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A ROBUSTNESS PROPERTY OF THE TESTS
FOR SERIAL CORRELATION

By TAKEAKI KARIYA
Hitotsubashi University

This paper shows that the UMP or UMPU tests for serial correlation,
derived under the assumption of a normal distribution, are quite robust
.against departure from normality. In fact, the tests are still UMP or
UMPU in much broader classes of distributions and the null distributions
remain unchanged under these classes. The results will be applied to a
linear model.

1. Introduction. Tests for serial correlation are usually developed under the
assumption of a normal distribution. A typical formal treatment for an exact
or approximated model may be illustrated as follows:

(1.1) X ~ N0, 72(2)), >0,
(1.2)  ZA)'=1,+44, and 2eA={21eR|ZQ) >0},

where means are subtracted (by invariance). Here 4 is an n X n known matrix
and Z(2)~* > 0 denotes the positive definiteness of Z(2)~'. (See examples in Sec-
tion 4 and the papers [3], [10], [14].) As is well known in this model, for test-
ing the hypothesis H: 2 = 0 versus the alternative K: 2 > 0, the test with c.r.
(critical region) T = X’ AX/X'X < ¢ is a UMP (uniformly most powerful) test,
and for testing H: 2 = 0 versus K: 2 = 0, the test with c.r. T < ¢, or T > ¢,
isa UMPU (UMP unbiased) test (Anderson [3]). Kariya and Eaton [11] showed
that the UMP test for the one-sided alternative is UMP in a much broader class
of distributions and that the null distribution under any member of the class is
the same as that under normal distribution (1.1) with y = 1 and 2 = 0. How-
ever, for the two-sided problem the authors failed to prove the UMPU property
in the class.

In this paper it is shown that the UMPU test under normality is UMPU in a
much broader class of distributions although this enlarged class remains smaller
than the class treated in [11]. The null distribution is also the same as that under
normality so that the existing tables are utilized to determine the critical points.
The results will be applied through invariance to a linear model y = X8 + u
under the assumption that the column space of X (n X k) is spanned by some
k latent vectors of the matrix 4 in (1.2). This assumption is needed even under
normality to establish the UMP invariant (UMPI) or the UMPU invariant
(UMPUI) properties in the linear model. Consequently the tests derived under
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the normal model are quite robust against departure from normality in the fol-
lowing sense: the null distributions remain unchanged and the UMP or UMPU
properties are still guaranteed with or without invariance. Such tests as the
Durbin-Watson test, the Anderson-Anderson test, etc., are shown as examples
at the close of the paper.

As general references, the reader is referred to Kadiyala [10] and Press [14].

2. The problem and a result in [11]. To state the problem in this paper, we
define three classes of pdf’s (probability density functions) with respect to the
Lebesgue measure on Euclidean n-space R*. Let & be the class of all pdf’s on
R* and for an n X n matrix £ > 0, let

@.1)  FUZ) ={feF|f(x) = |2 tg(x'Z ), g is a function on [0, co)} ,
22)  Fu@)={feF|fix) = 2] (I ),

g is a nonincreasing function on [0, )},
and

23) FE) ={feF[fix) = [Z[ (I ),

g is a nonincreasing and convex function on [0, co0)}.
Clearly & (2) c F(2) € F(Z). If fix) = |Z|~#g(x'Z1x) belongs to & ,(Z),
then
(2.4) 9(x) = (& a2 Z|~tq(x'Z~x/a) dG(a)
also belongs to . (X), where G is a distribution function on (0, co). Hence
& 4(Z) contains the contaminated normal distribution, the multivariate ¢-distri-
bution (multivariate Cauchy distribution) etc., as well as N(0, £). It also con-
tains certain distributions with bounded supports.

Now suppose that X' € R* is a random vector with a pdf 4. Consider the
problem of testing H,: h e F (r1,), y > O versus the alternatives

(2.5) K,: he F(yZ(R)), r>0, 2>0,
and
(2.6) K,: he F(yZ(3)), r>0, 2#0,

where 2(2)~* is given in (1.2). Here it is:noted that the domain A of 2 in (1.2)
is an open interval including 2 = 0. The problem of testing H, versus K, has
been treated in [11] and the result is summarized as

THEOREM 1. For testing H, versus K, the test which rejects H, for small values of
2.7) T =X'AX/X'X
is a UMP test and the null distribution of T is the same as that under N(0, ).

This paper treats the problem of testing H, versus K,, and shows that the test
withc.r. T < ¢;or T > ¢,is UMPU. Since the test with c.r. T < ¢ is UMP for
K, as in Theorem 1, one may conjecture that the test withc.r. T < ¢;or T > ¢,
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is also UMPU for K, with 2 == 0 instead of 2 > 0. But the author has been un-
able to show it. In Section 4, the results are applied to a linear model through
invariance.

Finally we remark that Z(2)~*in (1.2) can be replaced by a matrix of the form
D(4)"* = § 4 A4 where S > 0, in which case H, is replaced by Hy: he Fy(yS7%).
Then the problem is to show the UMPU property of the test X’ 4X/X"SX < c, or
X'AX|X'SX > ¢,. But this problem is clearly reduced to the above problem.

3. The main results. Let &7, be the class of level « test functions which are
unbiased for the two-sided problem stated in Section 2. Let W = X'X — [1X] 12

LemMA 1. The pair (T, W) is a complete sufficient statistic for the family
{F(rZ(2), r > 0,2€ A}. Furthermore, W is a complete sufficient statistic for
{F2020) = F,GL), v > 0}, and so for {(rL,), 7 > O}.

Proor. Both sufficiency assertions follow from the factorization theorem.
Since (V, W) = (X’4X, X'X) is complete for the normal family {N(0, 7Z(2)),
r >0, 4¢€ A} and since & ,(yZ(2)) contains N(0, yZ(2)), (V, W) is complete for
{F(rZ(2), r > 0, 2e A} and so is (T, W) = (V/W, W). The completeness of
W follows by similar consideration.

From this lemma, it is sufficient to consider test functions in <, based on
(T, W) only. Let7(n)denote the set of n X n orthogonal matrices and let d, <
dy < ... < d, be the latent roots of 4. Without loss of generality, d, + d, is
assumed.

LEMMA 2. Under H,, i.e., h(x) = y="*q(x'x[y), T has a pdf, say f,(1), on [d,, d,]
which does not depend on q and y. Also under H,, the pdf of W is given by

(3.1) Fiw) = e(myr="q(wrywm-1, 0<w< oo
where c(n) = [I'(})]"/T'(n/2). Further, T and W are independent under H,.

Proor. Under H,, X/||X|| has a uniform distribution on {x e R*|||x|| = 1}, so
does Z/||Z|| where Z = QX with Q e &7(n). Further, ZMZ||Ps(i=1, ---,n)
jointly have a Dirichelet distribution. Since T'is expressedas T = Y*_, d, Z2\Z|]
for some Q € &(n), the distribution of T does not depend on ¢ and y. The pdf
of W can be derived by changing to polar coordinates in R*. Since the distri-
bution of T does not depend on a particular distribution in H,, the independence
of T and W under H, follows from a result due to Basu [4]. This completes the
proof.

THEOREM 2. If X has a pdf of the form
(3.2) h(x) = 71 + 24)q([x'x + 2x' Ax)/y)

(that is, h e & (rZ(2))), then the joint pdf of T and W with respect to the Lebesgue
measure is f(t, w: y, &) = g(t, w: 1, )fi(1), where f(t) is given in Lemma 2 and

3.3) g(t, Wi, A) = c(n)yy~I + AAPq([w + Atw]/A)wr>-1,
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Proor. Choose P e </(n)such that P’AP = diag{d,, d;,---,d,_,,d,,d,} = D =
diagonal matrix with diagonal elements d,, d,, - - -, d,_,, d,, d, in this order. Let
Z = PX. Then the pdf of Z is y="|I + AA|}q([z'z + Az’Dz][r). Changing z =
(2 - -+, z,) to the polar coordinates z; = wis,(f) (i = 1, - - -, n) yields the pdf
of (W, 0, ---,6,_)

17+ 2A4Rq([w + 2O)w][rywr ()

where s5,(0) = cosf,cosf, .--cosf, ,sinf, i=1,...,n—1), 5,0) = cos b,
cosf, - .. cosl, ,, H(0) = dys5,(0)° + dysy(0)* + -+ + d,_;5,_4(0) + dys,_,(0) +
d,s,(0)* and J(0) = cos*~*@ cos" %@, ... cos O, , (—n/2< 0, <nf2,i=1, ...,
n—2 —r <0, ,<r). Further since T = 1(f), we change (W, 6,, ---,0,_)
to (W,0,,---,0,,, T) for each region of 0, ,e(—=,n/2), 0,_,€[—=/2,0),
0,-,€[0,7/2)and 0,_, € [z/2, x). Then the pdf of (W, ¥0,, ---,0,_,, T)is

17+ 241 q([w 4 Aw][r)wR(2, 6y, - -1, 0,
where R(t, 0,, - - -, 0,_,) does not depend on w. Thus the pdf of (T, W) is given
by g(t, w: r, A)r(t), withr(ty = § --- Y R(t,0,, ---,0,_,)db, ---df,_,. Seti =0
to identify r(r) with fi(#) in Lemma 2. This completes the proof.

We now suppose he F ,(r2(4)). Since h is of the form (3.2), the pdf of
(T, W) is obtained from Theorem 2. Define

: __9(tw:r, A
(3.4) k(t:w, 7, 2) = TR T

which is the conditional pdf of T given W. Let E, denote expectation under H,.
LEmMMA 3. If ¢ is a test function in Z,, then

(3.5) E[(T, W)|W]=a ae. (W)

(3.6) E[T§(T, W)|W] = aE,T a.e. (W),

where E [« | W] denotes conditional expectation given W under H,,.

Proor. Since pe &, E, ¢ = aforallhe o7 (yX(2)) withd #= 0and E, ¢ < «a
for all he & (rI). Hence E ¢ = a for all ke 5 (yI) = F (rZ(0)) by a simple
continuity argument. Butfor ke 7, (r1), E,¢(T, W) = ({ ¢(1, w)fi(1)fy(w) dt dw =
E\E[¢(T, W)|W]. Thus E;E[¢(T, W) — a| W] = 0. Since W is complete for
(D), r > 0, (3.5) follows. For (3.6), we first assume X ~ N0, yZ(2)), then
by arguing as in Lehmann [13] Chapter 4, we obtain E[T¢(T, W)|W] =
a«E[T| W] when 42 = 0. Since the distribution of 7 under N(0, y7) is the same
as that under s € % (yI) as shown in Lemma 2 and since T is independent of
W under H,, (3.6) follows.

Let &, be the set of level a test functions satisfying (3.5) and (3.6) where
0 < a < 1. Define the test function ¢, by

3.7) () =1 if r1<e, or t>¢,, and
oo(f) = 0 otherwise.
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THEOREM 3. If e ,@N’a 0 < a<l), then
(3.8) E. ¢, = E, ¢ forall he F(yZ(A), r>0, 2+#0.

Further, for any he 5 (yZ(R)) such that the pdf in (3.4) gives no mass to the set
{t] do(t, w) = (2, w)}, or simply ¢, = ¢ a.e. (T|W), then the inequality in (3.8) is
strict unless E,T = 0. Especially when the support of he & (yX(R)) is R*, it holds
strictly, provided ¢, + ¢ a.e. and E,T =+ 0.

Proor. Fix A(x) = y="?|I + AA|}q([x'x + Ax'Ax][y) where g is convex and
nonincreasing on [0, co), s0 k€ & (yZ(4)). For a fixed value W, consider the
problem of testing H: 2 = 0 versus K: 2 = 2* + 0, where 7 is arbitrarily fixed.
Applying the generalized Neyman-Pearson Lemma ([13] page 83), the supremum
of E.[¢(T, W)| W] over the set &, is achieved by test functions of the form:
¢, = Lif k(t: w, 7, %) > a, fi(t) + a,tf\(1); ¢, = 0 otherwise, where k(¢: w, 7, 1)
is given in (3.4) and a, and a, are so chosen for ¢, to satisfy (3.5) and (3.6).
Since g is convex, ¢, = 1 either if t < cor¢ > ¢/, orif t < ¢, orif t > ¢’. Here
c and ¢’ can be free from the fixed W since under H, the conditional pdf of T
given W does not depend on W. We shall show that the last two c.r.’s t < ¢
t > ¢’ cannot satisfy (3.5) and (3.6). For example, suppose the c.r. r < c satisfies
these conditions. Then (3.6) together with (3.5) is {5 #fi(f) dt = R(c)E, T where
R(c) = (i, fi(?) dt. Since {3 if\(f) dt = cR(c) — {5, R(?) dt,

(3.9) E,T = ¢ — [R(¢)]* §5, R(t) dt .

Let H(c) be the right-hand side of (3.9). Then H(c) is a strictly increasing and
continuous function of ¢ (4, < ¢ < d,) with H’(c) > 0. Hence (3.9) is impossible
unless ¢ = d, since H(d,) = E,T. But ¢ = d, contradicts « < 1. Similarly the
c.r. t > ¢’ cannot satisfy (3.5) and (3.6). Therefore ¢, in (3.7) satisfies

(3.10)  Ex[¢T)| W] = Ef[$(T, W)|W] ae. (W) forall ¢pec,.

Since ¢, did not depend on the particular 4 € & ,(yZ(2)), (3.8) holds. Further,
by applying the necessary part of the generalized Neyman-Pearson Lemma
([13], page 84 iv), the inequality in (3.10) is shown to be strict a.e. (W) for
¢ + ¢, a.e. (T|W). Infact, for 0 < a < 1, (a, @E,T) is an interior point of
the set

(¥ 65, WIfi(1) dt, Vi $(1, W)fi(t) dr) € RY| ¢ is a test on [dy, d,] X [0, o)} ,

which is nothing but the set [0, 1] X [0, E,T] if E,T > 0 or the set [0, 1] X
[E,T, 0] if E,T < 0. Especially when the support of % is R* for all y > 0 and
A #+ 0, the pdf of W gives positive mass to any open set in [0, co) and hence
$o #+ ¢ a.e. implies ¢, = ¢ a.e. (T'| W), completing the proof.

THEOREM 4. The test ¢, in (3.7) is UMPU for testing Hy: he & (yI), r > 0
versus K,: he F(r2(A)), 7 > 0, 2 # 0.

PRroOOF. Since &, C _&Za, the result follows immediately from Theorem 3.
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Next we state conditions for which the above results still hold for reparame-
trization of y and 2. Let ¢(6,, 6,) = (r(6,, 6,), 4(0,, 6,)) denote a reparametriza-
tion of y and 2 by 6, and 6,, where (6,, 0,) € ©, X 0, and ©,’s are open intervals
in R'. Suppose r satisfies the conditions: (1) z is a continuous function from
0, X 0, into R?such that the image 7(0, x 0,) contains an open set in (0, co) X A
and y(6,, 6,) > 0 for all (4,, 6,) € ©, X O,; (2) there exists a unique point 6,* € 0,
such that 2(6,, 6,*) = 0 for all 4, € ©,, and such that z(6,, 6,*) is an interior point
of the image for each ¢,, and (3) X((0,, 0,))™* = I + (6,, 6,)4 > 0 for all (6,,
0,) €0, X 0,. Then almost clearly the above results hold in terms of (6,, 6,).
(See [13] Chapter 4 for the completeness result in Lemma 1.) Such reparame-
trizations are found in the examples below.

REMARK 1. The moments of X may not exist for some 2 e & ,(¥) (¥ > 0,
i=0,1,2). Butif E|X] < oo, then E(X) = 0, and if E(X'X) < oo, ¥ is the
covariance matrix of X.

REMARK 2. The null hypotheses which we are usually more interested in will
be H,: he & (yZ(0)) = & (1) for the alternative K,, and H,: he & ,(yZ(0)) =
Z,(r]) for the alternative K,. Of course, the above results hold when H, is
replaced by H, or H, for K, or K, respectively.

ExAMPLE 1. Circular serial correlation ([1]). Let X = (X,, - --, X,)’ be gener-
ated by X; = oX;_, + u;, X, = X,(j =1, - -+, n). Here the pdf of U = (u,, - - -,
u,) is assumed to belong to & ,(y/) (i = 1 or 2), which contains N(0, 7). Since
X = pBX + U with

0 17
1 0

B = 1 ,
0 1 0

the pdf of X, say 4, belongs to .5 ,(yZ(1)), where

@1l y=7(he) =71 +0°), A=A p) =p/(l + ),

and %(2)~' is given by (1.2) with 4 = —(B 4 B’). By Theorem 1, for testing
H,: he F (o), 6* > 0 versus K,: he F (rZ(R)), 6> > 0, p > 0, the test T =
X'AX/X'X < ¢ is UMP. By Theorem 4, for testing H,: he & ,(d*), a* > 0
versus K,: he 7 ,(yZ(2)), 6> > 0, p # 0, the test T < ¢, or T > ¢, is UMPU.

4. Applications to a linear model. The results are applied to a regression
model y = X$ + u, where X: n X k, rank (X) = k and X is fixed. Let 4 be the
pdf of error term u. Here he 5 ,(yZ()) or he & (rX(2)) is assumed where
Z(A)~'is given by (1.2). This assumption seems quite reasonable since it con-
tains such heavy-tailed distributions as the multivariate 7-(Cauchy) distribution,
the contaminated normal distribution, etc. The crucial assumption is that the
column space of X, denoted by L(X), is spanned by some k latent vectors of A
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in (1.2), say e’s(j = 1, - - -, k). Under this assumption, there exists a Q € 7(n)
such that with z = Qy and v = Qu

41 z=@®%)+4+v and  Q'AQ =diag{d,, ---,d,} =D (p*:k x 1)

where the first k d,’s are the roots of A4 corresponding to e;’s. Let z = (z/, 2y’
where z,: k x land z,: (n — k) x 1. Suppose that (u) = |yZ(2)|~tq(w'Z(2)~*u[7)
belongs to & ;(yZ(4)) (i = 1 or 2). Then the pdf of v = Qu is given by

42) . r="| + AD|}q(v'[I + ADJvfr) .

Consider the problem of testing H,: he .7 (y2(0)), r >0 versus K;: he
Z(r2(2), y > 0,2 > 0. Clearly the problem is invariant under the translation
z,— z, + b (be R*) in the canonical form (4.1). By invariance we only con-
sider the class of level a tests based on z, alone, denoted by &7,7. Since v has
the pdf (4.2), as in Kelker [12], the marginal pdf of z, is given by

(4.3) f(z2) = 7y~ "W, + AD,[}q(2)[I + AD,]z2y[7)

where D, = diag{d,_,,,, - -+, d,}. Here § depends only on the form of g and
the integers k and n. For he .5 (rZ(4)), 7 is easily shown to be nonincreasing.
Therefore the problem is reduced to that of testing H,: fe & ,(y®(0)), r > 0
versus K, : fe Z,(y®(2)), r >0, 2 > 0 with ®(2)~* = I,_, + AD,. Now Theo-
rem 1 is applicable and the test with c.r. T = z,D,z,/z,/z, < ¢ is UMP in the
class &,. In the same way, the test with c.r. 7' < ¢, or T > ¢, is shown to be
UMPU in the class 7,7 for testing H,: he & (yX(0)), r > 0 versus K,: he
Z(rZ(2)), 1 > 0, 2 + 0. Here 7 is shown to be nonincreasing and convex. It
should be remarked that if D, = 0 or D, = al,_, for some a > 0, the problem
cannot be tested through invariance. These results are summarized in the origi-
nal terms as

THEOREM 5. Lety = XB + u be a linear model where X: n X k is fixed with
rank (X) = k. Let h be the pdf of the error term u. Assume the column space is
spanned by some k latent vectors of A in (1.2). Then for testing H,: he & (7]),
7y > 0 versus K,: he 5 (yZ(4)), r > 0, 2 > 0, the test which rejects H, for small
values of

4.4) T = y'MAMy[y' My where M =1— X(X'X)7'X'
is UMPI unless MAM = 0 or aM for some a > 0, and for testing H,: he . (r]),
y > 0, versus K,: he F,(yZ(2), r >0, 20, the cx. T<c,or T >c¢, is
UMPUI (UMPU in the class of invariant tests) unless MAM = 0 or aM for some
a > 0.

ExamPLE 2. The model in Example 1 is generalized as

(4.3) Yi= vt + U, Uj = puj_y +9;, Vo = Vps

where the pdf of v = (v,, - -+, v,)’ belongs to > ,(yI) (i =1 or 2). Then the
pdf of u = (u,, - -+, u,), say h, belongs to .5 (rZ(4)), where y and 1 are given



ROBUSTNESS OF TESTS FOR SERIAL CORRELATION 1219

by (3.11)and 4 = —(B + B'). Lety = (y,, ---,y,) ande = (1, .-, 1) (e R").
Since y = pe + u and e is a latent vector of 4, Theorem 5 is applicable and the
corresponding tests are UMPI or UMPUI. Here T in (4.4) is written as

2520V = D PVia = D250 = I Vo= Ya

which is known as R. L. Anderson’s circular serial correlation ([1]). The model
is further generalized by Anderson-Anderson [2] to the case

E(y;) = X ey cos [2xj(i — 1)/n] + X B sin [2xj(i — 1)/n] ,
in which the assumption in Theorem 5 is satisfied (see [1] for the latent vectors).

ExaMPLE 3. Let the error term u; be generated by an autoregressive process
of the type

(4.6) up = pU;_y + v, ol <1.

Firstassume v = (v, - -+, v,) ~ N(0, ¢21,). Then the covariance matrix of u =
(uy, -+ -, u,) is given by ¢’R where the (i, j) element of R is p'*~9/(1 — p?). Let
C = (c,;) be the n x n matrix with ¢,; = 0 exceptc,, = ¢,, = 1, and let B = (b,;)
be the n x n matrix with b,; = 0 except b, , , =b,,,, =1 (k=2,.--,n 1=
1,-..,n—1). Then R™* = (1 4 p*)I — pB — p*C. The matrix R~! is often
approximated by Anderson’s matrix @ ([3]) where ® differs from R~*in having
(I 4+ p* — p) instead of 1 in the upper left and lower right corners ([3], [10]).
The approximated model is written as y = X8 + u, u ~ N(0, yZ(2)) where
ZN =1+ 24,2 = (1 — p?), 2 =p/(1 — p*)and 4 = —(B + C).

Suppose the distribution of # may not be normal but is just known to be (or
well approximated by) a member of .5 ,(yZ(2)) (i = 1 or 2). Then if X satisfies
the assumption in Theorem 5, the test based on 7 in (4.4) has the optimal
properties stated in Theorem 5. The latent roots of A are d; = cos [z(i — 1)/n]
and the latent vectors are (cos [z(i — 1)/2n], cos [3x(i — 1)/2n], ..., cos [(2n —
Da@i — 1)/2n]) (i =1, ---, n). The statistic T + 2 = y’M[2] + A]My[y'My is
well known as the Durbin-Watson test statistic ([5], [6]) and when k = 1 and
X = e, the test statistic n(T + 2)/(n — 1) is also well known as the von Neumann
ratio, which is usually written as 0%/s* = n 37, (y; — y,_)*/(n — 1) 230, (y; — P)™
Since e is a latent vector of 4, the test based on ¢%/s* has the optimality property

([16], [17])-

ExaMmpLE 4. Let W = ¢’[(1 — p)I + pee’] (intra-class covariance structure).
Then ¥~ = [I — pee’/(np — p + 1)]/o*(1 — p). Hence with y = ¢*%1 — p) and
A=pl(no —p+ 1), ' =[]+ A4]/r where 4 = —ee’. However if the re-
gression equation contains a constant term or the column space L(X) contains
the vector e, the problem stated in Theorem 5 cannot be tested since MAM = 0.
If L(X) does not contain e and if each column of X is orthogonal to e, then
Theorem 5 is clearly applicable and (n — k)(y'e)*/ny’My = (n — k)T/n is F-dis-
tributed with degrees of freedom 1 and n — k under H, (i = 1 or 2) ([11]).
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REMARK 3. Even under normality, the assumption concerning L(X) in Theo-
rem 5 is necessary for obtaining the corresponding results. On the other hand,
Durbin and Watson [7] have shown that under normality their test in Example
3 is locally most powerful invariant for the one-sided problem even if L(X) is
not spanned by any k latent vectors of 4. The result is applicable to the tests
based on 7T in (4.4) under normality. However, without normality, or in our
setting such a result seems difficult to obtain.
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