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ON INVARIANT TESTS OF UNIFORMITY FOR
DIRECTIONS AND ORIENTATIONS

By M. J. PRENTICE
Edinburgh University

The very general results of Beran and Giné on invariant tests of uni-
formity are applied to S,, the surface of the unit hypersphere, and Hj, the
surface of the unit hypersphere with antipodes identified, to give a class of
invariant tests of uniformity for signed and unsigned directional data in
(p + l)-dimensions. The (p + 1)-dimensional analogues of the test statistics
due to Rayleigh, Bingham, Ajne, and Giné are constructed as the simplest
examples, and corresponding methods are derived for particular orientation
statistics as examples on Hj.

1. Introduction. There is a considerable body of literature relating to the
statistical analysis of both signed and unsigned directions in the plane (points
on the circle S,, and circle with antipodes identified, H,) and in three dimensions
(points on the sphere, §,, and sphere with antipodes identified, H,). Anexhaustive
review is given by Mardia (1972). Most of the statistical theory of the analysis
of directional data is parametric, although a certain amount of nonparametric
methodology exists (e.g., Watson (1961), Brunk (1962)). Only Beran (1968) and
Giné (1975) have developed invariant tests of uniformity for directional data
in three dimensions, and there is currently no literature on the general case,
(p + 1)-dimensions. The results presented here may be regarded as applications
to S, of those of Giné (1975).

Consideration of the spectral decomposition of homogeneous random processes
(Yaglom (1961)) on S, the surface of the unit (p + 1)-sphere, leads in Section 2
to explicit forms for Beran’s class of tests of uniformity (Beran 1968) on S, and
H,. Giné (1975) obtained these results only for p < 2. The null distributions
of a number of test statistics on S, and H, are obtained in Section 3. One readily
apparent application of the results of Section 2 is described in Section 4. The
results of Deltheil (1926) (see also Miles (1965)) on the invariant measure for
3 X 3 orthogonal matrices are used to derive a class of invariant tests of uni-
formity for 3 x 3 or equivalently 3 X 2 orientation statistics (Downs 1972).
Approximations to some sampling distributions are calculated in Section 5.

2. Beran’s tests on the hypersphere. Given a random sample of (p + 1)-
vectors a;, - - -, @, on S,, we consider the statistic

(2.1) Tya{ad) = (V)7 fonen [ 20 (f(X'0)) — 1) X
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where
V=1.1dx = 2+ /T + 1),
f@) =1+ X7 (1 + gla)a,Cz),  a=4p—1),
(22) 0K Zi.aMp.g) <oo;  where u(p,g) = (355 + (1er)
C,(z) = L@+ HI(G + 2a)(1 — )= av [(1 — z)ete-i],

(g + @ + HT2a)g! (—2)* dz¢
the Gegenbauer polynomial (zonal ultraspherical harmonic) of index a and order
g, and

@ = (1 + gla) " (SHADC, (21 — 2)* d2))(1+1(C (@)1 — )4 d)
= ¢! 27 (D@ + DY(§Hf(2)C, (2)(1 — )4 dz)f[ral(q + 2a)].
ProrosiTION 2.1.

Tp,n({aq}) =nt 3, 2 h(ai,aj)

Wz) = Z7. (1 + gla)a,*C,(2) .
ProorF. We consider only the case p > 2, since this result coincides with that
of Beran (1968) when p = 1.
We may parameterize S, as the set of all p-tuples @ = (6,,---,0,),0< 6, < 2r,
0<0,<7(1<j<p— 1), with surface element dS, = U,(0) df where

U, (0) = 4T(a + 1) 1%, (sin 6,)P~d/ga+1 = Bk, 0,),

where

Uy, o(0) = (2m)~ 060 <2,
and
23)  #,,(0) = Dla — §(j — 3)(sin 0~z Te — J(j — 2))).
0§¢9§ﬂ,1§j§}7—1.
The sample g, - - -, @, may be reparameterized as 0, - - -, 8, 8, = (7
6, ,), where sin? 0, ,= 280l We may write o/a,;=cos ¢, ;=cos b,  cos 0,,+
228=1(IT¢<, sin 6, , sin 6;,)cos b, cos 0; 1+, Where 0, .., = O for all i, and i

is the angular separation (great circle distance) between @, and o i

Now T, .({a,})) = n~* 3, %=1 h; ; where

iy = s, (f(cos 2;)) — 1)(f(cos 2;) — 1)u,(8)d6, and cos 4, = X'o; .
Choosing a new coordinate system with 8, transferred to the pole and @, trans-
ferred to (gbm., 0, ..., 0), we obtain

hiy = 27a §5 (sin 0P T5 (1 + g/a)a, C,%(cos 6,)]
X (35 (sin 0,)**[ 27, (1 + g/a)a, C,*(2)] db,) db,

where z = cos 2; = cos 6§, cos ¢;; + sin @, cos 0, sin ¢, .. Applying the addition
formula for Gegenbauer polynomials (Whittaker and Watson (1929), page 335,
Example 42) and integrating, we obtain

h; ; = h(cos b)) = 2o (1 + g/a)a *C (cos bii) s



INVARIANT TESTS OF UNIFORMITY 171

(with convergence assured by 2.2) whence
Tp,'n({aq}) =n i=1 Z?=1 h(ai,aj) *
PROPOSITION 2.2. On the null hypothesis of uniformity, T, .({a,}) is distributed
as LYo a.K, ., ], where the K, , ., are independent random variables distributed
as xip,00

Proor. From Vilenkin (1968, page 468), or equivalently Yaglom (1961, page
600), in the terminology of Giné (1975), an orthonormal basis for E,, the gth
eigenspace of the Laplacian, is

{(fo*5k=(ky -+ oskyy £k, ) g hky = -+ Zk,_, =0}

where f, %’ is expressible as a product of harmonics on hyperspheres of lower
orders. The dimensionality of E, thus satisfies the relationship

v(p,q) = Niov(p — 1, k), where y(p,0)=1, and
ul,q)=2, ¢>0.
Hence v(p, 9) = (*3%%) + (*3%7").
Since §, is a two-point homogeneous compact Riemannian manifold, and
1, (B)[C, (cos O)]dB = h,* = (1 + g/a) (*32;*), whence (p, q)/h,* = (1 +
g/a)?, the result is an immediate consequence of Giné’s Proposition 5.2 (1975,
page 1257).
From Giné’s Theorem 5.3 (ibid., page 1258), T, ,({a,}) is most powerful in-
variant except for terms of order O(a®) against the family of densities
fup(X) = (1 — @) + af(x’p) (p unknown).
By analogy with Beran’s Theorem 3 (1969, page 1200), it may be shown that
on the general local alternative (with arbitrary choice of origin)
9(x) =1 4 n74 20 Dby u i (0C(p 9

the asymptotic distribution of T, ,({a,}) is =" (X7, a,°*H,, ,,(b,%)), where b }? =
> 0%\, and the H (1) areindependent random variables distributed as noncentral

chi-squared.
By analogy with Beran’s Theorem 1 (1969, page 1198), it may be shown that
on the general distant alternative probability density g(x), if we define

b(x) = §,,=1 (f(¥'x) — Dg(y) dy
and
B(Y1: ¥3) = Swnan (S (/%) — D(f(¥2'X) — 1)g(x) dx — b(y,)b(Y,) »
then .
AT ((@0)) = 1§ 5(X) d]

is asymptotically normal with mean 0 and variance ¢ = 4 {,,,_, {,,,-, B(X,¥) X
b(x)b(y) dx dy, and the convergence is uniform if ¢* > 0.
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The imposition of the restriction that a,,,, = 0, all ¢ = 0, throughout this
section gives a corresponding class of test statistics and distributional results on
H, (see also Giné (1975), Corollary 6.2, page 1261).

3. Examples. The simplest possible example on S, is provided by A(z) =
(1 + 1l/a)C*(2). Thusn='(p + 1)r'r, wherer = 37, 0, is Rayleigh’s resultant,
is asymptotically distributed as 32 ,,.

The simplest example on H,, is the (p + 1)-dimensional analogue of Bingham’s
test statistic. Thus, if A(z) = (1 + 2/a)C,*(z), then we obtain

2n)y~(p + 1)(p + 3) trace (T?), where T = 37, (g0 — (p + 1)7),

asymptotically distributed as y} s,
The (p + 1)-dimensional analogue of Ajne’s statistic (Mardia (1972), page 191
and page 282) is
A, = (V) (e (N(Xx) — $n)*dx,
where N(x) is the number of data points ¢, such that x’e;, = 0. We may write
A, .= n/4 — (zn)™ 3 31.c; &, ;» Where ¢, . = cos™! (a/a;). Since
5 C(x)(1 — x¥)*~tdx =0
and
- —DT(g +a+1)
11 Ca, ()1 — xt)tde = .
T (29 + (g + « + 3)g! T()

(Abramowitz and Stegun (1965), page 785, 22.13.2), it follows from the results
of Section 2 that the asymptotic null distribution of 4, , is

’g(z‘;;l agq—lKu(p,zq—-l)) ’
where a,,_, = (=127 (e + DIYg + a)(29 — 2)!
(g — ) (29 +p — 2)!

This result reduces to that of Watson (1968) on §,, and Beran (1968) on S,. On
S, we obtain the asymptotic distribution of 4; , as Z7[ 3 7., [(29* — $)7]7K,,2]-
Giné’s statistic (Giné (1975), page 1262) generalizes to
Gy =41 — (p/2n)[T(a + )/T(a + DI X Xic;sin gy ;-
It may be shown that

{5 (3 — 3p[T(a + 1)/T(a + 1)]*sin 6)CE, ,(cos f)(sin B>~ d6 = 0

and
(5 (3 — 3p[T(a + 3)/T(a« + 1)]*sin 8)Cg,(cos 6)(sin §)?~* db

- P29 =129 +p—2)! [F(a + H(g — %)T
Qg (p— (29 +p) LT(G + a + ()

whence
1 — 4p[T(a 4 })/T(a + 1)]’sin @
= 271 P(2q — D(4q +p — 1) [F("‘ + 5l —3) T Cg,(cos 6)

(p— (29 + p)8n (g + a+ %)




INVARIANT TESTS OF UNIFORMITY 173

and G, , has asymptotic null distribution
Py~ g2 K , h : _ P29 —1) [F(a + Pl — %)T
(272195 K, 00] where  a;, 8229 + o)L T(q +a +3)

The asymptotic null distribution of G, , is incorrectly stated by Giné (1975,
page 1263). The correct result is

- (=T — )
g[20=1 ”_4;qr(;';1)? - K411+1] ’

or in Giné’s notation,
LR 27% 2k — 1) Mk + 1)7Y((2k — 1)/k!)?H,],

which is compatible with Giné’s (6.10) (ibid., page 1262).

On H,, we obtain

G,, = n/2 — (3n/8n) 1 ¥,c;sin g, ;
with asymptotic distribution
. 3
3.1 F| L5 Kagins |

D B a0y ey 4 g 1y

From the work of Giné (1975) (Theorem 4.4, page 1254), it follows that since
all even spectral coefficients a,, of G, , are nonzero, G, , is consistent against all
alternatives to uniformity on H,. Also, 4, , is consistent against alternatives on
S, with at least one nonvanishing odd spectral coefficient a,,_,. Clearly any

weighted sum of G, , and 4, , is consistent against all alternatives to uniformity
onS, (e.g., Giné (1975), Proposition 6.3, page 1261, on S,).

4. Orientation statistics. The results of Section 2 may also be applied to a
particular type of constrained multivariate directional data known as orienta-
tions (Downs, 1972). An orientation is a rigid configuration of p distinguishable
signed directions in m dimensions (m = p). Hence we consider the sample space
S,.,(C)of all m X p matrices X such that X’X = C, where C is a known p X p
symmetric positive definite matrix specifying the angles between every pair of
the p distinguishable directions. The specific application by Downs (1972) to
vectorcardiography involves S;,(/), or equivalently S, (/) = O(3), the class of
all proper 3 x 3 orthogonal matrices, since any two orthogonal directions in
three dimensions define a third direction uniquely by the right-hand rule.

It may be shown that if x is a 4-vector uniformly distributed on H,, then

2x + x0) — 1, 2(x,x3 — x,%,) 2(xyx, + X, X5)
X(x) = X(—x) = | 2(x,x5 + x;%), 2067+ x7) — 1, 2(xx, — x,%,)
2(x,x, — X1X3) 2(xgx, + x,%,),  2(x?2 4+ x5 — 1
is uniformly distributed (has the invariant Haar measure) on O(3) (see Deltheil
(1926), Miles (1965)). Since trace (X(x)X(y)) = 4(x’y)’ — 1, it follows that we
may restate the results of Section 2 for O(3) as follows.
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Given a random sample S, S,, - - -, S, on O(3), Beran’s test statistics are of
the form

W.({a}) = (n¥)7 o [ 27 f(trace (X'S;)) — 1) dX

where f(z) = 1 + X7, a,,(29 + 1)U, (3(1 + 2z)t), and U,, is a Chebyshev poly-
nomial of the second kind, an even zonal harmonic on the 4-sphere. Also,
W.({a,,}) may be expressed as

W'n({azq}) =n"ty7 #_, h(trace (Si’S].)) ,

=1 i=1
where A(z) = Yo, a2 (29 + 1)U,,(3(1 + 2)*), and has asymptotic null distribu-
tion L[5 a3, K g i102]-

Since U,(4(1 + z)t) = z, it follows that 3n~" trace (R'R), where R = 37, S;,
is asymptotically distributed as y,? on the null hypothesis of uniformity. This
result may also be obtained from other considerations (e.g., Downs (1972), page
672). Also, the analogue on H, of Giné’s statistic, consistent against all alter-
natives to uniformity, reduces on O(3) to

G, ., = n/2 — (3n/16n) 3} 3., [trace (I — S/S))]t,
asymptotically distributed as (3.1) on the null hypothesis of uniformity. Simi-
larly, on S, 4(C) we obtain

G,, = n/2 — (3n/16n) 3,3, [trace (I — S/C'S;)]t.
5. Numerical approximations to sampling distributions. A first-order ap-
proximation to the tail area of the distribution (2.4) may be obtained by the

method of Blum et al. (1962) (see also Beran (1968), page 194). The asymptotic
null hypothesis moment generating function of T, ,({a,}) is

M(S) = H?:l (1 —_ 2Saq2)_i‘v(1),q) .

Let a, denote the (unique) largest a,. Then M(s) may be approximated in the
upper tail by

M*(S) = PT(I — ZSau2)—§v(p,u) R where Oor = Hq*u (1 — aqz/auz)“i““”‘” ,
whence
Prob (T, .({a,}) > a,’x) = o, Prob (3}, ., > x) .

For the statistics 4, , and G, ,, since y(1, ¢) = 2, we may invert M(s) directly
(Beran (1969), page 1201) to obtain

(5.1)  lim, . Prob (4, , > x) = ¥, XD exp(_1ri2g — 1)),
’ (29 — 1)
as in Watson (1967), and
16g(—1)-"

(5.2) lim, ., Prob(G,, > x) = Yo, —~ 1 __ exp(—(4¢> — 1)x).

w(4¢* — 1)
I am grateful to a referee for drawing my attention to the work of Hoeffding
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1964) which may be used to provide an improved asymptotic expansion for the
ail area in the general case when v(p, u) > 2:

5.3)  lim,_, Prob (T, .({a,}) > a.’%) = 0r Dizo (—1)*0% Prob (e u-a > X)
vhere g,=1, 91:% Zq*ubqy(p’ q)’ bq:aqz/(auz_aqz)’ 92:%(912'}"% z qatuquy(p’ q))’
ind g,, g, etc. may be obtained by further differentiation of log M(S)/M*(S).

For the statistics 4, ,, 4, ,, G,.,, G;,, the various infinite products and sums
were found by numerical methods to 6 significant figures, and are quoted here
.0 4 significant figures only. We obtain
'5.4) lim,_,, Prob (4, , > x/16)

=~ 1.652[Prob (y,* > x) — 0.5155 Prob (¢ > x)],
lim,_,, Prob (4; , > 4x/97?%
’5.5) = 2.138[Prob (y,? > x) — 0.7893 Prob (x,* > x)]
= (0.4505 + 1.069x)e ",
(5.6) lim,_, Prob(G,, > x/16) = 4.638[Prob (x;* > x) — 1.593 Prob (y;* > x)
+ 1.323 Prob (3,2 > x)]
and
lim,_,, Prob (G, , > x/30)
(5.7) = 19.65[Prob (y,* > x) — 3.112 Prob (3, > x)
+ 4.903 Prob (3,> > x) — 5.217 Prob (x* > x)
4 4.216 Prob (x,* > x)] .

Table 1 contains approximations to some common significance levels obtained

from (5.1) to (5.7) inclusive.

TABLE 1
Approximate significance points of Ajne and Giné statistics

Significance level

Statistic T Or a,?

0.100 0.050 0.010 0.001
Ain 1.273 0.1013 0.517 0.655 0.982 1.448
Az, 1.654 0.0625 7.1, 8.7 12.2 17.2
Asn 2.138 0.0450 9.3 11.0 14.8 20.0
Gi,n 1.697 0.1667 0.944 1.175 1.712 2.489
Ga,n 4.638 0.0625 12.2 14.1 18.1 23.5
Gs,n 19.65 0.0333 20.5 22.7 27.7 33.0

6. Discussion. Since C,%(z) = T,(2), the Chebyshev polynomial of the first
kind, and C,}(z) = P,(z), the Legendre polynomial, the results of Section 2
reduce to those of Beran ((1968), page 186) on S, and Giné ((1975), page 1261)
on S,. The relationship between O(3) and H, (Section 4) provides one new
application of these results in four dimensions. However, the distributional
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problems associated with the construction of invariant tests of uniformity based
on Sobolev norms for general orientation statistics are difficult. The absence
of explicit forms for the zonal spherical functions on the Stiefel manifold is one
major difficulty. The corresponding functions on the unoriented Grassmann
manifold have been obtained by James and Constantine (1974), and similar tech-
niques are being applied to the Stiefel manifold. The analogues of Propositions
2.1 and 2.2 are rather more complicated.

Acknowledgment. I am grateful to a referee for suggesting a number of im-
provements, to Mr. P. R. Fisk for comments on an earlier draft, and to Mrs.
I. Macleod for computational assistance with Section 5.
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