
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The expressions sup, inf and §, when unqualified, will be taken to be over the
range (—oo, oo0). Let F(x) = §*_ f(¢) dt throughout. Given any real function
u of bounded variation, u induces a signed Lebesgue-Stieltjes measure y, on the
Borel sets of the real line; this measure ascribes measure u(b) — u(a) to the real
interval (a, b]. The notation { g(x)|du(x)| will be used to denote an integral with
respect to the absolute value, or total variation, of the measure p,, as defined
on pages 117-118 of Rudin (1966). In the case where u is differentiable,

§ 9(x)|du(x)| is equivalent to { g(x)|u’(x)| dx.

2. Preliminary results. This section contains some results which will be
useful in the main part of the paper. The first result demonstrates an elegant
decomposition of the estimate.

PROPOSITION 1. On a suitable probability space there is a version W° of the
Brownian bridge such that

falx) = flx) 4 b(x) + n7tp(x) + &(x)

b(x) = Efu(x) — fix) = { A70{h7(x — 0)} dF(1) — f(x)
o(x) = =V i WAHF()} d o{h7(x — 1)}

where

and
e(x) = —(nh)y~*logn § Z (t)d,o{h™'(x — 1)}

where, for some absolute constant C,,
(2) lim sup, sup, |Z,(8)] < C, a.s.

Proor. Write f,(x) as A~* § o{hA~'(x — )} dF,(f) and then use the probability
integral transformation and Theorem 3 of Koml6s, Major and Tusnady (1975)
to decompose the empirical distribution function F,. This technique, though
not this notation, was used by Bickel and Rosenblatt (1973). To complete the
proof, choose positive constants C, K and 4 as in Theorem 3 of Komlos, Major
and Tusnady (1975), which then gives, for any » > 271,

Zin Prisup [Z,()] > C + 7] = K 077 < oo
Setting C, = C + 477, the result (2) now follows by applying the first Borel-
Cantelli lemma to the sets

[sup,|Z, ()] > C + ]  for arbitrary » > 27'.

Notice that b and the probability structure of the Gaussian process p depend
only on the window width # and not on the sample size n. The dependence of
b, p and ¢ on n and % will not be explicitly expressed. The next proposition
gives some properties of b and ¢ which follow easily from Proposition 1.

PROPOSITION 2. Provided f is uniformly continuous, b(x) — O uniformly over R
as h — 0, and, whatever the dependence of hon n,

limsup,_., nk (log n)='sup |e(x)] < C,V(9) a.s.

where C, is the constant of Proposition 1 and V(0) is the variation of 4.
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Proor. The first part follows immediately from elementary analysis. To
prove the second part, note that, by standard properties of the integral,
nh (1og m)= sup, |s(x)| < V(3) sup, | Z,(1)|

and apply Proposition 1.

The final result of this section is a lemma on the modulus of continuity of
the Brownian bridge, an easy consequence of results of Garsia (1970) on the
modulus of continuity of general Gaussian processes, combined with standard
properties of the Brownian bridge.

PROPOSITION 3. Let W be a continuous version of the Brownian bridge, with
modulus of continuity w,. Let
p) = uw(l —u)} 0<u<i
=4 u>4
and let
q(u) = {5 {log (1/v)}* dp(v) .
Then, with probability one, w, is dominated by
16(log B)tp + 16(2)tq
where B is a random variable with B = 1 a.s. and EB < 4(2)!.

3. Estimation of the density. The first theorem of this section demonstrates
the uniform consistency of the estimates under very mild conditions on 4. The
following conditions on ¢ are used in the theorems of this section.

(a) 0 is uniformly continuous (with modulus of continuity w;) and
of bounded variation V()
(C1) () §|0(x)]dx < oo and d(x) >0 as [x] - oo
() §d(x)dx =1
(d) § |x log [x]Y|da(x)| < oo
(C2) (e) setting y(u) = {w,(w)}}, i {log (1/u)}t dy(u) < oo .

Conditions (C1) and (C2) are satisfied by a very wide variety of kernels, for
example the normal density function, the ‘Cauchy density function, and the
spline kernel of Boneva, Kendall and Stefanov (1971).

THEOREM A. Suppose o satisfies conditions (C1) and f is uniformly continuous.
Suppose h — 0 and (nh)~*logn — 0 as n — co. Then, defining f, as in (1) above,

sup |f, — f| =0 a.s. as n-—oo.

To prove Theorem A, decompose f, as in Proposition 1 and apply Proposition
2 to dispose of the terms b and ¢. It only remains to show that sup |n o] — 0
to complete the proof. This is a consequence of the next proposition, giving
asymptotic uniform bounds on the behavior of the process o outside a given
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interval /. To prove Theorem A, it will suffice to take an empty interval /,
but the full result will be useful in the proof of Theorem B below. The notation
p lim sup denotes the lim sup in probability. For notational convenience set

a(h) = ki {log (1/A)}~

(k) = h=* {log (1/m)}~+ .

PROPOSITION 4. Suppose I is an interval (a, b), possibly empty. Suppose f is
uniformly continuous and 0 satisfies conditions (C1) (a), (b) and (d). Let M =
sup {f(x): x outside I}. Then, provided h — 0 as n — oo,

plimsup .. a(h) supy, [o| < 16M12¢ | |x|}|da(x)] .

and

If, in addition, Zh* < oo for some A,
limsup,_, a(h) supg, |o| < 16M¥(2F + A}) { |x|}|do(x)| a.s.

Proof. Define M, = sup f and M = supy,, f. Given any M’ > M, by the
continuity of f choose ¢ in (0, 2M,7*) such that
sup{f(x):x<a+4+eor x=b—¢c} <M.

Given any x outside /, it follows from the definitions of p and w, and from
Theorem 6.12 of Rudin (1966) that

lo(x)| = |§ A [WHF(x — hE)} — WO{F(x)}] do(§)|
< B S wol|F(x — hE) — F(x)[}|do(€)| -
Applying Taylor’s theorem and the definition of e,
SUpmy; 0] = 7" §igicen wo(M'|€]R)|dO(E)]
+ 7 Sz en wo(Mo|€|R)|dO(E)] -
Now use Proposition 3 and the fact that M|é|h = § for |§] = ¢/h to obtain,
with probability one,
a(h) supn [0 = 168(1){q($)2* + p(3)(10g B)*} §,¢1zcn |4O(E))|
(3) + 165(h)2% §,ciccn g(M'|€|R)|d0(E)]
+ 165(h)(1og B)* § s <.n p(M'|E|R)|dO(E)] -

The terms of (3) are dealt with separately. - Condition (d) of (C1) implies im-
mediately that, for any ¢ > 0, as £ — 0,

4) §i5120m [dO(6)| = ofa(h)} .
It follows from Proposition 3 that, if 7 — 0 as n — oo,
®) (log B)¥{log (1/h)}"* —, 0 as n— oo

and that, if ZA* < oo, by Borel-Cantelli,
(6) limsup,_., (log B)t{log (1/h)}~t < A} a.s.
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Combining (4) with (5) or (6) as appropriate shows that the first term of (3)
can be neglected. Dealing with the second and third terms is a matter of
investigation of the properties of the functions p and gq.

For any a > 0 and sufficiently small 4,

(7) B(h)g(ah) = §§ k*p'(hv){1 + log (1/v)/log (1/h)}* dv
(8) — at as h—0

by dominated convergence; the integrand in (7) is dominated for sufficiently
small 2 by (2v)~#{1 + |log (1/v)|}}, which is integrable on [0, a], and the limit
of the integrand is v~ for each v.

For M’|¢|h < } and sufficiently small 4, the quantity B(k)q(M'|§|h) is domi-
nated by a constant multiple of |£|}(1 4 log |£|), which is integrable on (—oo,
oo) with respect to |dd(¢)| by condition (d) of (C1). Apply the dominated con-
vergence theorem and (8) to obtain the result

lim,_, [second term of (3)] = 16(2M")} { ||t do(§) .

The third term of (3) is now considered. Using the fact that p(v) is dominated
by v}, the third term of (3) is dominated by

16M"}(log B)*{log (1/m)}™ § [€]|da(£)] -
Apply (5) and (6) to give limiting results which complete the proof of Pro-
position 4.

Return to the proof of Theorem A. Given a sequence of window widths 4
which satisfy the hypotheses of Theorem A, let N = {n: h < n~%}. Theorem 1 of
Nadaraya (1965) implies that sup | f, — f| tends to zero a.s. as n tends to infinity
through N°. [This is the only step which uses the uniform continuity of 4.]
For n in N, ZA® is convergent, and so the second part of Proposition 4 implies
that sup |n~tp| is a.s. O{n~}a(h)} and hence converges to zero as n tends to infinity
through N. As remarked at the beginning of the proof, this completes the proof
of Theorem A. The next theorem gives exact rates of weak and strong uniform
consistency for the kernel density estimate.

THEOREM B. Suppose that § satisfies conditions (C1) and (C2). Suppose that f
is uniformly continuous, and that, as n — oo, h — 0 and

(nh)~(log n){log (1)k)}* — 0 .

Then
g {(nh)~log (1/m)} = sup (f,, — Ef.) —» C,
, {(nk)="log (1/m)}~*inf (f,, — Ef.) —» —C,

C, = {2supf§ 0%x)dx}.
If, in addition, Zh* < oo for some A,

©) I < G limsup, .. {(nh)~"log (1/W)~t sup £, — Ef,|
(1 + A as.

A IA
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To prove Theorem B, decompose f, — & f. as n~tp + ¢ using Proposition 1,
and use Proposition 2 to show that the contribution due to ¢ can be neglected.
Notice that Proposition 4 applied to an empty interval / gives results which
have the correct rate of convergence but the wrong constant C,. The structure
of the proof is to choose a suitable interval / and to use Proposition 4 to deal
with n=tp outside /. An existing result of the author on the behavior of p
within an interval is used to complete the proof.

Since fis uniformly continuous, f{x) — 0 as [X] — oo. Choose a,0 < a < o,
such that

(10) SUPiza f(X) < SI27MC{S [x[Hdo(x)[}* = €, say.

Proposition 4 then implies that

(11) plimsup, ., a(h) sUpz [o(x)] < C; -
By Theorem A of Silverman (1976), as n tends to infinity,
(12) a(h) sup,, <. o(x) =5 C, and

a(h) inf, o, o(x) —p —C, .

Combining (11) and (12) completes the proof of the first part of Theorem B.

The first inequality of (9) can be deduced immediately. To demonstrate the
second inequality, replace C, in (10) by C,(1 + 2-*A%)* and proceed similarly,
using Theorem C of Silverman (1976) to give a strong result for the behavior
of o within the interval (—a, a).

4. Estimation of derivatives of the density. The results obtained in Section
3 can be extended to the case of estimating the rth derivative of a density. The
estimator studied, suggested by Bhattacharya (1967), is obtained by taking the
rth derivative of the Rosenblatt kernel estimate, using a kernel which is at least
r times differentiable. In Theorem A sufficient conditions on # were given for
uniformly consistent density estimates. In the case of estimates of density
derivatives, however, the conditions on A will be shown to be sufficient and
necessary for uniform consistency. Rates of consistency will not be considered
here; corresponding results to Theorem B are easily obtained by observing that

Ff7(x) = {0 (x — 1)} dE()

and hence that A"f,” has the same structure as f, with 0 replaced by 6"”’. None
of the work on f, — [Ef, uses condition (C1) (c), and so the fact that § 6”(x) dx
is zero does not present any difficulty.

THEOREM C. For some integer r = 1, suppose 0 is everywhere r times differenti-
able; that for j =0, -, r,

39(x) >0 as |x| — oo and §109(x)] dx < oo ;

that § 6(x) dx = 1; that 0'" satisfies conditions (C1), (a), (b) and (d) and condition
(C2); and that the Fourier transform of 0 is not identically one in any neighborhood
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of zero. Suppose f has uniformly continuous rth derivative. Then the conditions
h—0 and n~th=*-'log (1/h) >0 as n— oo
are necessary and sufficient for both

sup |/, — f"] -, 0 as n— oo
and

sup |/, — f"] —>0 a.s. as n— oo .
Notice that.the condition on f is also necessary because the uniform continuity
of 0 implies that of f,” and hence of any uniform limit of the f,.

The proof of sufficiency follows almost exactly that of Theorem A and is
omitted. The conditions are shown to be necessary for weak consistency; their
necessity for strong consistency follows at once. Assume from now on that
sup | £, — f™| — 0 in probability.

Suppose firstly that £ -+ 0 but that (choosing a subsequence if necessary) & —
hy # 0. For each x, by the weak law of large numbers and the boundedness of
5(1‘)’

[27(x) —=p § B0 Ry THx — D)} (1) dr .
For weak uniform consistency it is therefore necessary that, for all x,
[O(x) = § byt 00 Ry Hx — O} A7) dr
and hence, taking Fourier transforms and using Theorem 9.2 of Rudin (1966),
FH(s) = hym0 " *(hy8) f*(5)
where * denotes Fourier transformation. By standard properties of Fourier
transforms this becomes

(i) f*(s) = (i8)70*(ho5) S *(s) -

Since f*(s) — 1 as s — 0, this implies that * is identically one in a neighbour-
hood of zero, contradicting the assumption made in the theorem. Thus 4 — 0
is necessary, since & — oo would imply sup |f,*’| — 0.

Now, letting fn be the estimate based on X, - --, X,

£7) = RO (x — X))+ {(n — D/} fi7(x) -
Because f,” is uniformly consistent, it is necessary that
sup [n=th™ 0 AT (x — X)) —» 0

and hence that nk™+' — oo as n — co. For otherwise the asymptotic behaviour
of f, would depend on X;, contradicting the independence of X, X,, -+ -

By the analogous results to Propositions 1 and 2 and using Theorem A of
Silverman (1976), using O, to denote order in probability,

SUPIET| o [nbhr{log (1/R))-tn~th—r1 log n]
sup ||

= 0(1)
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since # — 0 and nA"** — co. [Notice that this conclusion cannot be drawn for
r=0.] It follows that sup |¢”’| is asymptotically negligible compared with
n~tsup [p”| and hence that n~isup|p”| —,0 is necessary for uniform
consistency. By Theorem A of Silverman (1976), sup |p™| is exactly
O,[h"* {log (1/h)}}] as h — 0, and hence n~*h~*~'log(1/h) — O is necessary
for uniform consistency, completing the proof of Theorem C.

Acknowledgments. My sincere thanks are due to Dr. D. P. Kennedy and to
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