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MONOTONIC DEPENDENCE FUNCTIONS OF BIVARIATE
DISTRIBUTIONS

By T. KowaALczYK AND E. PLESZCZYNSKA
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A new characterization of monotonic dependence is given here pro-
ceeding in a natural way from the consideration of a type of dependence
weaker than quadrant dependence. More precisely, each bivariate distribu-
tion of (X, Y) is transformed onto a pair of functions #x,y and #y, x defined
on the interval 0 < p < 1 and taking values from [—1, 1], with #x, y(p) be-
ing a suitably normalized expected value of X under the condition that ¥
exceeds its pth quantile. The usefulness of these functions as a kind of
measures of the strength of monotonic dependence as well as their close
relation to regression functions is demonstrated. It is also suggested that
these functions and their sample analogues could serve as useful tools in
modelling and solving some statistical decision problems.

1. Definition and interpretation. The intuitive notion of monotonic depend-
ence between X and Y is that large values of X tend to associate with large values
of Y (positive dependence) or with small values of Y (negative dependence).
Lehmann (1966) gives three successively stronger definitions of monotonic de-
pendence, starting from quadrant dependence characterized as follows: X is said
to be positively quadrant dependent on Y if

(1) Vx,yeR® P(X < x|Y>y)<PX<x)

and is said to be negatively quadrant dependent on Y if (1) holds with “<”
replaced by “>.”

Positive quadrant dependence is equivalent to the property that for any ye R
the random variable X, with distribution defined by PX,<x)=PX<x|Y>y)
is stochastically larger than X: X, >,, X. Similarly, negative quadrant depend-
ence is equivalent to X, <,, X.

The set of all pairs of quadrant dependent real-valued random variables will
be denoted here by QD, with obvious notations QD+ and QD~ corresponding to
positive and negative quadrant dependence.

We now introduce a weaker type of monotonic dependence, based on expecta-
tions of random variables X, (provided that these expectations exist): instead of
(1), we consider the inequality

) VyeR EX,> EX,

with an obvious change of “>" on “<” in the negative dependence case. The
set of all ordered pairs (X, Y) satisfying (2) will be denoted by EQD*. Then
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EQD* is a counterpart of QD+ and it contains all pairs (X, Y) in QD+ with finite
expectations. EQD~ and EQD are defined in a similar way.

For the sake of simplicity, attention is restricted here to the set B of bivariate
rv’s with finite expectations and continuous marginal distribution functions.
Therefore in further considerations the symbols 0D, QD*, EQD and EQD* will
denote suitable subsets of B. To simplify the notation we shall use also these
symbols to denote the corresponding sets of distributions.

Let x, and y, denote pth quantiles of X and Y, respectively, with0 < p < 1.
The definition of EQD suggests that a characterization of monotonic dependence
between X and Y for (X, Y)e B can be based on the suitably normalized dif-
ferences Ly ,(p) = E(X|Y > y,) — EX,0 < p < 1(for (X,Y)e B x,and y, are
uniquely determined except for p’s corresponding to the intervals of constancy
of respective marginal distribution functions: thence any pth quantile y, can be
used in the definition of L, ;). Accordingly, we define

#xv(P) = Ly v(P)/E(X| X > x,) — EX,
(3) 1% v(P) = Ly y(P)(EX — E(X| X < x,_,)) »
txy(P) = 1% ,v(P) if Lyy(p)z0,
= tx y(p) if Lyy(p)=0

forany 0 < p < 1 and (X, Y)e B.

The function y, , will be called a monotonic dependence function (mdf) of
X on Y; thus, to every distribution in B there corresponds a pair of mdf’s.

The interpretation of . ,(p) for any chosen p e (0, 1) is clear. The value
E(X|Y > y,) compared with EX characterizes a tendency of values of Y greater
than y, to associate with possibly large values of X. Moreover, for any two
(X, Y) and (X', Y’) in B which have marginal distributions respectively equal,
the tendency can be considered to be stronger for (X, Y) than for (X', Y’) if
E(X|Y >y, > E(X'|Y’ >y,) whichis evidently equivalent to zz ,(p) > ttx v(p)-

Similarly, #, , as a whole can be considered a measure of strength of mono-
tonic dependence between X and Y in the following sense. For any two elements
of B with marginal distributions respectively equal, a positive monotonic de-
pendence between X and Y is said to be stronger than that between X’ and Y’
(symbolically, (X, Y) >+ (X', Y") if g, (p) = px »(p) for all pe (0, 1), with
strict inequalities for some p’s. It follows that positive monotonic dependence
between X and Y is strongest (related to that of all elements in B which are
comparable to (X, Y) with respect to > *) iff ¢, ,(p) = 1, and it is weakest iff
tyy(p) = —1; thence, by Property 4 proved in Section 2, it is extreme iff X is
equivalent to a strictly monotonic function of Y (more precisely, to a Y-a.e.
increasing or decreasing function of Y, the exact definitions being given in Section
2). If instead of B we consider EQD* then the dependence is weakest iff 12, ,(p)=0
or equivalently iff a regression function of X on Y is constant (cf. Property
4).
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Some equivalent representations of ¢} , and p; , can be found by easy trans-
formations of (3), namely

tx,r(p) = (E(X|Y > y,) — E(X| Y < y,))/(E(X] X > x,) — E(X| X < x,))
= (EX — E(X|Y <y,))(EX — E(X|X < x,))

and similarly for x3 ,(p).

2. Properties of (uyy, ¢ty x). It is assumed throughout this section that
(X,Y)eBand pe(0,1).

PrROPERTY 1. —1 < pyo(p) £ 1.

Proor. It suffices to show that 4} ,(p) < 1 and g3 (p) = —1. The first of
these inequalities follows from E(X|Y > y,) < E(X|X > x,)and the second from
EX]Y >,) 2 EX|X = xi,).

Let ¢ be the joint distribution function of (X, Y) and let E(X; Y > y,) =
§= §5, x dp(x, y); we shall also use similar notations as E(X; X > x,) and so on.

PROPERTY 2.
trr(p) =1 iff P(X < x,, Y >p,)=PX>x,Y<y,)=0,
= —1 iff PX<x_,,Y<py,)=PX>x_,,Y>y,)=0.
PROOF.

try(p) =1 =EX Y >y, X <x) = EX Y <y, X>x,)
@P(X<xp’ Y>yp) = P(X > x,, Y<yp):0;
the proof of the second part is similar.

In the following ¢, will denote the distribution function of rv Z. Let F,*
denote a set of real-valued functions on R called Z-a.e. increasing: fe F,* iff
for any a, b € R ¢ ,(a) < $,(b) = f(a) < f(b). Similarly a set F,~ consisting of
Z-a.e. decreasing functions is defined.

PROPERTY 3. For any real a and b, a + 0

Haxen,ro0(P) = (580 @)1tz v(P) if feFy",
= (—sgna)u, (1 — p) if feFy,~.
The proof of Property 3 is obvious.
It is also easily seen that z, , is continuous.

A notation = will be used in this paper to denote the equivalence of random
variables, defined as: U = V' if the probability of the event U = V is equal to 1.

PROPERTY 4.

tyrr(p) = 1(=1) iff 3fe F,*(Fy™) suchthat X = f(Y);
0 iff E(X|Y)=EX;
1 y(p) iff (X,Y)eEQD*.

I
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PRrOOF.
(i) By Property 2,
txr(p)=1=Vpe(0,1) PX<x,|Y<y,)=1
= 3feF,* suchthat X = f(Y).

A similar result for z, ,(p) = —1 follows from Property 3.

(i) rxr(p)=0=Vpe(0,1) {7 EX|Y =1)dy(r) =\, EX dpy(7)

= E(X|Y) = EX.

The third equality appearing in the thesis follows from the definitions of EQD*
and EQD-.

PROPERTY 5. If (X, Y)e QD" and EX < oo, EY < co then pty , = 0.

Proor. Immediate.

According to Property 5, both mdf’s are nonnegative in case of a distribution
from QD*. It is clear that they are both nonpositive in case of a distribution
from QD~.

PROPERTY 6. If (X, Y)e QD then py(p) = 0 iff X and Y are independent.

Proor. It is known (Lehmann (1966)) that for (X, Y)e QD X and Y are in-
dependent iff Cov (X, Y) = 0. Thence Property 6 follows from Property 4.

THEOREM 1. Let (X,Y), (X', Y)eBand ¢y = ¢y, ¢y = ¢y.. Then py, =
Uy y iff E(X|Y) and E(X"|Y’) have the same distribution.

PROOF.

Pry = tpyr=VYpe(0,1) (P EX|Y =1)dpy(r) = {7 EX"|Y' = 1)d¢.(1),
which was to be proved.

Forany (U, V) € B, lety, , bea function in F, * defined by y, ,(a)= max{b e R:
#,(b) = ¢y(a)}. Given (X, Y), consider a random variable Y* = y, ,(Y) which
obviously has the same distribution as X. Then by Theorem 1 p; v+ = ptys x iff
E(X|Y*)and E(Y*|X) have the same distribution.

Theorem 1 establishes some connections between mdf’s and regression func-
tions in the general case. Theorem 2 below specifies these connections in some
important special case.

Let p be any number in [—1, 1]. Given (X, Y), define

Y,=Y* (ie., rxe(Y)) for p>0,

=Y for o = 0 .

=7_xy(Y) for p<O,
so that the distribution of Y, is the same as that of (sgn p)X for |o| > 0.

THEOREM 2. For any pe[—1, 1],

pea(p)=p M E(X|Y,) = pY, + (1 — |o)EX .
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Proor. Obviously, it suffices to prove Theorem 2 under the assumption that
EX = 0.

Let y, , denote pth quantile of Y,. Assume first that p > 0. Then E(X|Y,) =
pY, implies that Vpe(0,1) sgnL,,(p) = 1. Hence pyy(p) = pyy(p) =
E(X|Y, >y, )JE(X| X > x,) = E(oY,| Y, > y,,)/E(X| X > x,) = p. On the
other hand,

txy(p) = 0= piv(p) =iy (p) =0
=Vpe(©.1) EX|Y,>y,,) = E(eX|X > x,)
=Vpe 0 )iy,  EX|Y, = 1)dby (1) = {5, 01 dd (1)
— E(X|Y,) = pY,.
For p < 0 the proof is analogous while for p = 0 Theorem 2 follows from
Property 4.

A necessary and sufficient condition for py ,(p) = py «(p) = p for any pe
[—1, 1] can be easily deduced from Theorem 2. In particular

Lxy(P) = py,x(p) = 1(—1) iff 3feFy*(Fy™) such that X =f(Y);
=0 iff E(X|Y)=EXAEY|X)=EY;
=p if the distribution of (X, Y) is bivariate
normal with the correlation coefficient equal
to p.
CoRrOLLARY 1. Let (X, Y) be any element of B with a correlation coefficient ry

existing and equal to p + 0. Then py »(p) = p iff E(X|Y) is a linear function of
Y and the distributions of standardized variables (sgn p)X and Y are identical.

Proor. It is easily seen that it is sufficient to prove Corollary 1 for stand-
ardized X and Y. By Theorem 2, p, ,(p) = ryy = p implies that E(X|Y,) is a
linear function of Y, and that ry, =ry,,. Hence ry, = E(YEX|Y)) =
pE(YY,) = E(YY,) = 1 =Y, = Y in view of the properties of the correlation
coefficient.

The proof of sufficiency is immediate.

To illustrate the discrepancies between p ,(p) and r , for various p’s when
tx y(P) & I'yy, consider a bivariate exponential distribution belonging to QD-,
with the distribution function ¢ defined as ¢(x, y) = 1 — e — e7¥ 4 e-=+v+aw);
x =0,y =0. Itis easy to check that r, , = —.40365 and

txp(p) = ((p — In(1 —p))/(plnp(l — In(1 — p))).
Hence ¢, , is a decreasing function with negative values, convergent to 0 for
p—~>0+ and to —1 fOI‘p—> 1-.

3. Discussion. An intuitive notion of monotonic dependence (which could
possibly be called signed dependence: positive or negative) has been formalized
in many ways in case of two or more dimensions (cf. for instance [1], [4], [5],
[6], [9], [11], [12]), and a couple of parameters have been defined to serve as a
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measure of monotonic dependence (inter alia, it is worth mentioning here a
survey of ordinal measures given by W. Kruskal (1958) and a survey of robust
measures of correlation given by Devlin, Gnanadesikan and Kettenring (1975)).

Comparing p, , with other measures it should be emphasized that p, , is a
function and in general takes on different values for different values of p. Cor-
ollary 1 states the conditions under which p, , can be replaced by the correla-
tion coefficient r, , without any loss of information.

Another feature which differentiates y, , from other measures of monotonic
dependence is its “hybrid” nature expressed by the fact that z, ; is invariant
under increasing transformations of Y and linearly increasing transformations
of X, while ordinal measures of association are invariant under increasing trans-
formations performed on both variables, and “interval” measures of association
(e.g., correlation coefficient) are invariant under linearly increasing transforma-
tions on both variables. The importance of the hybrid nature follows from the
fact that there exist practical situations in which metric is relevant just in the
case of one variable (cf. J. B. Kruskal (1964)).

As stated before in Section 2, the assumption of continuity of marginal dis-
tributions has been adopted in this paper mostly for the sake of simplicity and
convenience. An extension of the definition of y, , for all bivariate distributions
with finite expectations can be easily constructed if one follows the idea given
in Pleszczyhska (1970) where an archetype of g, ,(.5) has been considered.
Moreover, a modified more robust definition of y, , could be suggested, with
expectations replaced by robust measures of location suitable in nonparametric
and nonsymmetric case (see Bickel and Lehmann (1975)).

The authors believe that ¢, , and its multidimensional analogues will prove
useful in various selection, discrimination and regression problems. Respective
decision schemes are now being investigated.

Acknowledgment. We express our sincere thanks to the referee for his helpful
comments.
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